SSA and polarized collisions

Similar documents
GPDs and Quark Orbital Angular Momentum

Quark Orbital Angular Momentum

Quark-Gluon Correlations in the Nucleon

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum

Nucleon Structure & GPDs

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Nucleon Structure at Twist-3

The g 2 Structure Function

Spin-Orbit Correlations and SSAs

Information Content of the DVCS Amplitude

Relations between GPDs and TMDs (?)

Possible relations between GPDs and TMDs

Probing nucleon structure by using a polarized proton beam

What is Orbital Angular Momentum?

Transverse Momentum Dependent Parton Distributions

陽子スピンの分解 八田佳孝 ( 京大基研 )

What is Orbital Angular Momentum?

QCD Collinear Factorization for Single Transverse Spin Asymmetries

Transverse Spin Effects and k T -dependent Functions

Measurements with Polarized Hadrons

Nucleon spin and tomography. Yoshitaka Hatta (Yukawa institute, Kyoto U.)

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Update on the Hadron Structure Explored at Current and Future Facilities

Toward the QCD Theory for SSA

TMDs at Electron Ion Collider Alexei Prokudin

Measuring transverse size with virtual photons

Transverse (Spin) Structure of Hadrons

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Spin physics at Electron-Ion Collider

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015

arxiv: v1 [hep-ph] 9 Jul 2013

Nucleon tomography at small-x

Central Questions in Nucleon Structure

Spin Densities and Chiral Odd Generalized Parton Distributions

hermes Collaboration

Nucleon spin decomposition at twist-three. Yoshitaka Hatta (Yukawa inst., Kyoto U.)

Experimental Program of the Future COMPASS-II Experiment at CERN

Generalized Parton Distributions and Nucleon Structure

Distribution Functions

Motivation: X.Ji, PRL 78, 61 (1997): DVCS, GPDs, ~J q,! GPDs are interesting physical observable! But do GPDs have a simple physical interpretation?

Factorization, Evolution and Soft factors

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering

PARTON OAM: EXPERIMENTAL LEADS

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

Gluonic Spin Orbit Correlations

Nucleon Spin Structure: Overview

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Imaging Hadrons using Lattice QCD

Introduction to Quantum Chromodynamics (QCD)

Scale dependence of Twist-3 correlation functions

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

Quark Orbital Angular Momentum in the Model

Recent Development in Proton Spin Physics

Nucleon tomography. Journal of Physics: Conference Series OPEN ACCESS. To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser.

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Complex Systems of Hadrons and Nuclei

Shape and Structure of the Nucleon

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

GENERALIZED PARTON DISTRIBUTIONS

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The Physics Program of CLAS12

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

TMD Theory and TMD Topical Collaboration

Structure of Generalized Parton Distributions

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

arxiv: v3 [hep-ph] 30 Jun 2014

Quarkonium Production at J-PARC

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015

Experimental Overview Generalized Parton Distributions (GPDs)

Wigner Distributions and Orbital Angular Momentum of Quarks

Fundamental Open Questions in Spin Physics

Single Spin Asymmetry at large x F and k T

Husimi distribution for nucleon tomography

Singular Charge Density at the Center of the Pion?

Studies of OAM at JLAB

light-cone (LC) variables

Spin Structure with JLab 6 and 12 GeV

HERMES Status Report

How does the proton spin?

Nucleon Spin Structure from Confinement to Asymptotic Freedom

(Bessel-)weighted asymmetries

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN)

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN)

Introduction to Quantum ChromoDynamics and the parton model

Transverse Momentum Distributions of Partons in the Nucleon

Generalized parton distributions in the context of HERA measurements

TMDs and the Drell-Yan process

arxiv: v1 [hep-ph] 13 Nov 2017

Recent transverse spin results from STAR

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

Transcription:

SSA and polarized collisions Matthias Burkardt New Mexico State University August 20, 2012

