ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Similar documents
! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

! Energy Optimization. ! Design Space Exploration. " Example. ! P tot P static + P dyn + P sc. ! Steady-State: V in =V dd. " PMOS: subthreshold

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

! Dynamic Characteristics. " Delay

THE INVERTER. Inverter

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

ECE321 Electronics I

EE5311- Digital IC Design

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Integrated Circuits & Systems

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

The Physical Structure (NMOS)

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

EECS 141: FALL 05 MIDTERM 1

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EE5311- Digital IC Design

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

EEE 421 VLSI Circuits

Practice 7: CMOS Capacitance

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Integrated Circuits & Systems

EE115C Digital Electronic Circuits Homework #4

Dynamic operation 20

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Digital Integrated Circuits

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

The CMOS Inverter: A First Glance

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

The CMOS Inverter: A First Glance

ECE 342 Solid State Devices & Circuits 4. CMOS

High-to-Low Propagation Delay t PHL

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

CMOS Inverter (static view)

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Power Dissipation. Where Does Power Go in CMOS?

MOSFET and CMOS Gate. Copy Right by Wentai Liu

EE 434 Lecture 33. Logic Design

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Lecture 12 Circuits numériques (II)

EE115C Digital Electronic Circuits Homework #3

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 4: CMOS review & Dynamic Logic

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

MOSFET: Introduction

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Transistor Theory

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Digital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman

DC and Transient Responses (i.e. delay) (some comments on power too!)

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Digital Integrated Circuits 2nd Inverter

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

Lecture 4: CMOS Transistor Theory

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

9/18/2008 GMU, ECE 680 Physical VLSI Design

Using MOS Models. C.K. Ken Yang UCLA Courtesy of MAH EE 215B

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

Digital Microelectronic Circuits ( )

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Lecture 5: DC & Transient Response

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Lecture 12 CMOS Delay & Transient Response

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 6: DC & Transient Response

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Lecture 4: DC & Transient Response

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

Lecture 5. MOS Inverter: Switching Characteristics and Interconnection Effects

ENEE 359a Digital VLSI Design

Transcription:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 15, 2018 MOS Inverter: Dynamic Characteristics Penn ESE 570 Spring 2018 Khanna

Lecture Outline! Inverter Power! Dynamic Characteristics " Delay Penn ESE 570 Spring 2018 Khanna 3

Inverter Power Penn ESE 570 Spring 2018 Khanna

Power! P = I V! Tricky part: " Understanding I " (pairing with correct V) Penn ESE 570 Spring 2018 Khanna 5

Static Current! P = I static V DD Penn ESE 570 Spring 2018 Khanna 6

Switching Currents! Dynamic current flow:! If both transistor on: " Current path from V dd to Gnd " Short circuit current Penn ESE 570 Spring 2018 Khanna 7

Currents Summary! I changes over time! At least two components " I static no switching " I switch when switching " I dyn and I sc CLK φ ramp_enable V RAMP Penn ESE 570 Spring 2018 Khanna 8

Switching Dynamic Power Penn ESE 570 Spring 2018 - Khanna 9

Switching Currents! I total (t) = I static (t)+i switch (t)! I switch (t) = I sc (t) + I dyn (t) I dyn I static I sc Penn ESE 570 Spring 2018 - Khanna 10

Charging! I dyn (t) why is it changing? " I ds = f(v ds,v gs ) " and V gs, V ds changing I DS ν sat C OX W V GS V T V DSAT ' & 2 I DS = µ n C OX " $ # W L ( * ) ) ' ( V & GS V T )V DS V 2 DS + * 2,. - Penn ESE 570 Spring 2018 - Khanna 11

Switching Energy focus on I dyn (t) I dyn I static I sc Penn ESE 570 Spring 2018 - Khanna 12

Switching Energy focus on I dyn (t) I dyn E = P(t)dt = I(t)V dd dt = V dd I(t)dt Penn ESE 570 Spring 2018 - Khanna 13

Switching Energy! Do we know what this is? I dyn (t)dt I dyn E = P(t)dt = I(t)V dd dt = V dd I(t)dt Penn ESE 570 Spring 2018 - Khanna 14

