Design of Fuzzy Logic Control System for Segway Type Mobile Robots

Similar documents
Design of Fuzzy Logic Controller for Inverted Pendulum-type Mobile Robot Using Smart In-Wheel Motor

Design and Stability Analysis of Single-Input Fuzzy Logic Controller

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT

FU REASONING INFERENCE ASSOCIATED WIT GENETIC ALGORIT M APPLIED TO A TWO-W EELED SELF-BALANCING ROBOT OF LEGO MINDSTORMS NXT

Modelling and Control of DWR 1.0 A Two Wheeled Mobile Robot

The Pattern Recognition System Using the Fractal Dimension of Chaos Theory

Optimal Design of Multi-DOF Deflection Type PM Motor by Response Surface Methodology

Operation of the Ballbot on Slopes and with Center-of-Mass Offsets

A Sliding Mode Control based on Nonlinear Disturbance Observer for the Mobile Manipulator

Fuzzy modeling and control of rotary inverted pendulum system using LQR technique

Appendix W. Dynamic Models. W.2 4 Complex Mechanical Systems. Translational and Rotational Systems W.2.1

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL

Design On-Line Tunable Gain Artificial Nonlinear Controller

Line following of a mobile robot

OVER THE past 20 years, the control of mobile robots has

Robot Control Basics CS 685

A High Performance DTC Strategy for Torque Ripple Minimization Using duty ratio control for SRM Drive

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur

Control of a Car-Like Vehicle with a Reference Model and Particularization

FUZZY-ARITHMETIC-BASED LYAPUNOV FUNCTION FOR DESIGN OF FUZZY CONTROLLERS Changjiu Zhou

Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions

Observer-based sampled-data controller of linear system for the wave energy converter

INTELLIGENT CONTROL OF DYNAMIC SYSTEMS USING TYPE-2 FUZZY LOGIC AND STABILITY ISSUES

EE Homework 3 Due Date: 03 / 30 / Spring 2015

Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics

Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator

3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller

MECH 3140 Final Project

Research Article Robust Switching Control Strategy for a Transmission System with Unknown Backlash

A Sliding Mode Controller Using Neural Networks for Robot Manipulator

Formation Control for Underactuated Autonomous Underwater Vehicles Using the Approach Angle

Motion Control of Inverted Pendulum Robots Using a Kalman Filter Based Disturbance Observer

Vibration Suppression of a 2-Mass Drive System with Multiple Feedbacks

Fuzzy Logic Control for Half Car Suspension System Using Matlab

Fuzzy Compensation for Nonlinear Friction in a Hard Drive

Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain

Dynamics Modeling and Identification of the Amigobot Robot

Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer Limin Du, Fucheng Cao

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

Proposal of an Experimental Apparatus for Learning about Torque

The dynamics of a Mobile Inverted Pendulum (MIP)

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

Robust Control of Robot Manipulator by Model Based Disturbance Attenuation

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum

Reduction of the effect of floor vibrations in a checkweigher using an electromagnetic force balance system

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ

Power Assist H Control of Shift Lever with Spring Connected Link

Proposal of Step Climbing of Wheeled Robot Using Slip Ratio Control

Balancing of an Inverted Pendulum with a SCARA Robot

Adaptive Fuzzy PID For The Control Of Ball And Beam System

Research Article Energy Reduction with Anticontrol of Chaos for Nonholonomic Mobile Robot System

On Common Fixed Point for Single and Set-Valued Maps Satisfying OWC Property in IFMS using Implicit Relation

Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems

FUZZY SWING-UP AND STABILIZATION OF REAL INVERTED PENDULUM USING SINGLE RULEBASE

Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India

SCHEME OF BE 100 ENGINEERING MECHANICS DEC 2015

Physics 53 Exam 3 November 3, 2010 Dr. Alward

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control

NEW CONTROL STRATEGY FOR LOAD FREQUENCY PROBLEM OF A SINGLE AREA POWER SYSTEM USING FUZZY LOGIC CONTROL

Open Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral Gain of Sliding Mode Variable Structure

Extremum Seeking for Dead-Zone Compensation and Its Application to a Two-Wheeled Robot

Trajectory Planning Using High-Order Polynomials under Acceleration Constraint

Slip Mitigation Control for an Electric Powered Wheelchair

CONTROL OF THE NONHOLONOMIC INTEGRATOR

Safe Joint Mechanism using Inclined Link with Springs for Collision Safety and Positioning Accuracy of a Robot Arm

Models for Inexact Reasoning. Fuzzy Logic Lesson 8 Fuzzy Controllers. Master in Computational Logic Department of Artificial Intelligence

FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T.