Outline 2 Deeply virtual Compton scattering (DVCS) Generalized parton distributions (GPDs) transverse imaging Chromodynamik lensing and single-spin asymmetries (SSA) } transverse distortion of PDFs + final state interactions SSA in γn π + X quark-gluon correlations force on q in DIS L q JM Lq Ji torque due to FSI in DIS Summary

Deeply Virtual Compton Scattering (DVCS) 3 virtual Compton scattering: γ p γp (actually: e p e γp) deeply : qγ 2 Mp 2, t Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x) DVCS amplitude provides access to momentum-decomposition of form factor = Generalized Parton Distribution (GPDs). dxh q (x, ξ, t) = F q 1 (t) dxe q (x, ξ, t) = F q 2 (t)

Deeply Virtual Compton Scattering (DVCS) 3 virtual Compton scattering: γ p γp (actually: e p e γp) deeply : qγ 2 Mp 2, t Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x) DVCS amplitude provides access to momentum-decomposition of form factor = Generalized Parton Distribution (GPDs). dxh q (x, ξ, t) = F q 1 (t) dxe q (x, ξ, t) = F q 2 (t) EIC: use known QCD evolution equations to help disentangle x/ξ dependence from DVCS evolution slow! need wide Q 2 range EIC

SSAs and Polarized Collisions 4 form factors: F T ρ( r) GP Ds(x, ): form factor for quarks with momentum fraction x suitable FT of GP Ds should provide spatial distribution of quarks with momentum fraction x careful: cannot measure longitudinal momentum (x) and longitudinal position simultaneously (Heisenberg) consider purely transverse momentum transfer Impact Parameter Dependent Quark Distributions d 2 q(x, b ) = (2π) 2 H(x, ξ = 0, 2 )e ib q(x, b ) = parton distribution as a function of the separation b from the transverse center of momentum R i q,g r,ix i MB, Phys. Rev. D62, 071503 (2000) No relativistic corrections (Galilean subgroup!) corollary: interpretation of 2d-FT of F 1 (Q 2 ) as charge density in transverse plane also free of relativistic corrections probabilistic interpretation

Impact parameter dependent quark distributions 5 unpolarized proton q(x, b ) = d 2 (2π) 2 H(x, 0, 2 )e ib x = momentum fraction of the quark b = distance of quark from center of momentum small x: large meson cloud larger x: compact valence core x 1: active quark becomes center of momentum b 0 (narrow distribution) for x 1

Impact parameter dependent quark distributions 6 MB, Int. J. Mod. Phys. A18, 173 (2002) proton polarized in +ˆx direction no axial symmetry! d 2 q(x, b ) = (2π) 2 H q(x, 0, 2 )e ib 1 d 2 2M b y (2π) 2 E q(x, 0, 2 )e ib Physics: relevant density in leading twist DIS is j + j 0 + j 3 and left-right asymmetry from j 3

Impact parameter dependent quark distributions 7 proton polarized in +ˆx direction d 2 q(x, b ) = (2π) 2 H q(x, 0, 2 )e ib 1 d 2 2M b y (2π) 2 E q(x, 0, 2 )e ib sign & magnitude of the average shift model-independently related to p/n anomalous magnetic moments: b q y dx d 2 b q(x, b )b y = 1 2M dxeq (x, 0, 0) = κq 2M

Impact parameter dependent quark distributions 7 sign & magnitude of the average shift model-independently related to p/n anomalous magnetic moments: b q y dx d 2 b q(x, b )b y = 1 2M dxeq (x, 0, 0) = κq 2M κ p = 1.913 = 2 3 κp u 1 3 κp d +... u-quarks: κ p u = 2κ p + κ n = 1.673 shift in +ŷ direction d-quarks: κ p d = 2κ n + κ p = 2.033 shift in ŷ direction b q y = O (±0.2fm)!!!!

