VARIETIES WITHOUT EXTRA AUTOMORPHISMS II: HYPERELLIPTIC CURVES

Similar documents
VARIETIES WITHOUT EXTRA AUTOMORPHISMS I: CURVES BJORN POONEN

KLEIN-FOUR COVERS OF THE PROJECTIVE LINE IN CHARACTERISTIC TWO

UNRAMIFIED COVERS OF GALOIS COVERS OF LOW GENUS CURVES

AUTOMORPHISMS OF X(11) OVER CHARACTERISTIC 3, AND THE MATHIEU GROUP M 11

CURVES OF GIVEN p-rank WITH TRIVIAL AUTOMORPHISM GROUP

Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013

On the Moduli Space of Klein Four Covers of the Projective Line

Riemann surfaces with extra automorphisms and endomorphism rings of their Jacobians

LARGE TORSION SUBGROUPS OF SPLIT JACOBIANS OF CURVES OF GENUS TWO OR THREE

FIELD THEORY. Contents

TAMAGAWA NUMBERS OF ELLIPTIC CURVES WITH C 13 TORSION OVER QUADRATIC FIELDS

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

May 6, Be sure to write your name on your bluebook. Use a separate page (or pages) for each problem. Show all of your work.

Density of rational points on Enriques surfaces

On elliptic curves in characteristic 2 with wild additive reduction

1. Group Theory Permutations.

University of Southern California, Los Angeles, University of California at Los Angeles, and Technion Israel Institute of Technology, Haifa, Israel

Public-key Cryptography: Theory and Practice

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

AN INTRODUCTION TO MODULI SPACES OF CURVES CONTENTS

RAMIFIED PRIMES IN THE FIELD OF DEFINITION FOR THE MORDELL-WEIL GROUP OF AN ELLIPTIC SURFACE

The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section

Twists of elliptic curves of rank at least four

School of Mathematics and Statistics. MT5836 Galois Theory. Handout 0: Course Information

Curves with many points Noam D. Elkies

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11

Exercises for algebraic curves

Introduction to Elliptic Curves

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

CSIR - Algebra Problems

QUADRATIC TWISTS OF AN ELLIPTIC CURVE AND MAPS FROM A HYPERELLIPTIC CURVE

CHARACTERIZING INTEGERS AMONG RATIONAL NUMBERS WITH A UNIVERSAL-EXISTENTIAL FORMULA

MANIN-MUMFORD AND LATTÉS MAPS

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Families of Abelian Varieties with Big Monodromy

The Kummer Pairing. Alexander J. Barrios Purdue University. 12 September 2013

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

THE ÉTALE FUNDAMENTAL GROUP OF AN ELLIPTIC CURVE

EXAMPLES OF CALABI-YAU 3-MANIFOLDS WITH COMPLEX MULTIPLICATION

GALOIS GROUPS AS PERMUTATION GROUPS

Dynamics and Canonical Heights on K3 Surfaces with Noncommuting Involutions Joseph H. Silverman

ON GALOIS GROUPS OF ABELIAN EXTENSIONS OVER MAXIMAL CYCLOTOMIC FIELDS. Mamoru Asada. Introduction

1 The Galois Group of a Quadratic

PRIME NUMBERS IN CERTAIN ARITHMETIC PROGRESSIONS M. Ram Murty 1 & Nithum Thain Introduction

Practice problems for first midterm, Spring 98

arxiv: v3 [math.ag] 24 May 2017

Some Remarks on Prill s Problem

The Galois group of a polynomial f(x) K[x] is the Galois group of E over K where E is a splitting field for f(x) over K.

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45

A Generalization of Wilson s Theorem

CYCLES OF QUADRATIC POLYNOMIALS AND RATIONAL POINTS ON A GENUS 2 CURVE

List of topics for the preliminary exam in algebra

Chapter 11: Galois theory

7 Orders in Dedekind domains, primes in Galois extensions

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

ELLIPTIC CURVES BJORN POONEN

AUTOMORPHISMS OF HARBATER KATZ GABBER CURVES. 1. Introduction

RUDIMENTARY GALOIS THEORY

Solutions of exercise sheet 6

22M: 121 Final Exam. Answer any three in this section. Each question is worth 10 points.