Nonlinear PD Controllers with Gravity Compensation for Robot Manipulators

Final Examination Thursday May Please initial the statement below to show that you have read it

Determination of accelerated condition for brush wear of small brush-type DC motor in using Design of Experiment (DOE) based on the Taguchi method

A Novel Method on Disturbance Analysis and Feed-forward Compensation in Permanent Magnet Linear Motor System

Coordinating Feet in Bipedal Balance

Lecture 3. Rotational motion and Oscillation 06 September 2018

Problem 1 Problem 2 Problem 3 Problem 4 Total

Design of Fuzzy Tuned PID Controller for Anti Rolling Gyro (ARG) Stabilizer in Ships

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS

A Fuzzy Control Strategy for Acrobots Combining Model-Free and Model-Based Control

Controlling the Inverted Pendulum

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum

Manufacturing Equipment Control

The Effect of Semicircular Feet on Energy Dissipation by Heel-strike in Dynamic Biped Locomotion

Analysis and Calculation of Double Circular Arc Gear Meshing Impact Model

H-infinity Model Reference Controller Design for Magnetic Levitation System

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

AP Physics C! name I CM R 2. v cm K = m

Final Exam April 30, 2013

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

Derivation and Application of a Conserved Orbital Energy for the Inverted Pendulum Bipedal Walking Model

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL

Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement

Research Article Characterization and Modelling of LeBlanc Hydrodynamic Stabilizer: A Novel Approach for Steady and Transient State Models

MOBILE ROBOT DYNAMICS WITH FRICTION IN SIMULINK

Enhancing Fuzzy Controllers Using Generalized Orthogonality Principle

Rotational Kinematics

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

Final Exam Spring 2014 May 05, 2014

Friction. Modeling, Identification, & Analysis

Transcription:

Original Article International Journal of Fuzzy Logic and Intelligent Systems Vol. 15, No. 2, June 2015, pp. 126-131 http://dx.doi.org/10.5391/ijfis.2015.15.2.126 ISSNPrint) 1598-2645 ISSNOnline) 2093-744X Design of Fuzzy Logic Control System for Segway Type Mobile Robots Sangfeel Kwak and Byung-Jae Choi Department of Electronics Engineering, Daegu University, Gyeongbuk, Korea Abstract Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system. Keywords: Inverted Pendulum System, Segway Mobile Robot, Fuzzy Logic Control System, Position Control, Balance Control 1. Introduction Received: Apr. 23, 2015 Revised : Jun. 24, 2015 Accepted: Jun. 25, 2015 Correspondence to: Byung-Jae Choi bjchoi@daegu.ac.kr) The Korean Institute of Intelligent Systems cc This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License http://creativecommons.org/licenses/ by-nc/3.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a good model to verify the performance of a proposed controller for such a system, which is inherently a nonlinear. An inverted pendulum type mobile robot system adds mobility to the utilization of a mechanical function that balances the inverted pendulum system[1]. Furthermore, it is similar to the control scheme of a biped robot which is modelled after the human form and is supported by two feet. Segway type mobile robots operate based on the dynamics of the inverted pendulum system. They are capable of forward, backward, and turning motions, and these are the only possible movements of the body. Unlike scooters whose two interdependent wheels are in series, Segway mobile robots have two wheels connected in a parallel configuration. Thus, Segway mobile robots allow the construction of a mobile platform that can travel smoothly to a small area by reducing the migration area. However, a mobile robot employing an inverted pendulum mechanism as its mobile platform requires an additional controller design to maintain the balance of the body, as its balancing ability is generally not good under excessive disturbances. In this paper, we propose the design of a fuzzy logic control system for the position and balance control of an inverted pendulum type Segway mobile robot. We first introduce a dynamic model of the Segway mobile robot and analyze it. We then design two fuzzy logic control systems based on our analysis. Their usefulness is verified by simulation examples. 126