Impact parameter dependent quark distributions 7 sign & magnitude of the average shift model-independently related to p/n anomalous magnetic moments: b q y dx d 2 b q(x, b )b y = 1 2M dxeq (x, 0, 0) = κq 2M lattice QCD (QCDSF): lowest moment

Angular Momentum Carried by Quarks 8 transverse images Ji relation for quark angular momentum: J x q = m N dx xr y q(x, r ) with b y = r y 1 2m N, where q(x, r ) is distribution relative to CoM of whole nucleon recall: q(x, b ) for nucleon polarized in +ˆx direction q(x, b ) = d 2 (2π) 2 H q(x, 0, 2 )e ib 1 2M N b y d 2 (2π) 2 E q(x, 0, 2 )e ib J x q = M N = 1 2 dx xr y q(x, r ) = dx x [H(x, 0, 0) + E(x, 0, 0)] ( dx x m N b y + 1 ) q(x, r ) 2 X.Ji(1996): rotational invariance apply to all components of J q partonic interpretation exists only for components!

Angular Momentum Carried by Quarks 9 lattice: LHPC no disconnected quark loops (note: K.F.Liu et al.) chiral extrapolation J q = 1 2 dx x [H(x, 0, 0) + E(x, 0, 0)] L q = J q 1 2 Σq L u + L d 0 signs of L q counter-intuitive! evolution? (A.W.Thomas et al.)

Transverse Imaging in Momentum Space 10 TMDs Transverse Momentum Dependent Parton Distributions 8 structures possible at leading twist (only 3 for PDFs) f1t and h 1 require both orbital angular momentum and final state interaction can be measured in semi-inclusive deep-inelastic scattering (SIDIS) & Drell-Yan (DY) q q µ + µ experiments JLab@6GeV & 12GeV, Hermes, Compass I & II, RHIC, EIC, FAIR/Panda

GPD Single Spin Asymmetries (SSA) 11 Sivers f 1T in semi-inclusive deep-inelastic scattering (SIDIS) γp πx u, d distributions in polarized proton have left-right asymmetry in position space (T-even!); sign determined by κ u & κ d attractive FSI deflects active quark towards the CoM FSI translates position space distortion (before the quark is knocked out) in +ŷ-direction into momentum asymmetry that favors ŷ direction chromodynamic lensing κ p, κ n sign of SSA!!!!!!!! MB, PRD 69, 074032 (2004) confirmed by Hermes (and recent Compass) p data; consistent with vanishing isoscalar Sivers (Compass)

FSI in SIDIS vs. ISI in DY 12 compare FSI for red q that is being knocked out of nucleon with ISI for anti-red q that is about to annihilate with a red target q FSI in SIDIS knocked-out q red spectators anti-red interaction between knocked-out quark and spectators attractive ISI in DY incoming q anti-red struck target q red spectators also anti-red interaction between incoming q and spectators repulsive test of f 1T (x, k ) DY = f 1T (x, k ) SIDIS and h 1 (x, k ) DY = h 1 (x, k ) SIDIS critical test of TMD factorization approach

Quark-Gluon Correlations 13 higher twist in polarized DIS σ LL g 1 2Mx ν g 2 g 1 = 1 2 q e2 qg q 1 with gq 1 = q (x) + q (x) q (x) q (x) g 2 involves quark-gluon correlations no parton interpret. as difference between number densities for g 2 for pol. target, g 1 & g 2 contribute equally σ LT g T g 1 + g 2 clean separation between g 2 and 1 Q 2 corrections to g 1 What can we learn from g 2? g 2 = g2 W W + ḡ 2 with g2 W W (x) g 1 (x) + 1 dy x y g 1(y) d 2 3 dx x 2 1 ḡ 2 (x) = P, S q(0)gg +y (0)γ + q(0) P, S 2MP +2 S x

Quark-Gluon Correlations: Interpretation 14 d 2 3 dx x 2 1 ḡ 2 (x) = P, S q(0)gg +y (0)γ + q(0) P, S 2MP +2 S x 2G +y = G 0y + G zy = E y + B x

