Students in an AP Chemistry course should spend at least five hours a week in individual study outside of the classroom

Similar documents
Chemistry: The Central Science Twelfth Edition, AP* Edition 2012

Chemistry: Molecules, Matter, and Change, Fourth Edition Loretta Jones and Peter Atkins Correlated with AP Chemistry, May 2002, May 2003

Norwich City Schools AP Chemistry

Course Title. All students are expected to take the College Board Advanced Placement Exam for Chemistry in May.

AP Chemistry Audit Version 2

AP Chemistry Standards and Benchmarks

CLEP Chemistry AT A GLANCE

MARLBORO CENTRAL SCHOOL DISTRICT-CURRICULUM MAP. Subject: AP Chemistry 2015/16

Samples of Evidence to Satisfy the AP Chemistry Curricular Requirements

Study guide for AP test on TOPIC 1 Matter & Measurement

KAP Chemistry Syllabus

KAP Chemistry Clear Fork High School

AP Chemistry Mrs. Hopkins Rm A200 Conference Period: 9:15am-10:11am Tutorials: Wed. 3:10-4:10pm Room A200

AP CHEMISTRY COURSE SYLLABUS FIRST SEMESTER. Supplies: notebook, lab notebook (will be supplied), graph paper, calculator

AP Chemistry

AP Chemistry Syllabus

Required Syllabus Information all must be included in the course syllabus

Pine Hill Public Schools Curriculum

Updated: Page 1 of 5

AP Chemistry. Course Description & Program Overview: Goals of the Course:

COURSE OUTLINE. COURSE NUMBER: SCI 502 WRITTEN / REVISED: September, 2011 LEVEL OF COURSE: AP NUMBER OF CREDITS: SIX (6)

WOODSIDE PRIORY SCHOOL COURSE OUTLINE AP CHEMISTRY

ADVANCED PLACEMENT CHEMISTRY SYLLABUS

UNIT 1: WELCOME TO CHEMISTRY

Course Title: Academic chemistry Topic/Concept: Chapter 1 Time Allotment: 11 day Unit Sequence: 1 Major Concepts to be learned:

Cherokee High School. Class Syllabus

Cowley College & Area Vocational Technical School

WOODSIDE PRIORY SCHOOL COURSE OUTLINE HONOR CHEMISTRY

Chemistry Topics for UIL Dr. Brian Anderson

CHEMISTRY CONTENT SKILLS CHART

UNIT 1: WELCOME TO CHEMISTRY

Advanced Placement Chemistry Syllabus

JEFFERSON COLLEGE COURSE SYLLABUS CHM112 GENERAL CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised Date: August 2009 by Sean Birke

Advanced Placement Chemistry. The Ultimate Chemical Equation Handbook George R. Hague, et.al. 2001

Chemistry Topics for UIL Dr. Brian Anderson

AP Chemistry Course Syllabus Mrs. Yvonne Lavin

Textbook/Lab Manual: Brown, Theodore L., et al., Chemistry - The Central Science Tenth Edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.

AP CHEMISTRY Pacing Guide

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER.

Principles of General Chemistry

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER.

AP Chemistry Common Ion Effect; 16.6 ionization constants, will. Equilibria with Weak Acids and and the preparation of buffer

General Chemistry (Second Quarter)

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA COURSE OUTLINE

Chemistry 111 Syllabus

Successful completion of either Pre AP Chemistry or both Integrated Science I and II, and Algebra I.

MCSM Chemistry Curriculum Outline Teacher Version

Unit 1: Chemical Foundations: Lab Skills, Properties of Matter, Scientific Measurement, and Dimensional Analysis

AP Chemistry Syllabus

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER.

Virginia Standards of Learning Chemistry

Course Outline Chemistry Citrus Valley High School

AP Chemistry Syllabus

Academic Staff Specifics

Required Materials For complete material(s) information, refer to

Welcome to Chemistry 1A. This course in the first half of the General Chemistry course offered at RCC.

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Chemistry

CHEM 30A: Introductory General Chemistry Fall 2017, Laney College. Welcome to Chem 30A!