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

Quasi-reducible Polynomials

M3P11/M4P11/M5P11. Galois Theory

On p-hyperelliptic Involutions of Riemann Surfaces

Pacific Journal of Mathematics

A note on cyclic semiregular subgroups of some 2-transitive permutation groups

GENERIC ABELIAN VARIETIES WITH REAL MULTIPLICATION ARE NOT JACOBIANS

Notes on Field Extensions

Mappings of elliptic curves

ON 2-CLASS FIELD TOWERS OF SOME IMAGINARY QUADRATIC NUMBER FIELDS

Bi-elliptic Weierstrass points on curves of genus 5

Siegel Moduli Space of Principally Polarized Abelian Manifolds

A BRIEF INTRODUCTION TO LOCAL FIELDS

Rings. Chapter 1. Definition 1.2. A commutative ring R is a ring in which multiplication is commutative. That is, ab = ba for all a, b R.

Polynomials, Ideals, and Gröbner Bases

Hyperbolic Ordinariness of Hyperelliptic Curves of Lower Genus in Characteristic Three

THE ARTIN-SCHREIER THEOREM KEITH CONRAD

DONG QUAN NGOC NGUYEN

Graduate Preliminary Examination

Theta functions and algebraic curves with automorphisms

Primitive arcs in P G(2, q)

THE REPRESENTATION THEORY, GEOMETRY, AND COMBINATORICS OF BRANCHED COVERS

SUMS OF VALUES OF A RATIONAL FUNCTION. x k i

The Sato-Tate conjecture for abelian varieties

Quadratic points on modular curves

SHIMURA CURVES II. Contents. 2. The space X 4 3. The Shimura curve M(G, X) 7 References 11

Section II.1. Free Abelian Groups

Homework 4 Algebra. Joshua Ruiter. February 21, 2018

Complex Algebraic Geometry: Smooth Curves Aaron Bertram, First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair. Corrections and clarifications

24 Artin reciprocity in the unramified case

Algebra Exam Topics. Updated August 2017

Algebra Ph.D. Entrance Exam Fall 2009 September 3, 2009

15 Elliptic curves and Fermat s last theorem

Large Automorphism Groups of Algebraic Curves in Positive Characteristic. BMS-LMS Conference

Explicit global function fields over the binary field with many rational places

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

AN ELEMENTARY PROOF OF THE GROUP LAW FOR ELLIPTIC CURVES

Transcription:

VARIETIES WITHOUT EXTRA AUTOMORPHISMS II: HYPERELLIPTIC CURVES BJORN POONEN Abstract. For any field k and integer g 2, we construct a hyperelliptic curve X over k of genus g such that #(Aut X) = 2. We also prove the existence of principally polarized abelian varieties (A, θ) over k of prescribed dimension g 1 such that Aut(A, θ) = {±1}. 1. Introduction If X is a (smooth, projective, and geometrically integral) curve over a field k, let Aut X denote the group of automorphisms of X defined over k. In [Po1], we proved that for any field k and integer g 3, there exists a curve X over k of genus g such that Aut X = {1}. This paper studies the analogous problem for hyperelliptic curves. If X is a hyperelliptic curve, then X has a non-trivial automorphism, namely the hyperelliptic involution ι, so our result takes the following form: Theorem 1. For any field k and integer g 2, there exists a hyperelliptic curve X over k of genus g such that Aut X = {1, ι}. As a corollary, we obtain a similar result for principally polarized abelian varieties. For an abelian variety A with polarization θ defined over k, let Aut(A, θ) denote the group of automorphisms of A over k respecting the polarization (and the group structure of A). Corollary 2. For any field k and integer g 1, there exists a g-dimensional principally polarized abelian variety (A, θ) over k such that Aut(A, θ) = {±1}. Proof. For g = 1, it suffices to let A be an elliptic curve of j-invariant not 0 or 1728 [Si, Theorem III.10.1]. For g 2, let A be the Jacobian of the curve given by Theorem 1; the desired property then follows from Torelli s theorem (see [Mi, Theorem 12.1]). Remarks. Corollary 2 is proved for k algebraically closed in [KS, Lemma 11.2.6], also with Jacobians. It is also true that for any polarized abelian scheme A S of relative dimension g 1, the set of points s S for which the automorphism group of the fiber A s (as polarized abelian variety) is {±1} is open in S [KS, Lemma 11.2.5]. In particular, it follows that a generic principally polarized abelian variety of dimension g 1 (corresponding to the generic point of the coarse moduli space of principally polarized abelian varieties of dimension g over an algebraically closed field k) has automorphism group {±1}. Date: November 26, 1999. Most of this research was done while the author was at Princeton University supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship. The author is currently supported by NSF grant DMS-9801104, a Sloan Fellowship, and a Packard Fellowship. This article has been published in Math. Res. Letters 7 (2000), no. 1, 77 82. 1