Quark-Gluon Correlations: Interpretation 14 d 2 3 dx x 2 1 ḡ 2 (x) = P, S q(0)gg +y (0)γ + q(0) P, S 2MP +2 S x color Lorentz force MB 2008 ( ) y 2G +y = G 0y + G zy = E y + B x = E + v B for v = (0, 0, 1)

Quark-Gluon Correlations: Interpretation 14 d 2 3 dx x 2 1 ḡ 2 (x) = P, S q(0)gg +y (0)γ + q(0) P, S 2MP +2 S x color Lorentz force MB 2008 ( ) y 2G +y = G 0y + G zy = E y + B x = E + v B for v = (0, 0, 1) d 2 average color Lorentz force acting on quark moving with v = c in ẑ direction in the instant after being struck by γ F y = 2M 2 d 2 = M P, S q(0)gg +y (0)γ + q(0) P, S P +2 S x cf. Qiu-Sterman matrix element k y 1 0 dx d 2 k k 2 f 1T (x, k2 ) k y = 1 2p + P, S q(0) dx gg +y (x )γ + q(0) P, S 0 semi-classical interpretation: average k in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity matrix element defining d 2 1 st integration point in QS-integral

Quark-Gluon Correlations: Interpretation 14 d 2 3 dx x 2 1 ḡ 2 (x) = P, S q(0)gg +y (0)γ + q(0) P, S 2MP +2 S x color Lorentz force MB 2008 ( ) y 2G +y = G 0y + G zy = E y + B x = E + v B for v = (0, 0, 1) d 2 average color Lorentz force acting on quark moving with v = c in ẑ direction in the instant after being struck by γ F y = 2M 2 d 2 = M P +2 S x P, S q(0)gg +y (0)γ + q(0) P, S sign of d 2 imaging κ q /p sign of deformation direction of average force d u 2 > 0, d d 2 < 0 cf. f u 1T u < 0, f1t < 0 lattice (Göckeler et al., 2005) d u 2 0.010, d d 2 0.0056 magnitude of d 2 F y = 2M 2 d 2 = 10 GeV fm d 2 expect partial cancellation of forces in SSA F y σ 1 GeV fm d 2 = O(0.01)

quark-gluon correlations 15 Twist-3 Correlation Functions (Qiu, Sterman, Collins,..) dy T (x, x + x 2 ) = 1 dy2 + (2π) 2 eixp y 1 e ix 2P + y 2 P, st q(0)γ + F + (y2 )q(y 1 ) P, s T x 2 momentum of gluon x, x + x 2 momenta of quarks Sivers function T (x, x) d 2 k f 1T (x, k2 ) k2 evolution (Qiu, Kang,..) d d ln µ 2 T (x, x)... + C A EIC: 1 x dξ ξ 1 + z 2 1 z [T (ξ, x) T (ξ, xi)] + zt (ξ, x) scale dependence of SSA quark gluon correlations

The Nucleon Spin Pizzas 16 Ji decomposition Jaffe-Manohar decomposition 1 2 = q 1 2 q + L q + J g 1 2 q = 2 1 d 3 x P, S q ( x)σ 3 q( x) P, S L q = ( 3q( x) P,S d 3 x P,S q ( x) x id) J g = [ )] 3 d 3 x P, S x ( E B P, S i D = i g A light-cone framework & gauge A + = 0 1 2 = q 1 2 q + L q + G + L g L q = d 3 r P,S q( r)γ + ( r i ) zq( r) P,S G=ε + ij d 3 r P, S TrF +i A j P, S L g =2 d 3 r P,S TrF +j ( x i ) za j P,S manifestly gauge invariant definition for each term exists

