Field Theory and Standard Model

Similar documents
Standard Model. Ansgar Denner, Würzburg. 44. Herbstschule für Hochenergiephysik, Maria Laach September 2012

QED and the Standard Model Autumn 2014

Aula/Lecture 18 Non-Abelian Gauge theories The Higgs Mechanism The Standard Model: Part I

PARTICLE PHYSICS Major Option

Electroweak physics and the LHC an introduction to the Standard Model

Gauge Symmetry in QED

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Group Structure of Spontaneously Broken Gauge Theories

The Standar Model of Particle Physics Lecture I

Introduction to particle physics Lecture 6

Hunting New Physics in the Higgs Sector

Standard Model & Beyond

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

3.3 Lagrangian and symmetries for a spin- 1 2 field

Introduction to the SM (5)

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Leptons and SU(2) U(1)

Models of Neutrino Masses

Higgs Boson Phenomenology Lecture I

Lecture III: Higgs Mechanism

Particle Physics I Lecture Exam Question Sheet

CHAPTER II: The QCD Lagrangian

PAPER 305 THE STANDARD MODEL

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

The Higgs Mechanism and the Higgs Particle

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Chapter 2 The Higgs Boson in the Standard Model of Particle Physics

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

12.2 Problem Set 2 Solutions

Non Abelian Higgs Mechanism

Quantum Field Theory 2 nd Edition

Electroweak Theory & Neutrino Scattering

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

NTNU Trondheim, Institutt for fysikk

Masses and the Higgs Mechanism

Detection Prospects of Doubly Charged Higgs Bosons from the Higgs Triplet Model at the LHC

THE STANDARD MODEL. Thomas Teubner. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K.

Flavour Physics Lecture 1

A model of the basic interactions between elementary particles is defined by the following three ingredients:

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

Introduction to gauge theory

An Introduction to the Standard Model of Particle Physics

The Role and Discovery of the Higgs

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model

Introduction to the Standard Model

Theory toolbox. Chapter Chiral effective field theories

Weak interactions and vector bosons

1 Weak Interaction. Author: Ling fong Li. 1.1 Selection Rules in Weak Interaction

THE STANDARD MODEL. II. Lagrangians 7 A. Scalars 9 B. Fermions 10 C. Fermions and scalars 10

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

Physics 129 LECTURE 6 January 23, Particle Physics Symmetries (Perkins Chapter 3)

The Strong Interaction and LHC phenomenology

Lecture 6 The Super-Higgs Mechanism

2.4 Parity transformation

Particle Physics. Dr Victoria Martin, Spring Semester 2013 Lecture 17: Electroweak and Higgs

Invariant Mass Distributions of SUSY Cascade Decays

PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016.

QFT Dimensional Analysis

Fundamental Physics: Quantum Field Theory

Physics 582, Problem Set 1 Solutions

Lectures on Chiral Perturbation Theory

The Higgs discovery - a portal to new physics

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Fundamental Symmetries - l

QFT Dimensional Analysis

THE STANDARD MODEL OF PARTICLE PHYSICS

Two Fundamental Principles of Nature s Interactions

Higgs Physics from the Lattice Lecture 1: Standard Model Higgs Physics

Fermions of the ElectroWeak Theory

Electroweak Theory: 3

Lecture 16 V2. October 24, 2017

Lecture II. QCD and its basic symmetries. Renormalisation and the running coupling constant

The Standard Model and beyond

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0

Effective Field Theory

The Standard Model Part. II

Fundamental Symmetries - 2

Unified Field Equations Coupling Four Forces and Theory of Dark Matter and Dark Energy

SISSA entrance examination (2007)

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University

Theory of Elementary Particles homework VIII (June 04)

Electroweak Theory, SSB, and the Higgs: Lecture 2

Part III The Standard Model

Adding families: GIM mechanism and CKM matrix

Current knowledge tells us that matter is made of fundamental particle called fermions,

Particle Physics Status and Perspectives

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Electroweak Theory and Higgs Mechanism

THE STANDARD MODEL AND THE GENERALIZED COVARIANT DERIVATIVE

A UNITARY AND RENORMALIZABLE THEORY OF THE STANDARD MODEL IN GHOST-FREE LIGHT-CONE GAUGE 1. Prem P. Srivastava a,b,c 2. Stanley J.