2 BJORN POONEN 2. Construction In this section, we describe a hyperelliptic curve X for each k and g, by giving the equation of an affine curve whose smooth projective model is the desired X. The proof that X has genus g and that Aut X = {1, ι} will be presented in Section 3. We would like to exploit Galois action to control automorphisms in the proof of Theorem 1. Hence we will first reduce to the case where k = Q or k = F p for some prime p. If K L are algebraically closed fields, and X is a curve of genus g 2 over K, then the automorphisms of X defined over L are all defined over K, because the Aut(L/K)-orbit of any new automorphism would be infinite, violating the theorem that Aut X is finite for any curve of genus g 2 over an algebraically closed field [Sc]. Hence in proving Theorem 1, we may replace k by its minimal subfield. Let p be the characteristic of k, so that k = F p if p > 0, and k = Q if p = 0. Case I: p = 2. Let X be the curve y 2 + y = x 2g 1 + 1 x. Case II: p = 0. For fixed g, let A = {0, 1, 2,..., 2g}, and let A (3) denote the set of ordered triples of distinct elements of A. For each pair of distinct triples a = (a 1, a 2, a 3 ) and b = (b 1, b 2, b 3 ) in A (3), there is a unique non-trivial automorphism φ ab of P 1 such that φ ab (a i ) = b i for i = 1, 2, 3. Let X be the curve for some t Q outside the finite set y 2 = x(x 1)(x 2)... (x 2g)(x t) A a b (φ ab (A) {r Q : φ ab (r) = r}). Case III: p 3, g 4. Let q(x) k[x] be an irreducible cubic. Let j(x) k(x) be an automorphism of P 1 that acts as a 3-cycle on the roots of q(x). Then j has at most two fixed points, so we may pick c k such that j(c) c. If 2g 2 0 (mod 3), choose r(x) k[x] irreducible of degree 2g 2; otherwise choose r(x) to be the product of two irreducible polynomials in k[x] of degrees 2 and 2g 4. Let X be the curve y 2 = f(x), where Case IV: p 3, g = 3. f(x) := (x c)q(x)r(x). Let q(x), r(x) k[x] be irreducible polynomials of degree 2 and 3, respectively. Let j be an automorphism of P 1 that acts as a 3-cycle on the roots of r(x). Since #P 1 (k) 4, we can choose distinct a, b, c P 1 (k) such that j does not act as a 3-cycle on {a, b, c}. Let X