The Nucleon Spin Pizzas 18 Ji decomposition 1 2 = q 1 2 q + L q + J g 1 2 q = 2 1 d 3 x P, S q ( x)σ 3 q( x) P, S L q = ( 3q( x) P,S d 3 x P,S q ( x) x id) J g = [ )] 3 d 3 x P, S x ( E B P, S i D = i g A GPDs L q p p G L i q,g Li L q L q L q L q =? can we calculate/predict the difference? what does it represent? Jaffe-Manohar decomposition light-cone framework & gauge A + = 0 1 2 = q 1 2 q + L q + G + L g L q = d 3 r P,S q( r)γ + ( r i ) zq( r) P,S G=ε + ij d 3 r P, S TrF +i A j P, S L g =2 d 3 r P,S TrF +j ( x i ) za j P,S manifestly gauge invariant definitions for each term exist

OAM from Wigner Functions 19 Wigner Functions (Belitsky, Ji, Yuan; Netz et al.) W (x, b, d 2 q d 2 ξ dξ k ) (2π) 2 (2π) 3 e ik ξ P S q(0)γ + q(ξ) P S. (quasi) probabilty distribution for b and k f(x, k ) = d 2 b W (x, b, k ) q(x, b ) = d 2 k W (x, b, k ) OAM from Wigner (Lorcé et al.) L z = dx d 2 b d 2 k W (x, b, k )(b x k y b y k x ) = d 3 r P,S q( r)γ +( r i ) zq( r) P,S = L q Gauge Invariance? need to include Wilson-line gauge link to connect 0 and ξ (Ji, Yuan; Hatta)

Quark momentum from Wigner Distributions 20 Wigner Functions with gauge link U 0ξ (Ji, Yuan; Hatta) W (x, b, d 2 q d 2 ξ dξ k ) (2π) 2 (2π) 3 e ik ξ P S q(0)γ + U 0ξ q(ξ) P S. k dx d 2 b d 2 k W (x, b, k ) k depends on choice of path! light-cone staple straight-line gauge link k = P,S q( x)γ + i Dq( x) P,S i D = i g A( x) k = 0 (T-odd!) correct choice for k distributions relevant for SIDIS K = P,S q( x)γ + i Dq( x) P,S i D = i g A(x =, x ) A + = 0 K 0 (FSI! Brodsky,Hwang,Schmidt)

Quark momentum from Wigner Distributions 20 difference K q k q K q k q = g d 3 x P,S q( x)γ + [A (, x ) A ( x)]q( x) P,S A (, x ) A ( x) = x dr F + (r, x ) 2F +y = F 0y + F zy = E y + B x light-cone staple straight-line gauge link k = P,S q( x)γ + i Dq( x) P,S i D = i g A( x) k = 0 (T-odd!) correct choice for k distributions relevant for SIDIS K = P,S q( x)γ + i Dq( x) P,S i D = i g A(x =, x ) A + = 0 K 0 (FSI! Brodsky,Hwang,Schmidt)

Quark momentum from Wigner Distributions 20 difference K q k q K q k q = g d 3 x P,S q( x)γ + [A (, x ) A ( x)]q( x) P,S A (, x ) A ( x) = x dr F + (r, x ) color Lorentz Force acting on ejected quark (Qiu, Sterman) ( ) y 2F +y = F 0y + F zy = E y + B x = E + v B for v = (0, 0, 1) Impulse due to FSI K q = K q k q = (average) change in momentum due to FSI! straight-line gauge link k = P,S q( x)γ + i Dq( x) P,S i D = i g A( x) k = 0 (T-odd!) light-cone staple correct choice for k distributions relevant for SIDIS K = P,S q( x)γ + i Dq( x) P,S i D = i g A(x =, x ) A + = 0 K 0 (FSI! Brodsky,Hwang,Schmidt)

OAM from Wigner Functions 21 Wigner Functions with gauge link U 0ξ (Ji, Yuan; Hatta) W (x, b, d 2 q d 2 ξ dξ k ) (2π) 2 (2π) 3 e ik ξ P S q(0)γ + U 0ξ q(ξ) P S. W and thus L z = dx d 2 b d 2 k W (x, b, k )(b x k y b y k x ) may depend on choice of path! straight line (Ji et al.) straigth Wilson line from 0 to ξ yields L q = ( 3q( x) P,S d 3 x P,S q ( x) x id) i D = i g A same as Ji-OAM f(x, k ) = d 2 b W (x, b, k ) not the TMDs relevant for SIDIS (missing FSI!)