Axions Theory SLAC Summer Institute 2007

Measurement of electroweak W + Jets Production and Search for anomalous Triple Gauge Boson Couplings with the ATLAS Experiment at s = 8 TeV

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

Lectures on the Symmetries and Interactions of Particle Physics

Transcription:

Field Theory and Standard Model W. HOLLIK CERN SCHOOL OF PHYSICS BAUTZEN, 15 26 JUNE 2009 p.1

Why Quantum Field Theory? (i) Fields: space time aspects field = quantity φ( x, t), defined for all points of space x and time t physical system defined by a Lagrangian L(φ( x, t)) p.2

Why Quantum Field Theory? (i) Fields: space time aspects field = quantity φ( x, t), defined for all points of space x and time t physical system defined by a Lagrangian L(φ( x, t)) fields and Lagrangian formalism accommodate symmetries: space time symmetry: Lorentz invariance internal symmetries (e.g. gauge symmetries) causality local interactions p.3

(ii) Particles: quantum theory aspects particles are classified by mass m and spin s quantum numbers m,s, p,s 3,charge, isospin, = eigenvalues of observables particle states m,s; p,s 3, > form quantum mechanical Hilbert space p.4

(ii) Particles: quantum theory aspects particles are classified by mass m and spin s quantum numbers m,s, p,s 3,charge, isospin, = eigenvalues of observables particle states m,s; p,s 3, > form quantum mechanical Hilbert space merging space-time and quantum aspects: Quantum Field Theory fields are operators that create/annihilate particles p.5

Outline 1. Elements of Quantum Field Theory 2. Cross sections and decay rates 3. Gauge Theories 3.1. Abelian gauge theories QED 3.2. Non-Abelian gauge theories 3.3. QCD 4. Higgs mechanism 4.1. Spontaneous symmetry breaking (SSB) 4.2. SSB in gauge theories 5. Electroweak interaction and Standard Model 5. Phenomenology of W and Z bosons, precision tests 6. Higgs bosons p.6

Notations and Conventions µ,ν,.. = 0,1,2,3; k,l,.. = 1,2,3 x = (x µ ) = (x 0, x), x 0 = t ( h = c = 1) p = (p µ ) = (p 0, p ), p 0 = E = p 2 + m 2 1 0 0 0 a µ = g µν a ν 0 1 0 0, (g µν ) = 0 0 1 0 0 0 0 1 a 2 = a µ a µ, µ = x µ = g µν ν, = µ µ = 2 t 2 a b = a µ b µ = a 0 b 0 a b ν = x ν [ 0 = 0, k = k ] p.7

1. Elements of Quantum Field Theory p.8

Fields in the Standard Model spin 0 particles: scalar fields φ(x) spin 1 particles: vector fields A µ (x), µ = 0,...3 spin 1/2 fermions: spinor fields ψ(x) = Lagrangian: L(φ, µ φ) Lorentz invariant Action: S = d 4 x L(φ(x), ) Lorentz invariant Hamilton s principle: δ S = 0 e.o.m. Lorentz covariant free fields: L is quadratic in the fields e.o.m. are linear diff. eqs. ψ 1 ψ 2 ψ 3 ψ 4 p.9

equations of motions from δs = S[φ + δφ] S[φ] = 0 Euler-Lagrange equations mechanics of particles: L(q 1,...q n, q 1,... q n ) e.o.m. d dt L qi L q i = 0 field theory: q i φ(x), q i µ φ(x) e.o.m. µ L ( µ φ) L φ = 0 field eq. example: scalar field φ(x), L = 1 2 ( µφ) 2 m2 2 φ2 field equation φ + m 2 φ = 0 solution φ(x) = 1 (2π) 3/2 d 3 k 2k 0 [a(k)e ikx + a(k) e ikx ] p.10

p.11

p.12

p.13

p.14

p.15

p.16

p.17

p.18

p.19

p.20

p.21

p.22

p.23

2. Cross sections and decay widths p.24

amplitudes scattering process: a + b b 1 + b 2 + + b n a(p a ),b(p b )>= i>, b 1 (p 1 ), b n (p n )>= f > matrix element = probability amplitude for i f: S fi =< f S i > p.25

amplitudes scattering process: a + b b 1 + b 2 + + b n a(p a ),b(p b )>= i>, b 1 (p 1 ), b n (p n )>= f > matrix element = probability amplitude for i f: S fi =< f S i > for i f: S fi 2 = (2π) 4 δ 4 (P i P f ) M fi 2 (2π) 3(n+2) P i = p a +p b = P f = p 1 + +p n momentum conservation factors (2π) 3 from wave function normalization (plane waves) M fi from Feynman graphs and rules p.26