VARIETIES WITHOUT EXTRA AUTOMORPHISMS II: HYPERELLIPTIC CURVES 3 be the curve y 2 = f(x), where f(x) := (x a)(x b)(x c)q(x)r(x). (If a =, then we interpret x a as 1, since this accomplishes what we actually want: for the map X P 1 to be ramified above a, b, c in addition to the roots of q and r. Similar interpretations should be made if b = or c =.) Case V: p 3, g = 2. Let q(x), r(x) k[x] be irreducible polynomials of degree 2 and 3, respectively. Let q 1, q 2 be the roots of q in k, and let r 1, r 2, r 3 be the roots of r in k, ordered so that r p 1 = r 2. Let j be the automorphism of P 1 fixing q 1 and q 2 and mapping r 1 to r 2. Pick c k such that j does not map r 3 to c. Let X be the curve y 2 = f(x), where f(x) := (x c)q(x)r(x). 3. Proof of Theorem 1 In each case, let S denote the set of branch points of the separable 2-to-1 map X P 1. For p 2, #S = 2g + 2, so that X has genus g by the Hurwitz formula. Any automorphism of X that is neither the identity nor the hyperelliptic involution must induce a non-trivial automorphism of P 1 preserving S. Case I: p = 2. Let P 0 and P denote the points on X where x = 0 and x =, respectively. The ramification divisor of the 2-to-1 map X P 1 is 2gP + 2P 0, so the genus of X is g by the Hurwitz formula. Any automorphism of X induces an automorphism of P 1 preserving the projection of the ramification divisor to P 1. The only such automorphisms of P 1 are those of the form x λx for λ k, but the two function fields obtained by adjoining to k(x) a root y 1 of or a root y 2 of y 2 1 + y 1 = x 2g 1 + 1 x y 2 2 + y 2 = (λx) 2g 1 + 1 λx are distinct by Artin-Schreier theory, unless λ = 1. Hence all automorphisms of X induce the trivial automorphism of the quotient P 1. Case II: p = 0. Since g 2, if an automorphism h of P 1 preserves S = {0, 1,..., 2g, t}, then h maps some 3-element subset of A = {0, 1,..., 2g} to another 3-element subset of A. If h is non-trivial, then h = φ ab for some a, b A (3). But then h 1 (t) S, by choice of t, and this contradicts the definition of h. Case III: p 3, g 4.

4 BJORN POONEN Let F denote the compositum of all finite extensions of k = F p of degree prime to 3. Exactly (2g +2) 3 points in S are F-rational. Suppose that h is a non-trivial automorphism of P 1 preserving S. Then h must map at least (2g +2) 6 of these F-rational points to other F-rational points of S. But (2g +2) 6 3, and h is determined by its values at 3 points, so h must be defined over F. In particular, h preserves the set of three non-f-rational points of S, the roots of the cubic q(x). If h fixed any one of them, then since they are all conjugate over F, h would fix them all, and h would be trivial. Otherwise, h acts as a 3-cycle, and after replacing h by h 1 if necessary, we may assume h = j. Also, h is defined over k, since its values at the three roots of q(x) are specified in a Gal(k/k)-stable way. Thus h maps c into a k-rational element of S, so h(c) = c, contradicting the choice of c. Case IV: p 3, g = 3. Suppose that h is a non-trivial automorphism of P 1 preserving S. Since six of the eight points in S are F p 3-rational, at least four F p 3-rational points in S are mapped by h to other F p 3-rational points, and hence h is defined over F p 3. In particular, h preserves the set of roots of the quadratic q(x). If h mapped any of the three F p -rational points in S to any other, then this together with the action on the roots of q(x) would give a Gal(F p /F p )-stable specification of h, so h would be defined over F p. Otherwise, h interchanges the set {a, b, c} of three F p -rational points in S with the set of three roots of r(x). In the latter case, if we let σ be a generator of Gal(F p 6/F p 2), we obtain a new non-trivial automorphism h := σ h h 1 that maps a, b, c to themselves in some order. Thus in any case, we obtain a non-trivial F p -rational automorphism (which we rename h) of P 1 preserving S. As in Case III, h must act as a 3-cycle on the roots of the cubic r(x). After replacing h by h 1 if necessary, we have h = j. Since an automorphism of P 1 is determined by three values, h must be of order 3, and it is k-rational, so it must either fix a, b, c pointwise or act as a 3-cycle on a, b, c. The former would make h trivial, and the latter was expressly ruled out by our assumptions. Case V: p 3, g = 2. Label the roots r 1, r 2, r 3, c, q 1, q 2 with 1, 2, 3, 4, 5, 6, respectively, so that the absolute Frobenius acts on S as the permutation σ := (123)(56). Let H be the group of automorphisms of P 1 preserving S, which we may faithfully view as a subgroup of S 6, since automorphisms are determined already by three values. The Frobenius automorphism acts on H as conjugation by σ. By choice of c, (12)(34) H. Therefore the non-existence of non-trivial automorphisms follows from the purely group-theoretical Lemma 3 below. Lemma 3. Suppose that H is a subgroup of S 6 such that (1) Each non-trivial element of H has at most two fixed points. (2) H is normalized by σ := (123)(56). (3) The permutation (12)(34) is not in H. Then H = {1}. Proof. Suppose that there exists an element π H that does not commute with σ 3 = (56). Define η := π 1 σ 3 πσ 3. Then η H, by condition (2), and η is the product of the two unequal transpositions π 1 σ 3 π and σ 3 = (56). By condition (1), η has at most two fixed points, so η must be (ab)(56) for some a < b < 5. Let η := σησ 1, which is in H, by