LOBs covered during tutorials: 7. Solve exercises related to atomic structure, electronic configurations, and periodic properties.

General Information. Course Description. Instructor name: Andrea Horgan Phone number: ext

AP Free Response Summary

CHEM 021: General Chemistry II

Proposed Content for the Project (Scope and Sequence)

Table of Contents. * * * * * Volume 1

Chemistry. Course Description:

SCIENCE DEPARTMENT CHEMISTRY (AE): COURSE

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM COLLEGE CHEMISTRY II

CHEM 1312 General Chemistry II 3 Life and Physical Science CHEM 1312

Miami Dade College CHM Second Semester General Chemistry

Honors Chemistry/ACP Chemistry

CHEM 021: General Chemistry II

AP Course Audit AP Chemistry Syllabus

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry

generate testable Students will be able to investigations. Biology 1 2 (can be conclusions. reveal relationships identify sources of error higher.

Part A: Initial Plan Part B: Midsemester Update Part C: Further Updates. The current submission is which of the following:

Spanish Fork High School Unit Topics and I Can Statements AP Chemistry

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum

Elizabethtown Area School District Chemistry II Name of Course

Miami Dade College CHM 1045 First Semester General Chemistry

Thinkwell s Homeschool AP Chemistry Course Lesson Plan: 34 weeks

Prerequisites. Student Goals, Enduring Understandings, and Science Practices

1) How are experiments designed and analyzed. 2) How are chemical formulas used? 1) How do you write and balance chemical equations

General Chemistry I & Lab

1 P a g e. FIRST-YEAR CHEMISTRY for science and engineering majors. Typical range 4-5 semester hours each term, 2 semesters in a sequence

General Chemistry (Third Quarter)

UNIT 1: CHEMISTRY FOUNDATIONS

Chemistry 1011 Curriculum Outline. Nivaldo J. Tro Travis D. Fridgen Lawton E. Shaw Chemistry (2 nd Canadian Edition) A Molecular Approach

Science, Technology, Engineering, Revised Fall 2014 and Math Division Implemented Fall 2015 Textbook Update Fall 2016

DEPARTMENT OF ACADEMIC UPGRADING COURSE OUTLINE FALL 2017 CH 0120 (A2): CHEMISTRY GRADE 11 EQUIVALENT 5( ) 90 HOURS FOR 15 WEEKS

COURSE OUTLINE Chemistry 104 General Chemistry II

Course Title: Chemistry II : ANALYTICAL & ORGANIC CHEMISTRY Head of Department:

CHEM 1B Chemistry I, Second Semester PR-10288, BK (v.3.0) To the Student:

CHEM 1310: Review. List of major topics

Introduction to Chemistry

MOBILE COUNTY PUBLIC SCHOOLS DIVISION OF CURRICULUM & INSTRUCTION HIGH SCHOOL BLOCK SCHEDULE PACING GUIDE AT A GLANCE

Seymour Public Schools Curriculum

Course Outline. TERM EFFECTIVE: Fall 2016 CURRICULUM APPROVAL DATE: 11/23/2015

DEPARTMENT OF ACADEMIC UPGRADING COURSE OUTLINE FALL 2016 CH 0120(A2, B2): CHEMISTRY GRADE 11 EQUIVALENT 5(4 0 2) 90 HOURS FOR 15 WEEKS

Learning Objectives for Chemistry 173

Transcription:

Adrian Dingle s AP Chemistry Class Introduction 2012-13 The Course and its Content Advanced Placement (AP) Chemistry is a course that is designed to be the equivalent of a first year, general chemistry college course. As such, the course is suitable only for high school students who are (or will be) particularly able in chemistry. This is especially true of AP Chemistry students at The Westminster Schools since the overwhelming majority of high schools in the United States only deliver the AP Chemistry program to juniors or seniors who have already been exposed to a first year high school chemistry course, AND the AP course is designed by The College Board (CB) to specifically be a second year course to be taken AFTER an introductory course in chemistry. Since AP Chemistry students at The Westminster Schools are sophomores receiving their first high school chemistry course, they need to exhibit unusually high levels of commitment, motivation and academic maturity. To illustrate these points the CB makes the following statement in the course description in relation to student commitment; Students in an AP Chemistry course should spend at least five hours a week in individual study outside of the classroom The AP examinations are sponsored by the CB and administered and operated by the Educational Testing Service (ETS). The CB provides a topic outline for the subject, which is intended to be a guide to the level and breadth of the treatment expected, but not a specific syllabus. The specific syllabus objectives for my AP course have been determined by me, are based upon the CB s topic outline, and are designed to prepare students for the AP Chemistry examination. The specific syllabus objectives for my AP Chemistry course at The Westminster Schools can be read at; www.adriandingleschemistrypages.com/apguide.html When considering the course and its syllabus the following points should be very carefully noted; (i) (ii) (iii) (iv) (v) (vi) There are two consequences of the close to unique inexperienced circumstances that the AP Chemistry students at The Westminster Schools find themselves in. Firstly students are expected to play an active role in their studies by reading around the subject and taking an enthusiastic and proactive approach to all their work. This helps to build general chemical knowledge around the fundamentals they will learn from the course. Secondly the AP Chemistry course and examination will most likely present students with some problems that they find very difficult or even impossible to solve. This is less alarming than it might at first appear when one considers that in order to achieve the highest grade (5) on the AP exam, it has traditionally only been necessary to score somewhere in the region of 65-70% of the points available. Unlike almost all other externally assessed, standardized examinations, the AP Chemistry exam has a somewhat open-ended structure and there is no prescribed syllabus handed down by the CB. The topic outline only serves as a guide to the content of an AP Chemistry course. As a result, AP courses delivered by different teachers, whilst fundamentally similar, will have slightly differing content and emphasis. The course will not necessarily involve studying the material in the order it is presented in the CB s topic outline or as in the syllabus, and there will often be overlap between topics. If a student intends to use their AP Chemistry score for college credit then it is his or her responsibility to research if the college(s) of their choice will accept it. Colleges have widely differing policies in relation to this matter ranging from complete acceptance to total disregard. My AP course is NOT designed to prepare students for the SAT subject test in chemistry nor any examination other than the AP. You should read more about my views on this matter at www.adriandingleschemistrypages.com/faqs.html#ap For most students a course in AP Chemistry will provide some of the greatest intellectual challenges of their high school and early college career. Macintosh HD:Users:adriand:Dropbox:ADCP:apintro1213.doc Page 1 of 8

The Textbooks and Other Resources I do not insist that students buy a textbook since I don t ask them to specifically refer to one. However, as back up I have provided reference reading and questions at www.adriandingleschemistrypages.com/ap.html to Chang, Chemistry, 8 th Edition. Whilst not an absolute requirement, it is very strongly recommended that students invest in one of the AP Chemistry course preparation books currently on the market. There are several available and each student should peruse the titles and select one based upon personal preference. It is not a good idea to wait until a few weeks before the examination to purchase the book; buy it at the beginning of the course and use it regularly throughout the year. Two examples of such books are; 5 Steps to a 5: AP Chemistry, 2012-2013 4 th Edition by John Moore and Richard Langley ISBN: 0071751688 SPARKNOTES AP Chemistry POWER PACK (Revised Edition) ASIN: B003Q5GEN8 As an aside, I re-wrote the entire net ionic equation writing section of the Sparknotes Power Pack, (along with the introduction and a few of the questions and answers) to reflect the changes in the AP exam that were introduced for the 2007 exam. Two other publications, both available from the College Board, may be of interest. The first is the AP Chemistry course description Effective Fall 2012 (AKA The Acorn Book ) referred to many times by me. It contains information relating to the AP Chemistry course from the CB s perspective that makes for an informative read. It can be downloaded from; http://apcentral.collegeboard.com/apc/public/repository/ap-chemistry-course-description.pdf The second is the AP Chemistry teacher s guide. Whilst not of general interest to students or parents it does have a short, but nevertheless very interesting section entitled Demands of an AP Chemistry course on students and their parents. The relevant section can be found on the last three pages of this document; http://apcentral.collegeboard.com/apc/members/repository/ap07_chem_teachersguide_1-17.pdf In addition to these publications the CB has a portion of its website dedicated to AP Exams at; http://apcentral.collegeboard.com/apc/controller.jpf The Course Notes Course notes amplify the content of the whole course. The notes are vitally important to students as they form a permanent, hard copy record that summarizes of all the knowledge and understanding that students require in order to perform well in the AP Chemistry examination. Each set of notes should be used and annotated however the student sees fit. They must be used as the basis for study. The Website All the materials for the course can be downloaded from the website. It is the student s responsibility to visit the site to get materials as and when they are needed. In addition to the course material you will find a very large amount of other helpful information there. You are required to visit regularly, almost certainly that will mean daily! www.adriandingleschemistrypages.com Macintosh HD:Users:adriand:Dropbox:ADCP:apintro1213.doc Page 2 of 8