Switching Energy! Do we know what this is? Q = I dyn (t)dt I dyn E = P(t)dt = I(t)V dd dt = V dd I(t)dt Penn ESE 570 Spring 2018 - Khanna 15

Switching Energy! Do we know what this is? Q = I dyn (t)dt! What is Q? I dyn E = P(t)dt = I(t)V dd dt = V dd I(t)dt Penn ESE 570 Spring 2018 - Khanna 16

Switching Energy! Do we know what this is? Q = I dyn (t)dt! What is Q? I dyn E = P(t)dt Q = CV = I(t)dt = I(t)V dd dt = V dd I(t)dt Penn ESE 570 Spring 2018 - Khanna 17

Switching Energy! Do we know what this is? Q = I dyn (t)dt! What is Q? I dyn E = P(t)dt Q = CV = I(t)dt = I(t)V dd dt = V dd I(t)dt E = CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2018 - Khanna 18

Switching Power! Every time output switches 0#1 pay: " E = CV 2! P dyn = (# 0#1 trans) CV 2 / time! # 0#1 trans = ½ # of transitions! P dyn = (# trans) ½CV 2 / time Penn ESE 570 Spring 2018 - Khanna 19

Switching Short Circuit Power Penn ESE 570 Spring 2018 - Khanna 20

Short Circuit Power! Between V TN and V dd - V TP " Both N and P devices conducting Penn ESE 570 Spring 2018 - Khanna 21

Short Circuit Power! Between V TN and V dd - V TP " Both N and P devices conducting! Roughly: I sc Vin Vdd-Vthp Vthn time Vdd Vdd Isc Penn ESE 570 Spring 2018 - Khanna Vout tsc tsc time 22

Peak Current! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall I DS ν sat C OX W V GS V T V DSAT ' & 2 ( * ) Vin Vdd-Vthp Vthn time Vdd Vdd Isc Penn ESE 570 Spring 2018 - Khanna Vout tsc tsc time 23

Peak Current! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall I DS ν sat C OX W V GS V T V DSAT ' & 2 I(t)dt I t ' 1( peak sc & 2 * ) ( * ) Vin Vdd-Vthp Vthn time Vdd Vdd Isc Penn ESE 570 Spring 2018 - Khanna Vout tsc tsc time 24

Peak Current! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall I DS ν sat C OX W V GS V T V ( DSAT ' * & 2 ) I(t)dt I t ' 1( peak sc & 2 * ) # E = V dd I peak t sc 1& ( $ 2' Vin Vdd-Vthp Vthn Vdd Isc Vdd time Penn ESE 570 Spring 2018 - Khanna Vout tsc tsc time 25

Short Circuit Energy! Make it look like a capacitance, C SC " Q=I t " Q=CV " " E = V dd I peak t sc 1 $ $ '' # # 2 && E = V dd Q SC E = V dd (C SC V dd ) = C SC V 2 dd Penn ESE 570 Spring 2018 - Khanna C SC = I peak t sc 2V dd 26

Short Circuit Energy! Every time switch (0#1 and 1#0) " Also dissipate short-circuit energy: E = CV 2 " Different C = C sc " C cs fake capacitance (for accounting) Penn ESE 570 Spring 2018 - Khanna 27

Dynamic Characteristics Penn ESE 570 Spring 2018 Khanna 28

Inverter Delay! Caused by charging and discharging the capacitive load " What is the load? Penn ESE 570 Spring 2018 Khanna 29

Inverter Delay Penn ESE 570 Spring 2018 Khanna 30

Inverter Delay Penn ESE 570 Spring 2018 Khanna 31

Inverter Delay C gb = C gbn + C gbp C load = C # dbn + C# dbp + C# gdn + C# gdp + C int + C gb Penn ESE 570 Spring 2018 Khanna 32

Inverter Delay Usually C db >> C gd C sb >> C gs C load C # dbn + C# dbp + C int + C gb Penn ESE 570 Spring 2018 Khanna 33

Inverter Delay n = fan-out 1 C load C dbn + C dbp + C int + nc gb Penn ESE 570 Spring 2018 Khanna 34