International Journal of Fuzzy Logic and Intelligent Systems, vol. 15, no. 2, June 2015 a) b) c) Figure 1. Schematics of Segway type mobile robot. Based on the skew symmetry property of the rule table for the fuzzy logic control system, we also present a possibility for a reduction in the computational complexity and the simplification of the design of the fuzzy logic control system. The remainder of the paper is organized as follows. In Section 2, we describe the introduction of the dynamic model of the Segway mobile robot. The design of two fuzzy logic control systems for the Segway mobile robot is presented in Section 3. In Section 4, we present the results of simulation examples and explain their relevance. Concluding remarks are given in Section 5. Table 1. Definitions of Segway robot Parameters Parameter Definition x Displacement of robot M w Mass of wheel J w Moment of inertia of wheel r Radius of wheel l Length of pole M p Mass of center of gravity of pole J p Moment of inertia of center of gravity of pole g Acceleration due to gravity θ Angle of pole φ Rotational angle of wheel V Vertical reaction force of pole H Horizontal reaction force of pole H w Horizontal reaction force of wheel f w Unknown external force of wheel f p Unknown external force of pole τ Torque of wheel x p x-axis displacement of pole y-axis displacement of pole y p horizontal and vertical axes of the pole: M w ẍ = H + f w + H w 1) J w φ = r Hw + τ. 2) 2. Dynamics of Segway Mobile Robot Segway type mobile robots are composed of two wheels and a pole between them. The angle of the pole is measured by a gyro, tilt or acceleration sensor, and is maintained at zero degrees. In this section, we introduce the dynamics of the Segway type mobile robot which is an inverted pendulum type mobile robot. Schematics of this robot are shown in Figure 1. The main parameters used in Figure 1 are presented in Table 1. As shown in Figure 1, the mobile robot can be divided into two parts. The wheel part and the pole part, which consists of a pole and a driving motor to support the body over the wheel and maintain the balance of the robot. We first introduce equations associated with the wheel part of the robot, which is shown in Figure 1 b). The following equations of motion are derived from the moment of inertia of the wheel of the driving shaft and the reaction forces of the The rotational angle of the wheel and the displacement of the robot have the following relationship. r φ = ẍ. 3) From Eqs. 2) and 3), the horizontal reaction force of the wheels is derived from the displacement and the driving torque as H w = τ r J w ẍ. 4) r2 The following equation can be obtained from Eqs. 1) and 4). M w + J w r 2 )ẍ = H + f w + τ r. 5) We then derive the dynamic equations of the pole. The force acting the pole is shown in Figure 1 c). Then the horizontal displacement of the center of gravity of the pole is x p = x + l sin θ. 6) 127 Sangfeel Kwak and Byung-Jae Choi

http://dx.doi.org/10.5391/ijfis.2015.15.2.126 Eq. 6) can be expressed in an acceleration form as ẍ p = ẍ + l θ cos θ l θ 2 sin θ. 7) Eq. 7) can be expressed as an equation of motion with respect to the axis of the center of gravity of the pole as M p ẍ p = f p H 8) )) H = M p ẍ + M p l θ cos θ θ2 sin θ + f p. 9) Figure 2. Membership functions of input variable, edist, for Distance Next, the vertical displacement of the center of gravity of the pole is y p = l cos θ. 10) Eq. 10) can be expressed in the form of an acceleration equation as ÿ p = l θ2 cos θ + θ ) sin θ. 11) Eq. 11) can be expressed as an equation of motion with respect to the y axis of the center of gravity of the pole as Figure 3. Membership functions of input variable, dedist, for Distance M p ÿ p = V M p g. 12) V = M p l θ2 cos θ + θ ) sin θ + M p g 13) The following equation is derived from Eqs. 5) and 9). M w + M p + J ) w r 2 ẍ + M p l cos θ θ M p l sin θ θ 2 = f w + f p + 1 14) r τ The moment of inertia of the center of gravity of the pole is J p θ = V l sin θ Hl cos θ τ. 15) The following equation is derived from Eqs. 9), 13) and 15). Jp + M p l 2) θ + Mp lẍ cos θ M p g l sin θ = l cos θf p τ 16) The dynamic model of the Segway robot is expressed by Eqs. 14) and 16). 3. Design of Fuzzy Logic Control Systems Two fuzzy logic control FLC) systems are required to control the Segway robot: the Distance FLC and the Balance FLC for position and balance control, respectively. Figure 4. Membership functions of output variable, AddAngle, for Distance The Distance FLC to control the position of the robot is designed first. It has two input variables, edist and dedist, which are the error signal between the set position and the current position of the robot and its change signal, respectively. It also has one output variable, AddAngle, which is the weight of the angle error of the pole. The membership functions of the input and output variables of the Distance FLC are shown in Figures 2, 3, and 4. The control rule table for the Distance FLC is given in Table 2. We then design the Balance FLC for the control of the balance of the robot. Its input variables are etheta and detheta, which represent the angle of the pole and the output of the Distance Its output variable is the torque. The membership functions of the input and output variables of the Balance FLC are shown in Figures 5, 6, and 7. www.ijfis.org Design of Fuzzy Logic Control System for Segway Type Mobile Robots 128