The Expectations In order for us all to have a successful year we have to work together. There are two sides to this partnership; (i) (ii) Student obligations. I hope it goes without saying that attendance, punctuality, courtesy and good behavior of the highest levels are expected at all times. On the occasions when it is unavoidable that a class is missed it remains the responsibility of the student to catch up with any material missed. Laboratory safety is always of paramount importance. Your exemplary behavior and observance of safety procedures is required at all times. The very nature of the AP Chemistry program, attempting as it does to mimic a college chemistry course, requires students to learn and apply college style learning skills. More specifically taking the initiative for one s own learning and being prepared to think around problems to find solutions. Please seek help and use backwork time if you are having difficulties. My commitment. I will always grade and return work to you as soon as possible and will be happy to review any problems that arise from it. I am always happy to speak to students and parents outside of class time, as and when time permits. The Assessment The course will be assessed in three areas. (i) (ii) (iii) Testing. Students will be tested on a regular basis, approximately once every two weeks. The tests will make up 60% of the final FIRST semester grade and 60% of the final SECOND semester grade. All tests have two sections a multiple choice section and a free response section. Homework. Homework will be set on a regular basis and deadlines must be met. The homework will make up 20% of the final FIRST semester grade and 40% of the final SECOND semester grade. Examination. All material studied up to the middle of December of the FIRST semester will be assessed in a written examination in December 2012. The exam will make up 20% of the final FIRST semester grade. There is no internal SECOND semester examination. This is replaced by the AP Chemistry examination itself in May 2013. Macintosh HD:Users:adriand:Dropbox:ADCP:apintro1213.doc Page 3 of 8

The AP Chemistry examination format The AP Chemistry exam is divided into two sections Section I: (90 minutes in length, 50% of the total grade, no calculators allowed) 75 Multiple choice questions. Select the best answer from a choice of five (A-E) The questions cover the whole course and are scored as follows; 1 point for a correct answer, 0 points without penalty (as of 2011) for a wrong answer and 0 points for a blank. The College Board quote with reference to this part of the exam; the test (Section I) must be so comprehensive that no student should be expected to make a perfect or near perfect score". Section II: (95 minutes in length, 50% of the total grade) PART A: (55 minutes of the 95, calculators allowed) Question 1: The Equilibrium Question (Compulsory, 20% of the 50%) Since the introduction of a new exam format in 1998, question 1 has asked about some aspect of equilibrium. In 2013 question 1 will continue to focus on some aspect of equilibrium. 1998: Ksp 1999: Kc & Kb 2000: Kc 2001: Ksp 2002: Ka 2002B: Ka 2003: Kb 2003B: Kp & Kc 2004: Ksp 2004B: Kp & Kc 2005: Ka & Kb 2005B: Ka 2006: Ka & Kb 2006B: Ka 2007: Ka 2007B: Kp 2008: Kp 2008B: Kc 2009: Ka 2009B: Kb 2010: Ksp 2010B: Kc 2011: Kb & Ka 2011B: Ksp & Kp 2012: Ka Questions 2 and 3: The Calculation Questions (Compulsory, 20% each of the 50%) In questions 2 and 3 expect CALCULATIONS to be involved. A question based upon laboratory procedure could be asked here (calculation based), or in Part B (non-calculation based). PART B: (40 minutes of the 95, NO calculators allowed) Question 4: The Net Ionic Equation Question (Compulsory, 10% of the 55%) Since the introduction of a new examination format in 1998, question 4 used to ask candidates to convert five out of a choice of eight word equations into symbol equations. Equations used not have to be balanced. Since 2007, candidates are now asked to write three, balanced net ionic equations (showing only show extensively ionized species as ions and omitting any spectator species) AND to answer a short question that follows each equation. Questions 5 and 6: The Essay Questions (Compulsory, 15% each out of the 55%) Since the introduction of a new examination format in 1998, question 5 has asked about a laboratory situation or experiment. From 2007 onwards, laboratory situations WILL still be asked, but they may be the subject of question 2 or 3 and have a calculation component. Question 5 or 6 could also be about a laboratory situation. Questions 5 and 6 are not essays, but this term is often used to distinguish them from calculation based questions. Macintosh HD:Users:adriand:Dropbox:ADCP:apintro1213.doc Page 4 of 8