Propogation Delay Definitions V DD 0 t V DD 0 Penn ESE 570 Spring 2018 Khanna V 50 = V DD /2 35

Propogation Delay Definitions t Penn ESE 570 Spring 2018 Khanna 36

Propogation Delay Definitions Penn ESE 570 Spring 2018 Khanna 37

Rise/Fall Times Penn ESE 570 Spring 2018 Khanna 38

MOS Inverter Dynamic Performance! ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and C load, estimate (or measure) the propagation delays! DESIGN: For given specs for the propagation delays and C load*, determine the MOS inverter schematic METHODS: 1. Average Current Model C load ΔV HL I avg,hl = C load V OH V 50 I avg,hl τ PLH C load ΔV LH I avg,lh = C load V 50 V OL I avg,lh Assume V in ideal Penn ESE 570 Spring 2018 Khanna 39

MOS Inverter Dynamic Performance! ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and C load, estimate (or measure) the propagation delays! DESIGN: For given specs for the propagation delays and C load*, determine the MOS inverter schematic METHODS: 2. Differential Equation Model i C = C load dv out dt dv dt = C out load i C dt or τ PLH Assume V in ideal Penn ESE 570 Spring 2018 Khanna 40

MOS Inverter Dynamic Performance! ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and C load, estimate (or measure) the propagation delays! DESIGN: For given specs for the propagation delays and C load*, determine the MOS inverter schematic METHODS: 3. 1 st Order RC delay Model 0.69 C load R n τ PLH 0.69 C load R p Assume V in ideal Penn ESE 570 Spring 2018 Khanna 41

Method 1 Average Current Model Penn ESE 570 Spring 2018 Khanna

Calculation of Propagation Delays C load ΔV HL I avg,hl = C load V OH V 50 I avg,hl τ PLH C load ΔV LH I avg,lh = C load V 50 V OL I avg,lh Penn ESE 570 Spring 2018 Khanna 43

Calculation of Propagation Delays C load ΔV HL I avg,hl = C load V OH V 50 I avg,hl τ PLH C load ΔV LH I avg,lh = C load V 50 V OL I avg,lh Penn ESE 570 Spring 2018 Khanna 44

Calculation of Propagation Delays C load ΔV HL I avg,hl = C load V OH V 50 I avg,hl τ PLH C load ΔV LH I avg,lh = C load V 50 V OL I avg,lh Penn ESE 570 Spring 2018 Khanna 45

Calculation of Rise/Fall Times τ fall C load ΔV 90 10 I avg,90 10 = C load V 90 V 10 I avg,90 10 τ rise C load ΔV 10 90 I avg,10 90 = C load V 90 V 10 I avg,10 90 Penn ESE 570 Spring 2018 Khanna 46

Calculation of Rise/Fall Times τ fall C load ΔV 90 10 I avg,90 10 = C load V 90 V 10 I avg,90 10 τ rise C load ΔV 10 90 I avg,10 90 = C load V 90 V 10 I avg,10 90 Penn ESE 570 Spring 2018 Khanna 47

Calculation of Rise/Fall Times τ fall C load ΔV 90 10 I avg,90 10 = C load V 90 V 10 I avg,90 10 τ rise C load ΔV 10 90 I avg,10 90 = C load V 90 V 10 I avg,10 90 Penn ESE 570 Spring 2018 Khanna 48

Method 2 Differential Equation Model Penn ESE 570 Spring 2018 Khanna

Calculating Propagation Delays Assume V in is an ideal pulse-input Two Cases 1. V in abruptly rises => V out falls => 2. V in abruptly falls => V out rises => τ PLH i DP - i Dn Penn ESE 570 Spring 2018 Khanna 50

Case 1: V in Abruptly Rises - Penn ESE 570 Spring 2018 Khanna 51

Case 1: V in Abruptly Rises - Penn ESE 570 Spring 2018 Khanna 52

Case 1: V in Abruptly Rises - Penn ESE 570 Spring 2018 Khanna 53

Case 1: V in Abruptly Rises - Penn ESE 570 Spring 2018 Khanna 54

Case 1: V in Abruptly Rises - V out = V DD V T0n Penn ESE 570 Spring 2018 Khanna 55