International Journal of Fuzzy Logic and Intelligent Systems, vol. 15, no. 2, June 2015 Table 2. Rule table for Distance FLC dedist edist NBD NSD ZDD PSD PBD NBED PBA PBA PBA PSA ZA NSED PBA PBA PSA ZA NSA ZED PBA PSA ZA NSA NBA PSED PSA ZA NSA NBA NBA PBED ZA NSA NBA NBA NBA Table 3. IRule table for Balance FLC detheta NLD NMD NSD etheta ZD PSD PMD PLD NL NLO NLO NMO NMO NSO NSO Z NM NLO NMO NMO NSO NSO Z PSO NS NMO NMO NSO NSO Z PSO PSO Z NMO NSO NSO Z PSO PSO PMO PS NSO NSO Z PSO PSO PMO PMO PM NSO Z PSO PSO PMO PMO PLO PL Z PSO PSO PMO PMO PLO PLO 4. Simulation Examples In this section, we simulate the position and balance control of the Segway mobile robot using the two proposed fuzzy logic control systems. We first set θ, θ, and τ as Figure 5. Membership functions of input variable, etheta, for Balance 1 θ 1, 3 θ 3, 0.5 θ 0.5. And some parameters of the Segway mobile robot are as follows[2]: M w = 0.076kg, J w = 3.42 10 5 kg m 2, r = 0.03m, l = 0.15m, M p = 0.6kg, J p = 1.34 10 2 kg m 2, g = 9.81m/s 2. Figure 6. Membership functions of input variable, detheta, for Balance Figure 7. Membership functions of output variable, torque, for Balance The Z membership function for the output variable, torque, was widely set. The shapes of the membership functions of PLO and NLO are sharper than that of Z membership function. This can reduce the vibration of the output variable and make the output of the system converge to a steady state. The control rule table for the Balance FLC is given in Table 3. The AND and OR operations for the fuzzy logic control system are min and max, respectively. Additionally, Mamdani reasoning and the defuzzification method for the center of gravity are used in this simulation. The results of the weight of the angle error of the pole, the torque, the displacement, the change in the displacement, the angle of the pole, and the change in this angle are shown in Figures 8, 9, 10, 11, 12, and 13 respectively. The initial conditions are as follows: the angle of the pole = 1 [radian], the target position is 10 [m]. 5. Concluding Remarks In this paper, we analyzed the dynamics of the Segway mobile robot which has nonlinear properties, and designed two fuzzy logic control systems for the control of the position of the Segway mobile robot and the balance of the pole part of the robot. First, we designed the Distance FLC for the position control. The two input variables of the Distance FLC are the error signal between the set position and the current position of the robot and its change signal, the output variable is the 129 Sangfeel Kwak and Byung-Jae Choi

http://dx.doi.org/10.5391/ijfis.2015.15.2.126 Figure 8. Simulation results of AddAngle. Figure 11. Simulation results of velocity of robot. Figure 9. Simulation results of torque. Figure 12. Simulation results of angle of pole. Figure 10. Simulation results of displacement of robot. Figure 13. Simulation results of angular velocity of pole. weight of the angle error of the pole. We then designed the Balance FLC for the control of the balance of the pole. Its input variables of the Balance FLC are the angle of the pole and the output of the Distance FLC, and the output variable is the torque. The control rule table indicates that the control rules for the two fuzzy logic control systems are the skew symmetric[3]. www.ijfis.org Design of Fuzzy Logic Control System for Segway Type Mobile Robots 130