The Advanced Placement Chemistry Topic Outline for Fall 2012 The following list describes the topic outline provided by the College Board in the AP Chemistry course description (AKA The Acorn Book). The outline is designed to be a guide to the breadth and depth of an AP Chemistry course and not a syllabus. For the specific syllabus objectives for my AP course see my Advanced Placement Guide at; www.adriandingleschemistrypages.com/apguide.html. The outline describes the five major areas listed below plus a list of types of chemical calculations one might to encounter in an AP Chemistry course. I Structure of Matter II States of Matter III Reaction Types IV Descriptive Chemistry V Laboratory Work Chemical Calculations I Structure of Matter (20% of multiple-choice questions) A. Atomic theory and atomic structure 1. Evidence for the atomic theory 2. Atomic masses; determination by chemical and physical means 3. Atomic number and mass number; isotopes 4. Electron energy levels: atomic spectra, quantum numbers, atomic orbitals 5. Periodic relationships including, for example, atomic radii, ionization energies, electron affinities, oxidation states B. Chemical bonding 1. Binding forces a. Types: ionic, covalent, metallic, hydrogen bonding, van der Waals (including London dispersion forces) b. Relationships to states, structure, and properties of matter c. Polarity of bonds, electronegativities 2. Molecular models a. Lewis structures b. Valence bond: hybridization of orbitals, resonance, sigma and pi bonds c. VSEPR 3. Geometry of molecules and ions, structural isomerism of simple organic molecules and coordination complexes, dipole moments of molecules, relation of properties to structure C. Nuclear chemistry: nuclear equations, half-lives, and radioactivity; chemical applications Macintosh HD:Users:adriand:Dropbox:ADCP:apintro1213.doc Page 5 of 8

II States of Matter (20% of multiple-choice questions) A. Gases 1. Laws of ideal gases a. Equation of state for an ideal gas b. Partial pressures 2. Kinetic-molecular theory a. Interpretation of ideal gas laws on the basis of this theory b. Avogadro's hypothesis and the mole concept c. Dependence of kinetic energy of molecules on temperature d. Deviations from ideal gas laws B. Liquids and solids 1. Liquids and solids form the kinetic-molecular viewpoint 2. Phase diagrams of one-component systems 3. Changes of state, including critical points and triple points 4. Structure of solids; lattice energies C. Solutions 1. Types of solutions and factors affecting solubility 2. Methods of expressing concentration (The use of normalities is not tested.) 3. Raoult's law and colligative properties (non-volatile solutes); osmosis 4. Non-ideal behavior (qualitative aspects) Macintosh HD:Users:adriand:Dropbox:ADCP:apintro1213.doc Page 6 of 8