Case 1: V in Abruptly Rises - C load dv out dt i Dn = =C load dv dt = C out load i Dn t=t 50 V out =V DD /2$ 1' dt = C t=t load & ) 0 V out =V DD ( i Dn dv out V DD V T 0 n $ 1' V DD /2 $ 1' & ) dv V out + C load & DD ) V ( DD V T 0 n ( i Dn Penn ESE 570 Spring 2018 Khanna i Dn dv out V out = V DD V T0n 56

Case 1: V in Abruptly Rises - C load dv out dt i Dn = =C load dv dt = C out load i Dn t=t 50 V out =V DD /2$ 1' dt = C t=t load & ) 0 V out =V DD ( i Dn dv out V DD V T 0 n $ 1' V DD /2 $ 1' & ) dv V out + C load & DD ) V ( DD V T 0 n ( i Dn t 0 #t 1 t 1 #t 50 Penn ESE 570 Spring 2018 Khanna i Dn dv out V out = V DD V T0n 57

Case 1: V in Abruptly Rises - saturation linear =C load t 0 #t 1 t 1 #t 50 V DD V T 0 n " 1 V DD /2 " 1 $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out V out = V DD V T0n saturation: i Dn = k n 2 (V in )2,sat = C load,sat = V DD V T 0 n V DD " $ $ $ # C load 1 k n 2 (V DD ) 2 ' ' ' & dv k n 2 (V V V out DD DD T 0n )2 V DD V T 0 n dv out Penn ESE 570 Spring 2018 Khanna,sat = 2C load V T 0n k n (V DD ) 2 58

Case 1: V in Abruptly Rises - saturation linear =C load t 0 #t 1 t 1 #t 50 V DD V T 0 n " 1 V DD /2 " 1 $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out V out = V DD V T0n ( ) linear: i Dn = k n 2 (V V )V V 2 in T 0n out out " V DD /2 $ 1,lin = C load $ V DD V T 0 n $ k n 2 2(V DD )V out V 2 out #,lin = 2C " V load DD /2 1 V k n $ # 2(V DD )V out V 2 DD V T 0 n out,lin = 2C load k n Penn ESE 570 Spring 2018 Khanna ( ) ( ) 1 2(V DD ) ln " V out $ # 2(V DD ) V out ( ) ' ' ' & ' & ' & dv out dv out V out =V DD /2 V out =V DD V T 0 n 59

Case 1: V in Abruptly Rises -,lin = 2C load k n,lin = 1 2(V DD ) ln # V out $ 2(V DD ) V out ( ) # C load k n (V DD ) ln 2(V DD ) V DD 2 V DD 2 $ & ( ' V out =V DD /2 V out =V DD V T 0 n & ( ' Penn ESE 570 Spring 2018 Khanna 60

Case 1: V in Abruptly Rises - saturation linear =C load t 0 #t 1 t 1 #t 50 V DD V T 0 n " 1 V DD /2 " 1 $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out V out = V DD V T0n,sat = 2C load V T 0n k n (V DD ) 2,lin = = 2C load V T 0n k n (V DD ) 2 + " C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 " # C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 # ' & ' & Penn ESE 570 Spring 2018 Khanna 61

Case 1: V in Abruptly Rises - saturation linear =C load t 0 #t 1 t 1 #t 50 V DD V T 0 n " 1 V DD /2 " 1 $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out V out = V DD V T0n,sat = 2C load V T 0n k n (V DD ) 2,lin = " C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 # ' & = Penn ESE 570 Spring 2018 Khanna 2C load V T 0n k n (V DD ) 2 + " C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- # ' & R n 62

Case 1: V in Abruptly Rises - 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- Recall from static CMOS Inverter: V th = V T 0n + 1 k R 1+ ( V DD +V T 0 p ) 1 k R " k R = V DD +V T 0 p V th $ # V th ' & 2 DESIGN: (1) V th k R ; (2) k n ; (3) k R & k n k p Penn ESE 570 Spring 2018 Khanna 63