OAM from Wigner Functions 21 Wigner Functions with gauge link U 0ξ (Ji, Yuan; Hatta) W (x, b, d 2 q d 2 ξ dξ k ) (2π) 2 (2π) 3 e ik ξ P S q(0)γ + U 0ξ q(ξ) P S. W and thus L z = dx d 2 b d 2 k W (x, b, k )(b x k y b y k x ) may depend on choice of path! Light-Cone Staple for U ±LC 0ξ (Hatta) want Wigner function that yields TMDs relevant for SIDIS when integrated d 2 b path for gauge link light-cone staple U +LC 0ξ L q + = d 3 x P,S q( x)γ + ( x i D) 3q( x) P,S i D = i g A(x =, x ) staple at x = PT L q L q = L q + = L q A (, x )= A (, x ) L q + =L q JM link at x =± no role for OAM! manifestly gauge invariant definition for L q JM

Quark OAM from Wigner Distributions 22 straight line ( Ji) L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S light-cone staple ( Jaffe-Manohar) L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S i D = i g A i D = i g A(x =, x ) difference L q L q L q L q = g d 3 x P,S q( x)γ + [ x (A (, x ) A ( x))] z q( x) P,S A (, x ) A ( x) = x dr F + (r, x ) 2F +y = F 0y + F zy = E y + B x

Quark OAM from Wigner Distributions 22 straight line ( Ji) L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S light-cone staple ( Jaffe-Manohar) L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S i D = i g A i D = i g A(x =, x ) difference L q L q L q L q = g d 3 x P,S q( x)γ + [ x (A (, x ) A ( x))] z q( x) P,S A (, x ) A ( x) = x dr F + (r, x ) color Lorentz Force acting on ejected quark (MB: arxiv:08103589) ( ) y 2F +y = F 0y + F zy = E y + B x = E + v B for v = (0, 0, 1)

Quark OAM from Wigner Distributions 22 straight line ( Ji) L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S light-cone staple ( Jaffe-Manohar) L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S i D = i g A i D = i g A(x =, x ) difference L q L q L q L q = g d 3 x P,S q( x)γ + [ x (A (, x ) A ( x))] z q( x) P,S A (, x ) A ( x) = x dr F + (r, x ) color Lorentz Force acting on ejected quark (MB: arxiv:08103589) ( ) y 2F +y = F 0y + F zy = E y + B x = E + v B for v = (0, 0, 1) Torque along the trajectory of q Change in OAM [ ( )] z T z = x E ˆ z B L z = ( )] z dr [ x E x ˆ z B

Quark OAM from Wigner Distributions 23 straight line ( Ji) L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S light-cone staple ( Jaffe-Manohar) L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S i D = i g A( x) i D = i g A(x =, x ) difference L q L q L q L q = L q F SI = change in OAM as quark leaves nucleon example: torque in magnetic dipole field

Summary 24 Deeply Virtual Compton Scattering GPDs impact parameter dependent PDFs q(x, b ) E q (x, 0, 2 ) κ q/p (contribution from quark flavor q to anomalous magnetic moment) E q (x, 0, 2 ) deformation of PDFs for polarized target parton interpretation for Ji-relation higher-twist ( dx x 2 ḡ 2 (x), dx x 2 ē(x)) force in DIS deformation (sign of) quark-gluon correlations ( dx x 2 ḡ 2 (x), dx x 2 ē(x) ) L q JM Lq Ji = L F SI change in OAM of ejected quark due to FSI combine complementary information from deeply-virtual Compton scattering, semi-includive DIS & Drell-Yan to study orbital angular momentum and map the 3-d structure of hadrons

Deeply Virtual Compton Scattering (DVCS) 25 Q 2 scaling for Compton form factor (JLab)