III Reactions (35-40% of multiple-choice questions) A. Reaction types 1. Acid-base reactions; concepts of Arrhenius, Brönsted-Lowry, and Lewis; coordination complexes; amphoterism 2. Precipitation reactions 3. Oxidation-reduction reactions a. Oxidation number b. The role of the electron in oxidation-reduction c. Electrochemistry: electrolytic and galvanic cells; Faraday's laws; standard half-cell potentials; Nernst equation; prediction of the direction of redox reactions B. Stoichiometry 1. Ionic and molecular species present in chemical systems: net ionic equations 2. Balancing of equations including those for redox reactions 3. Mass and volume relations with emphasis on the mole concept, including empirical formulas and limiting reactants C. Equilibrium 1. Concept of dynamic equilibrium, physical and chemical; Le Chatelier's principle; equilibrium constants 2. Quantitative treatment a. Equilibrium constants for gaseous reactions: Kp, Kc b. Equilibrium constants for reactions in solution (1) Constants for acids and bases; pk; ph (2) Solubility product constants and their application to precipitation and the dissolution of slightly soluble compound (3) Common ion effect; buffers; hydrolysis D. Kinetics 1. Concept of rate of reaction 2. Use of differential rate laws to determine order of reaction and rate constant from experimental data 3. Effect of temperature change on rates 4. Energy of activation; the role of catalysts 5. The relationship between the rate-determining step and a mechanism E. Thermodynamics 1. State functions 2. First law: change in enthalpy; heat of formation; heat of reaction; Hess's law; heats of vaporization and fusion; calorimetry 3. Second law: entropy; free energy of formation; free energy of reaction; dependence of change in free energy on enthalpy and entropy changes 4. Relationship of change in free energy to equilibrium constants and electrode potentials Macintosh HD:Users:adriand:Dropbox:ADCP:apintro1213.doc Page 7 of 8

IV Descriptive Chemistry (10-15% of multiple-choice questions) Knowledge of specific facts of chemistry is essential for an understanding of principles and concepts. These descriptive facts, including the chemistry involved in environmental and societal issues, should not be isolated from the principles being studied but should be taught throughout the course to illustrate and illuminate the principles. The following areas should be covered: 1. Chemical reactivity and products of chemical reactions 2. Relationships in the periodic table: horizontal, vertical, and diagonal with examples from alkali metals, alkaline earth metals, halogens, and the first series of transition elements 3. Introduction to organic chemistry: hydrocarbons and functional groups (structure, nomenclature, chemical properties). V Laboratory Work (5-10% of multiple-choice questions) The differences between college chemistry and the usual secondary school chemistry course are especially evident in the laboratory work. The AP Chemistry Examination includes some questions based on experiences and skills students acquire in the laboratory: making observations of chemical reactions and substances recording data calculating and interpreting results based on the quantitative data obtained communicating effectively the results of experimental work Colleges have reported that some AP candidates, while doing well on the examination, have been at a serious disadvantage because of inadequate laboratory experience. Meaningful laboratory work is important in fulfilling the requirements of a college-level course of a laboratory science and in preparing a student for sophomore-level chemistry courses in college Because chemistry professors at some institutions ask to see a record of the laboratory work done by an AP student before making a decision about granting credit, placement, or both, in the chemistry program, students should keep reports of their laboratory work that can be readily reviewed Chemical Calculations in Sections I V above The following list summarizes types of problems either explicitly or implicitly included in the topic outline. Attention should be given to significant figures, precision of measured values, and the use of logarithmic and exponential relationships. Critical analysis of the reasonableness of results is to be encouraged 1. Percentage composition 2. Empirical and molecular formulas from experimental data 3. Molar masses from gas density, freezing point, and boiling point measurements 4. Gas laws, including the ideal gas law, Dalton's law, and Graham's law 5. Stoichiometric relations using the concept of the mole; titration calculations 6. Mole fractions; molar and molal solutions 7. Faraday's law of electrolysis 8. Equilibrium constants and their applications, including their use for simultaneous equilibria 9. Standard electrode potentials and their use; Nernst equation 10. Thermodynamic and thermochemical calculations 11. Kinetics calculations Adrian Dingle August 2012 Macintosh HD:Users:adriand:Dropbox:ADCP:apintro1213.doc Page 8 of 8