Case 1: V in Abruptly Rises - 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- Recall from static CMOS Inverter: V th = V T 0n + 1 k R 1+ ( V DD +V T 0 p ) 1 k R " k R = V DD +V T 0 p V th $ # V th ' & 2 DESIGN: (1) V th k R ; (2) k n ; (3) k R & k n k p (1) V th k R ; (2) τ PLH k p ; (3) k R & k p k n Penn ESE 570 Spring 2018 Khanna 64

Differential Model Approximation 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- saturation linear =C load t 0 #t 1 t 1 #t 50 V DD V T 0 n " 1 V DD /2 " 1 $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out Approximate by assuming in saturation: # & V DD /2# 1 & V DD /2 C ( C load V DD $ i ( dv out = load ( V Dn,sat ' DD k n 2 (V DD ) 2 ( $ ' C load V DD k n (V DD ) R nc 2 load dv out Penn ESE 570 Spring 2017 Khanna Δ is less than 10 65

Differential Model Approximation 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- saturation linear Δ is less than 10 Penn ESE 570 Spring 2017 Khanna =C load C load t 0 #t 1 t 1 #t 50 V DD V T 0 n " 1 V DD /2 " 1 $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & = V DD /2 V DD V DD /2 V DD i Dn # $ 1 i Dn,vsat & ( ' dv out # & ( C load * v sat C OX W V DD V ( - dsat +, 2. /( $ ' dv out C load V DD 2v sat C OX W V DD V R # & n C load dsat ( $ 2 ' i Dn dv out Approximate by assuming in velocity saturation: V dsat Lv sat µ n 66

Example 1:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V and k n =625uA/V 2.! Assume V in is an ideal step pulse with instant rise/ fall times. Calculate the delay time necessary for the inverter output to fall from its initial value of 5V to 2.5V. 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- Penn ESE 570 Spring 2017 Khanna 67

Example 1:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V and k n =625uA/V 2.! Assume V in is an ideal step pulse with instant rise/ fall times. Calculate the delay time necessary for the inverter output to fall from its initial value of 5V to 2.5V. 1 ) 2V = C load T 0n k n (V DD ) (V DD ) + ln # 2(V DD ) &, + 1(. * $ V DD 2 '- =1 10 12 1 ) 2 # 2(5 1) &, + ln 1 (625 10 6 + (. )(5 1) *(5 1) $ 2.5 '- = 0.52ns Penn ESE 570 Spring 2017 Khanna 68

Example 1: 1 ) 2V = C load T 0n k n (V DD ) (V DD ) + ln # 2(V DD ) &, + 1(. * $ V DD 2 '- =1 10 12 1 ) 2 # 2(5 1) &, + ln 1 (625 10 6 + (. )(5 1) *(5 1) $ 2.5 '- = 0.52ns Approximate by assuming in saturation: C load V DD k n (V DD ) 2 R n C load Penn ESE 570 Spring 2017 Khanna 69

Example 1: 1 ) 2V = C load T 0n k n (V DD ) (V DD ) + ln # 2(V DD ) &, + 1(. * $ V DD 2 '- =1 10 12 1 ) 2 # 2(5 1) &, + ln 1 (625 10 6 + (. )(5 1) *(5 1) $ 2.5 '- = 0.52ns Approximate by assuming in saturation: C load V DD k n (V DD ) 2 R nc load 1 10 12 (5) 625 10 6 (5 1) 2 = 0.5ns Δ < 3 Penn ESE 570 Spring 2017 Khanna 70

Example 2:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V, k n =20uA/V 2, and W/L=10.! Use the average current method to calculate the fall time. Assume V OH =V DD, and V OL =0V. Usefull equations: τ fall C load ΔV 90 10 I avg,90 10 = C load V 90 V 10 I avg,90 10 I D,sat = k ' n 2 I D,lin = k ' n 2 W ( L V GS ) 2 W L 2 ( V GS )V DS V 2 DS ( ) Penn ESE 570 Spring 2017 Khanna 71