International Journal of Fuzzy Logic and Intelligent Systems, vol. 15, no. 2, June 2015 This can simplify the control rule table to a single dimensional case with a small number of input variables and control rules. This in turn simplifies the design of the overall control system. This will be studied in future work with the implementation of an embedded board based system. Acknowledgement This research was supported by the Daegu University Research Scholarship Grants. References [1] The SEGWAY website. [Online]. Available: http://www. segway.com/ [2] S.-H. Lee and S.-Y. Rhee, Dynamic modelling of a wheeled inverted pendulum for inclined road and changing its center of gravity, J. of Korean Institute of Intelligent Systems, vol. 22, no. 1, pp. 69-74, 2012. [3] B.-J. Choi and S. Jin, Design of Simple-structured Fuzzy Logic System based Driving Controller for Mobile Robot, J. of Korean Institute of Intelligent Systems, vol.22, no.1, 2012.2. [4] H. W. Kim and S. Jung, Fuzzy Logic Application to a Two-wheel Mobile Robot for Balancing Control Performance, Int. J. of Fuzzy Logic and Intelligent Systems, vol.12, no.2, 2012.6. [5] J. H. Park, Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motion of biped robots, Fuzzy Set Techniques for Intelligent Robotic Systems, vol. 134, no. 1, pp. 189-203, Feb. 2003. [6] H. Ha and J. Lee, A control of mobile inverted pendulum using single accelerometer, J. of Institute of Control, Robotics and Systems, vol. 16, no. 5, 2010 [7] S. W. Nawawi, M. N. Ahmad, and J. H. S. Osman, Control of two-wheels inverted pendulum mobile robot using full order sliding mode control, Proc. of International Conference on Man-Machine System, Lankawi, Malaysia, Sep. 2006. [8] P. Axelsson and Y. Jung, Lego Segway Project Report, Technical Report from Automatic Control at Linkopings Universitet, Division of Automatic Control, 2011. [9] J. S. Noh, G. H. Lee, and S. Jung, Position control of a mobile inverted pendulum system using radial basis function Sangfeel network, Kwak and Int. Byung-Jae J. of Control Choi Automation and Systems, 131 vol. 8, no. 1, 2010. [10] J. Huang, Z. Guan, T. Matsuno, T. Fukuda, and K. Sekiyama, Sliding-Mode Velocity Control of Mobile- Wheeled Inverted-Pendulum Systems, IEEE Trans. on Robotics, vol. 26, no. 4, 2010. [11] T. Jin, Obstacle Avoidance of Mobile Robot Based on Behavior Hierarchy by Fuzzy Logic, Int. J. of Fuzzy Logic and Intelligent Systems, vol.12, no.3, 2012.9 [12] L. Mao, J. Huang, F. Ding, and Y. Wang, Velocity control of mobile wheeled inverted pendulum, Int. J. of Modelling Identification and Control, vol. 19, no. 1, 2013. [13] X. Xiong and B.-J. Choi, Comparative Analysis of Detection Algorithms for Corner and Blob Features in Image Processing, Int. J. of Fuzzy Logic and Intelligent Systems, vol.13, no.4, 2013. [14] B.-H. Kim, Analysis of Balance of Quadrupedal Robotic Walk using Measure of Balance Margin, Int. J. of Fuzzy Logic and Intelligent Systems, vol.13, no.2, 2013. [15] K. D. Do, and G. Seet, Motion Control of a Two-Wheeled Mobile Vehicle with an Inverted Pendulum, J. of Intelligent and Robotic Systems, vol. 60, no. 3-4, 2010. [16] H.-G. Nguyen, W.-H. Kim, and J.-H. Shin, A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot, Int. J. of Fuzzy Logic and Intelligent Systems, vol.10, no.1, 2010.3. Sangfeel Kwak is a Ph.D candidate at the College of Information, Communication, and Computer Engineering, Daegu University. He received the M.S. degree in Electronics Engineering from Daegu University, Korea. Currently, his main research interests include intelligent control and systems. Byung-Jae Choi is a professor at the College of Information, Communication, and Computer Engineering, Daegu University. He received the Ph.D. degree in Electrical Engineering from KAIST, Korea. Currently, his main research interests include intelligent control and systems.