Physical Chemistry II (Chapter 4 1) Rigid Rotor Models and Angular Momentum Eigenstates

Similar documents
Lecture 7: Angular Momentum, Hydrogen Atom

3.012 Fund of Mat Sci: Bonding Lecture 5/6. Comic strip removed for copyright reasons.

Nuclear models: Shell model

5.111 Lecture Summary #6 Monday, September 15, 2014

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

Chapter 6: Rotational and Rovibrational Spectra. A) General discussion of two- body problem with central potential

3D-Central Force Problems I

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

Quantum theory of angular momentum

The Schrödinger Equation in Three Dimensions

20th Century Atomic Theory - Hydrogen Atom

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Mechanics Physics 151

Doublet structure of Alkali spectra:

is the instantaneous position vector of any grid point or fluid

Three-dimensional systems with spherical symmetry

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4

Physics 862: Atoms, Nuclei, and Elementary Particles

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Nuclear and Particle Physics - Lecture 20 The shell model

Problem Set 10 Solutions

Calculation of Quark-antiquark Potential Coefficient and Charge Radius of Light Mesons

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

Experiment 09: Angular momentum

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment

CHEM1101 Worksheet 3: The Energy Levels Of Electrons

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS

Lecture 1. time, say t=0, to find the wavefunction at any subsequent time t. This can be carried out by

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

15 Solving the Laplace equation by Fourier method

International ejournals

1.1 Problems with Waves Classically, EM radiation was well understood as a wave phenomenon, via Maxwell s theory. Problems arose around

Analytic Evaluation of two-electron Atomic Integrals involving Extended Hylleraas-CI functions with STO basis

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

ANALYSIS OF QUANTUM EIGENSTATES IN A 3-MODE SYSTEM

Lecture 21 Helioseismology

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

Orbital Angular Momentum Eigenfunctions

MOLECULES BONDS. ENERGY LEVELS electronic vibrational rotational. P461 - Molecules 1

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

The Time-Dependent Schrödinger Equation with applications to The Interaction of Light and Matter and The Selection Rules in Spectroscopy.

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011

Quantum Chemistry Notes:

Chapter 8: Spherical Coordinates

Math 124B February 02, 2012

Central Force Motion

POISSON S EQUATION 2 V 0

1 Spherical multipole moments

Three dimensional flow analysis in Axial Flow Compressors

arxiv: v1 [physics.gen-ph] 18 Aug 2018

J Matrices. nonzero matrix elements and Condon Shortley phase choice. δ δ. jj mm

Chem 453/544 Fall /08/03. Exam #1 Solutions

Foundations of Chemical Kinetics. Lecture 9: Generalizing collision theory

Quantum Mechanics I - Session 5

Objectives. We will also get to know about the wavefunction and its use in developing the concept of the structure of atoms.

The Precession of Mercury s Perihelion

Lecture 23. Representation of the Dirac delta function in other coordinate systems

Quantum Mechanics II

Relative motion. measurements by taking account of the motion of the. To apply Newton's laws we need measurements made

calculation the Hartree -Fock energy of 1s shell for some ions

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

From Atoms to Materials: Predictive Theory and Simulations. Materials are everywhere

3D-Central Force Problems II

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Physics 505 Homework No. 9 Solutions S9-1

1) Consider an object of a parabolic shape with rotational symmetry z

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

TheWaveandHelmholtzEquations

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

b Ψ Ψ Principles of Organic Chemistry lecture 22, page 1

Translation and Rotation Kinematics

Quaternion Based Inverse Kinematics for Industrial Robot Manipulators with Euler Wrist

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

A Relativistic Electron in a Coulomb Potential

PHYS 705: Classical Mechanics. Small Oscillations

KEPLER S LAWS OF PLANETARY MOTION

EXAM NMR (8N090) November , am

V7: Diffusional association of proteins and Brownian dynamics simulations

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler

Introduction: Vectors and Integrals

The geometric construction of Ewald sphere and Bragg condition:

Dymore User s Manual Two- and three dimensional dynamic inflow models

( ) Bose-Einstein condensates in fast rotation. Rotating condensates. Landau levels for a rotating gas. An interesting variant: the r 2 +r 4 potential

Chapter 13: Gravitation

DENSITY-FUNCTIONAL THEORY, AND DENSITY-FUNCTIONAL PRACTICE

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

APPENDIX. For the 2 lectures of Claude Cohen-Tannoudji on Atom-Atom Interactions in Ultracold Quantum Gases

SIO 229 Gravity and Geomagnetism. Lecture 6. J 2 for Earth. J 2 in the solar system. A first look at the geoid.