Example 2:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V, k n =20uA/V 2, and W/L=10.! Use the average current method to calculate the fall time. Assume V OH =V DD, and V OL =0V. I avg, fall = 1 [ 2 i (V = V,V = V )+ i (V = V,V = V ) c in OH out 90 c in OH out 10 ] I avg, fall = 1 [ 2 i (V = 5V,V = 4.5V )+ i (V = 5V,V = 0.5V ) c in out c in out ] I avg, fall = 1 " k ' n 2 # $ 2 I avg, fall = 1 " 20 10 6 $ 2 # 2 Penn ESE 570 Spring 2017 Khanna W ( L V in ) 2 + k ' n 2 (10)( 5 1) 2 + 20 10 6 2 I avg, fall = 0.988mA W L 2 ( V in )V out V 2 out ( ) & ' ( ) (10) 2( 5 1)(0.5) (0.5) 2 ' & 72

Example 2:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V, k n =20uA/V 2, and W/L=10.! Use the average current method to calculate the fall time. Assume V OH =V DD, and V OL =0V. I avg, fall = 1 [ 2 i (V = V,V = V )+ i (V = V,V = V ) c in OH out 90 c in OH out 10 ] I avg, fall = 1 [ 2 i (V = 5V,V = 4.5V )+ i (V = 5V,V = 0.5V ) c in out c in out ] I avg, fall = 1 " k ' n 2 # $ 2 I avg, fall = 1 " 20 10 6 $ 2 # 2 Penn ESE 570 Spring 2017 Khanna W ( L V in ) 2 + k ' n 2 (10)( 5 1) 2 + 20 10 6 2 I avg, fall = 0.988mA W L 2 ( V in )V out V 2 out ( ) & ' ( ) (10) 2( 5 1)(0.5) (0.5) 2 ' & 73

Example 2:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V, k n =20uA/V 2, and W/L=10.! Use the average current method to calculate the fall time. Assume V OH =V DD, and V OL =0V. I avg, fall = 0.988mA τ fall C load ΔV 90 10 I avg,90 10 = C load V 90 V 10 I avg,90 10 τ fall 1 10 12 4.5 0.5 = 4ns 3 0.988 10 Penn ESE 570 Spring 2017 Khanna 74

Example 2:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V, k n =20uA/V 2, and W/L=10.! Use the differential equation method to calculate the fall time. Assume V OH =V DD, and V OL =0V. Usefull equations: i C = C load dv out dt dv dt = C out load i C i d,sat = 1 2 k ' n i d,lin = 1 2 k ' n W ( L V V GS T 0n) 2 ( ) W L 2(V GS )V DS V 2 DS Penn ESE 570 Spring 2017 Khanna 75

Example 2:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V, k n =20uA/V 2, and W/L=10.! Use the differential equation method to calculate the fall time. Assume V OH =V DD, and V OL =0V. i C = C load dv out dt = 1 2 k ' n W ( L V V in T 0n) 2 dt = k ' n W L 2C load ( )( V DD ) dv 2 out 2 1 10 12 dt = 20 10 6 10 t=t sat t=t 90 V out =4.0 V out =4.5 ( )( 5 1) dv = 2 out 6.25 10 10 dv out dt = 6.25 10 10 dv out = 0.313ns Penn ESE 570 Spring 2017 Khanna 76

Example 2:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V, k n =20uA/V 2, and W/ L=10.! Use the differential equation method to calculate the fall time. Assume V OH =V DD, and V OL =0V. i C = C load dv out dt dt = k ' n t=t 10 = 1 2 k ' n 2C load W L 2(V in )V out V 2 out ( ) ( ) dv out ( W L) 2(V DD )V out V 2 out dt = 2C load k ' n W L t=t sat t=t 10 dt = k ' n t=t sat t=t 10 dt = t=t sat C load ( ) V out =0.5 V out =4 1 ( 2(V DD )V out V 2 out ) dv out ( W L) 1 $ ln 2(V in ) V 10 ' & ) V in V 10 ( 1 10 12 20 10 6 ( 10) 1 5 1 $ 2(5 1) 0.5' ln& ) = 3.39ns 0.5 ( t 90 t sat = 0.313ns 77