VARIETIES WITHOUT EXTRA AUTOMORPHISMS II: HYPERELLIPTIC CURVES 5 condition (2). Then η = (a b )(56) for some a < b < 5. But the transposition (a b ) = (123)(ab)(123) 1 cannot be disjoint from (ab), so ηη violates condition (1). Thus every element of H commutes with (56), and H S 4 S 2. By condition (1), H maps isomorphically to its projection H in S 4. If H had an element of order 3, the corresponding element of H would be a 3-cycle, violating condition (1). Hence #H divides 4!/3 = 8. Assume H is not trivial. Then H contains an element of order 2, i.e., a transposition τ or an S 4 -conjugate of (12)(34). In the former case, by condition (2), (123)τ(123) 1 τ would be an element of order 3 in H, a contradiction. Thus H contains an S 4 -conjugate of (12)(34). All such conjugates are conjugate by powers of (123), so by condition (2), H contains V 4 := {1, (12)(34), (13)(24), (14)(23)}. If we map V 4 via the inverse of the isomorphism H H, and then map down to S 2 = {1, (56)}, the kernel is non-trivial, so at least one of (12)(34), (13)(24), (14)(23) is actually in H. Conjugating by powers of σ, and using condition (2), we find that all three are in H. This violates condition (3), so H is trivial, and so is H. This completes the proof of Theorem 1. In the next paper of this series [Po3], we will prove the existence of smooth hypersurfaces X P n+1 of degree d with Aut X = {1}, for prescribed n and d (satisfying minor constraints). Acknowledgements I thank Nick Katz for bringing the problem considered in this paper to my attention, and for remarking that Theorem 1 implies Corollary 2. References [KS] Katz, N. M., and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications 45, American Mathematical Society, Providence, RI, 1999. [Mi] Milne, J. S., Jacobian Varieties, in: Cornell, G., Silverman, J.H.(eds.), Arithmetic geometry, 167 212, Springer-Verlag, New York, 1986. [Po1] Poonen, B., Varieties without extra automorphisms I: curves, preprint, 1999. [Po3] Poonen, B., Varieties without extra automorphisms III: hypersurfaces, preprint, 1999. [Sc] Schmid, H. L., Über die Automorphismen eines algebraischen Funktionenkörpers von Primzahlcharakteristik, J. Reine Angew. Math. 179 (1938), 5 15. [Si] Silverman, J., The arithmetic of elliptic curves, Graduate Texts in Mathematics 106, Springer- Verlag, New York-Berlin, 1986. Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA E-mail address: poonen@math.berkeley.edu