Transcription:

Physical Chemisty II (Chapte 4 ) Rigid Roto Models and Angula Momentum Eigenstates Tae Kyu Kim Depatment of Chemisty Rm. 30 (tkkim@pusan.ac.k) http://cafe.nave.com/moneo76 SUMMAR CHAPTER 3 A simple QM example: Paticle in D Box d E mdx [Bounday Condition] n x n h sin, En whee n,,3 n a a 8ma Enegy level: Quantiation and eo point enegy Wavefunction & pobability: Aveage value and othogonality Coesponding pinciple: the pedictions of QM become to CM

SUMMAR CHAPTER 3 Paticle in D & 3D Box: Sepaation of Vaiables 4 nx x ny y ( xy, ) X sin sin ab a b h n n E x y 8m a b x y FEMO Model: Paticle in D Box (Conjugated hydocabon) h h hc n n E E E n n n 8ma 8ma Quantum Mechanical Tunnelling: Pinciples fo STM 3 IN THE CHAPTER 3 A molecule has tanslational, vibational, and otational degees of feedom. Each of these can be sepaately descibed by its own enegy spectum and enegy eigenfunctions. As shown in Chapte 3, the paticle in a box is useful model fo exploing the tanslational degee of feedom. In this chapte, quantum mechanics is used to study the otation of a diatomic molecule. We fomulate and solve a quantum mechanical model fo otational motion(chapter 4). This model povides a basis fo undestanding the obital motion of electons aound the nucleus of an atom as well as the otation of a molecule aound its pincipal axes. In the next chapte, we will conside the vibational degee of feedom, modeled by the hamonic oscillato(chapter 5). 4

MOTIONS OF A DIATOMIC MOLECULE Sepaation of Vaiable fo Diatomic Molecule cente of mass (C.M) m a a b m b H m a () b V a mb Intoduction of cente of mass and elative coodinate educe the twopaticle poblem into two sepaate one paticle poblems cente of mass and elative coodinate m m a a b b R a b ma mb ma m M ma mb mm a b b H R V() M MOTIONS OF A DIATOMIC MOLECULE Sepaation of Vaiable fo Diatomic Molecule Hˆ Hˆ ( ) Hˆ ( ) Hˆ (, ) total tans cm vib int ot cm cm E E ( ) E ( ) E (, ) total tans cm vib int ot cm cm ( ) ( ) (, ) total tans cm vib int ot cm cm mm m m

RIGID ROTOR IN D CLASSICAL MECHANICS A paticle otating aound a fixed axis (angula momentum and kinetic enegy) T p m m v T m m m I Angula Momentum: L I m p T L I I RIGID ROTOR IN D CLASSICAL MECHANICS A Model of Rigid Diatomic Molecule m m R m m R R mm mm T m m m m I m m mm I m m m R m R R R mm mm mm T L L I R

RIGID ROTOR IN D QUANTUM MECHANICS H R V() M y xcos y sin ` x y x H oto Rigid oto V() (, ) E(, ) RIGID ROTOR IN D QUANTUM MECHANICS H oto E m e e im im m 0,,,... ( ) ( ) Ae im Be im im Ae ( m 0,,,...)