Example 2:! Consider a CMOS inverter with C load =1pF and V DD =5V. The nmos transistor has V T0n =1V, k n =20uA/V 2, and W/ L=10.! Use the differential equation method to calculate the fall time. Assume V OH =V DD, and V OL =0V. i C = C load dv out dt dt = k ' n t=t 10 = 1 2 k ' n 2C load W L 2(V in )V out V 2 out ( ) ( ) dv out ( W L) 2(V DD )V out V 2 out dt = 2C load k ' n W L t=t sat t=t 10 dt = k ' n t=t sat t=t 10 dt = t=t sat C load ( ) V out =0.5 V out =4 1 ( 2(V DD )V out V 2 out ) dv out ( W L) 1 $ ln 2(V in ) V 10 ' & ) V in V 10 ( 1 10 12 20 10 6 ( 10) 1 5 1 $ 2(5 1) 0.5' ln& ) = 3.39ns 0.5 ( t 90 t sat = 0.313ns t 90 t 10 = 3.7ns Avg method: 4ns 78

Case 2: V in Abruptly Falls - τ PLH saturation linear t 0 #t 1 t 1 #t 50 V T 0 p! 1 $ V 50! 1 τ PLH =C load # 0 " i & dv out + C load V # Dp T 0 p " i Dp $ & dv out 1 ) 2 V τ PLH =C load T 0 p k p (V DD V T 0 p ) (V DD V T 0 p ) + ln # 2(V DD V T 0 p ) &, + 1(. * + $ V DD 2 '-. Penn ESE 570 Spring 2017 Khanna 79

Case 2: V in Abruptly Falls - τ PLH saturation linear t 0 #t 1 t 1 #t 50 V T 0 p! 1 $ V 50! 1 τ PLH =C load # 0 " i & dv out + C load V # Dp T 0 p " i Dp $ & dv out 1 ) 2 V τ PLH =C load T 0 p k p (V DD V T 0 p ) (V DD V T 0 p ) + ln # 2(V DD V T 0 p ) &, + 1(. * + $ V DD 2 '-. R p τ PLH C load V DD k p (V DD V T 0 p ) 2 R p C load Penn ESE 570 Spring 2017 Khanna 80

Differential Equation Model 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- 1 ) 2 V τ PLH =C load T 0 p k p (V DD V T 0 p ) (V DD V T 0 p ) + ln # 2(V DD V T 0 p ) &, + 1(. * + $ V DD 2 '-. CONDITIONS for Balanced CMOS Propagation Delays, i.e. #! # " W L $ & p = µ! n W # µ p " L $ & n Penn ESE 570 Spring 2017 Khanna 81

Delay Observations 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- 1 ) 2 V τ PLH =C load T 0 p k p (V DD V T 0 p ) (V DD V T 0 p ) + ln # 2(V DD V T 0 p ) &, + 1(. * + $ V DD 2 '-. Penn ESE 570 Spring 2017 Khanna 82

Delay Design Equations 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- 1 ) 2 V τ PLH =C load T 0 p k p (V DD V T 0 p ) (V DD V T 0 p ) + ln # 2(V DD V T 0 p ) &, + 1(. * + $ V DD 2 '-. Penn ESE 570 Spring 2017 Khanna 83

Delay Design Equations w/ Saturation Approximation C load V DD k n (V DD ) 2! # " W L $ & n C load V DD µ n C ox (V DD ) 2 τ PLH C load V DD k p (V DD V T 0 p ) 2! # " W L $ & p C load V DD τ PLH µ p C ox (V DD V T 0 p ) 2 Penn ESE 570 Spring 2017 Khanna 84

Design for Delays with More Realistic Model for C load C load i i C dbn + C dbp + C int + C gb i i C load C dbn (W n ) + C dbp (W p ) + C int + C gb Penn ESE 570 Spring 2017 Khanna 85

Design for Delays with More Realistic Model for C load C dbn (W n ) = [W n (Y + x j )] C j0n K eqn + (W n + 2Y) C jswn K eqn (sw) C dbp (W p ) = [W p (Y + x j )] C j0p K eqp + (W p + 2Y) C jswp K eqp (sw) 86

Design for Delays with More Realistic Model for C load C dbn (W n ) = [W n (Y + x j )] C j0n K eqn + (W n + 2Y) C jswn K eqn (sw) C dbp (W p ) = [W p (Y + x j )] C j0p K eqp + (W p + 2Y) C jswp K eqp (sw) C load = α 0 + α n W n + α p W p α 0 = 2YC jswn K eqn + 2YC jswp K eqp + C int + C gb α n = (Y + x j )C j0n K eqn + C jswn K eqn α p = (Y + x j )C j0p K eqp + C jswp K eqp 87

Design for Delays with More Realistic Model for C load 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- 1 ) 2 V τ PLH =C load T 0 p k p (V DD V T 0 p ) (V DD V T 0 p ) + ln # 2(V DD V T 0 p ) &, + 1(. * + $ V DD 2 '-. = Γ n C load W n and = Γ p C load W p Penn ESE 570 Spring 2017 Khanna 88

Design for Delays with More Realistic Model for C load 1 ) 2V =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + 1(. * $ V DD 2 '- 1 ) 2 V τ PLH =C load T 0 p k p (V DD V T 0 p ) (V DD V T 0 p ) + ln # 2(V DD V T 0 p ) &, + 1(. * + $ V DD 2 '-. = Γ n C load W n and = Γ p C load W p Γ n and Γ P are set largely by process parameters and V DD const. Penn ESE 570 Spring 2017 Khanna 89

Design for Delays with More Realistic Model for C load = Γ n C load W n = Γ p C load W p C load = α 0 + α n W n + α p W p C load = α 0 + α n W n + (α p W p /W n )W n C load = α 0 + [α n + α p R]W n C load = α 0 + α n W n + α p W p C load = α 0 + (α n W n /W p )W p + α p W p C load = α 0 + [α n /R + α p ]W p where R = W p /W n = constant Penn ESE 570 Spring 2017 Khanna 90

Design for Delays with More Realistic Model for C load = Γ n C load W n = Γ p C load W p C load = α 0 + α n W n + α p W p C load = α 0 + α n W n + (α p W p /W n )W n C load = α 0 + [α n + α p R]W n C load = α 0 + α n W n + α p W p C load = α 0 + (α n W n /W p )W p + α p W p C load = α 0 + [α n /R + α p ]W p where R = W p /W n = constant (Recall: V th = 1 = µ pw p when L p =L n ) k R µ n W n = Γ n α 0 + [α n + α p R]W n W n τ PLH = Γ p α 0 + [α n /R + α p ]W p W p Penn ESE 570 Spring 2017 Khanna 91

Design for Delays with More Realistic Model for C load = Γ n α 0 + [α n + α p R]W n W n τ PLH = Γ p α 0 + [α n /R + α p ]W p W p where R (constant) = aspect ratio = W p /W n Hence increasing W n and W p will have diminishing influence on and τ PLH as they become large, i.e. τ PLH = limit = Γ n [α n + α p R] W n large = limit τ PLH = Γ p [α n /R + α p ] W p large absolute minimum delays Penn ESE 570 Spring 2017 Khanna 92

Design for Delays with More Realistic Model for C load Penn ESE 570 Spring 2017 Khanna 93

Design for Delays with More Realistic Model for C load Penn ESE 570 Spring 2017 Khanna 94

Taking Into Account Non-Ideal Input Waveform ideal V in non-ideal V in V out to ideal V in V out to non-ideal V in Penn ESE 570 Spring 2017 Khanna 95

MOS Inverter Dynamic Performance! ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and C load, estimate (or measure) the propagation delays! DESIGN: For given specs for the propagation delays and C load*, determine the MOS inverter schematic METHODS: 1. Average Current Model C load 2. Differential Equation Model i C = C load dv out dt ΔV HL I avg,hl = C load V OH V 50 I avg,hl dv dt = C out load dt or τ PLH 3. 1 st Order RC delay Model i C Assume V in ideal 0.69 C load R n Penn ESE 570 Spring 2017 Khanna 96

Idea! P tot = P static + P dyn + P sc " Can t ignore Static Power (aka. Leakage power)! Propogation Delay " Average Current Model " Differential Equation Model " 1 st Order Model " More next time Penn ESE 570 Spring 2018 Khanna 97

Admin! HW 4 due today! HW 5 posted today " Due 3/1! Quiz next week Thursday 2/22 Penn ESE 570 Spring 2018 Khanna 98