RIGID ROTOR IN D QUANTUM MECHANICS im Ae ( m 0,,,...) E m m I two-fold degeneate Physical Chemisty II (Chapte 4 ) Rigid Roto Models and Angula Momentum Eigenstates Tae Kyu Kim Depatment of Chemisty Rm. 30 (tkkim@pusan.ac.k) http://cafe.nave.com/moneo76

SUMMAR CHAPTER 4 Rotation of Diatomic Molecule (Tansfoming to C.M. Coodinate) Cente of Mass M M μ H () a b V m a m H R V() b M 3 SUMMAR CHAPTER 4 QM Model fo D Rigid Roto H V() V() (, ) E(, ) ( ) E( ) m ( ) m ( ) E im Ae ( m 0,,,...) E m m I 4

SUMMAR CHAPTER 4 QM Model fo D Rigid Roto (Bounday Conditions) 5 Ψ n and E n fo D Rigid Roto m m E I im e m 0,,,... 6

Schödinge Equation x y 3D Rigid Roto sin sin sin sin sin sin sin (, ) E (, ) I sin sin (, ) ( ) ( ) I sin sin E sin 7 I 3D Rigid Roto sin sin E sin I sin sin E sin constant I sin (, ) E (, ) I sin sin im ( ) e ( m0,,...) m I sin sin sin E 8

Final Solution 3D Rigid Roto m sin sin E I sin /! m l l m m ( ) Pl cos m0 l m! and l l m! l m! P m l / cos m0 im e These constaints ae imposed by the foms of the polynomials which must be acceptable wavefunction and eigenfunctions of the Schodinge equation l 0,,... m l 9 Spheical Hamonics, l,m (θ,φ) Spheical hamonics: eigenfunctions of the igid oto lm im e S lm ( ) 00 4 0 3 cos 4 *. 0 0 lm l ' m' sin dd ll ' mm' (othonomal) ll ˆ l l. Hlm lm Elm Ej I I lm 3. m lm 0 3 sin e 8 5 6 3cos i 5 sin cos e 8 5 sin 3 i e i 0

Spheical Hamonics, l,m (θ,φ) 3 px sin cos 4 00 0 4 3 cos 4 3 py sin sin i 4 p 0 3 cos 4 0 3 sin e 8 5 6 3cos i 5 sin cos e 8 5 sin 3 i e i d 5 0 6 3cos 5 d x sin cos cos 4 5 d y sin cos sin i 4 5 sin cos d x y d xy i 6 5 sin sin 6 Spheical Hamonics, l,m (θ,φ)

Spheical Hamonics, l,m (θ,φ) 3 Angula Momentum (L) Angula Momentum lˆ ˆ l l Hlm lm Elm I I Z component of angula momentum (L ) l p l yp p l p xp x y y x l xp yp lˆ lˆ lˆ lˆ y x x y l ˆ lm ll lm l ll ( ) lˆ x y i y x i ˆ m im l A P ( ) e m i i lm lm lm l lm Spheical hamonics ae simultaneous eigenfunctions of both L and L. 4

Hˆ lm lm l l I ˆ llm ll lm l 0,,, Angula Momentum l ˆ m ml, l,, l, l lm lm l l ˆ 6 l 6 m m m l ˆ l l ˆ l l ˆ 0 l 0 0 0 l ˆ l l ˆ l l? l? x y l l l l, 5,6,5, x y 5 Angula Momentum 4 The possible magnitude of angula momentum is quantied. Spatial quantiation: the vecto can only have cetain oientation in space. 6

Raising & Loweing Angula Momentum Opeato Raising and loweing angula momentum opeatos lˆ lˆ [ lˆ ˆ ˆ ˆ, l ] l x ily [ lˆ, lˆ ] lˆ lˆˆ, ˆ ˆ, [ ˆ, ˆ l l m ll l m l l] l, m mlˆ lm, lˆ lm, ( ) lˆ m lm, lˆlˆ l, m ( m ) lˆ l, m Popotionality constants ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ x y x y lm l l lm lm l il l il lm lm l l l lm ( ) ( ) ll mm lˆ l, m lm, lˆ l, m cn l, m lˆ lm, d l, m Raising and loweing (quantum numbe) n 7 Raising & Loweing Angula Momentum Opeato * ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ lm, lxily l lm, d lx ily lm, llm, d ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ x y x y lm l l lm lm l il l il lm lm l l l lm ( ) ( ) ll mm * * l l d c d c lm, lm, lm, lm, lm, lm, * lm, lm, c l( l) m( m) d l( l) m( m) ˆl, ll ( ) mm l m ( ) l, m 8