probability for scattering into phase space element dφ: dw fi = S fi 2 dφ, dφ = d3 p 1 2p 0 1 d3 p n 2p 0 n d 3 p i 2p 0 i = d 4 p i δ(p 2 i m2 i ) Lorentz invariant phase space differential cross section: dσ = (2π) 6 4 (p a p b ) 2 m 2 am 2 b }{{} dw fi flux normalization factor from initial state p.27

probability for scattering into phase space element dφ: dw fi = S fi 2 dφ, dφ = d3 p 1 2p 0 1 d3 p n 2p 0 n d 3 p i 2p 0 i = d 4 p i δ(p 2 i m2 i ) Lorentz invariant phase space differential cross section: dσ = (2π) 6 4 (p a p b ) 2 m 2 am 2 b }{{} dw fi flux normalization factor from initial state dσ = (2π) 4 4 (p a p b ) 2 m 2 am 2 b M fi 2 (2π) 3n δ 4 (P i P f ) d3 p 1 2p 0 1 d3 p n 2p 0 n p.28

decay process: a b 1 + b 2 + + b n a(p a )>= i>, b 1 (p 1 ), b n (p n )>= f > S fi 2 = (2π) 4 δ 4 (p a P f ) M fi 2 (2π) 3(n+1) decay width (differential): dγ = (2π)3 2m a }{{} normalization of a> S fi 2 dφ }{{} dw fi p.29

decay process: a b 1 + b 2 + + b n a(p a )>= i>, b 1 (p 1 ), b n (p n )>= f > S fi 2 = (2π) 4 δ 4 (p a P f ) M fi 2 (2π) 3(n+1) decay width (differential): dγ = (2π)3 2m a }{{} normalization of a> S fi 2 dφ }{{} dw fi dγ = (2π)4 2 m a M fi 2 (2π) 3n δ 4 (p a P f ) d3 p 1 2p 0 1 d3 p n 2p 0 n p.30

special case: 2-particle phase space a + b b 1 + b 2, a b 1 + b 2 cross section in the CMS, p a + p b = 0 = p 1 + p 2 dσ dω = 1 64π 2 s p 1 p a M fi 2 dω = dcos θ dφ, θ =<( p a, p 1 ) s = (p a + p b ) 2 = E 2 CMS decay rate for final state masses m 1 = m 2 = m dγ dω = 1 64π 2 m a 1 4m2 m 2 a M fi 2 p.31

3. Gauge theories p.32

3.1 Abelian gauge theories QED free fermion field ψ (for e ± ), described by Lagrangian L 0 = ψ (iγ µ µ m)ψ L 0 is invariant under global transformations ψ(x) ψ (x) = e iα ψ(x) group: U(1), global U(1) with α real, arbitrary global gauge symmetry L 0 is not invariant under local transformations ψ(x) ψ (x) = e iα(x) }{{} ψ(x) U(x) p.33

invariance is obtained by minimal substitution µ D µ = µ iea µ covariant derivative under the combined transformations ψ(x) ψ (x) = e iα(x) ψ(x) U(x)ψ(x) A µ (x) A µ(x) = A µ (x) + 1 e µα(x) local gauge transformations group: local U(1), Abelian: e iα 1 e iα 2 = e iα 2 e iα 1 basic property: D µψ = U(x)D µ ψ ( µ iea µ) }{{}} U(x)ψ(x) {{} = U(x) ( µ iea µ )ψ }{{} D µ ψ D µ ψ p.34

L is invariant under local gauge transformations: L = ψ (iγ µ D µ m)ψ = ψ (iγ µ D µ m)ψ = L proof with ψ = Uψ = ψu = ψu 1 and D µψ = UD µ ψ The invariant Lagrangian contains a new vector field A µ which couples to the electromagnetic current: L = ψ (iγ µ D µ m)ψ = L 0 + e ψγ µ ψ A µ = L 0 + L int local gauge invariance determines the interaction A µ not yet a dynamical field add L A (invariant!) L A = 1 4 F µνf µν (+L fix ) free photon field L QED = L 0 + L A + L int p.35

QED as a gauge theory: main steps start with L 0 (ψ, µ ψ)) for free fermion field ψ symmetric under global gauge transformations p.36

QED as a gauge theory: main steps start with L 0 (ψ, µ ψ)) for free fermion field ψ symmetric under global gauge transformations perform minimal substitution L 0 (ψ,d µ ψ) µ D µ = µ iea µ invariance under local gauge transformations involves additional vector field A µ induces interaction between A µ and ψ e ψγ µ ψ A µ e j µ A µ p.37

QED as a gauge theory: main steps start with L 0 (ψ, µ ψ)) for free fermion field ψ symmetric under global gauge transformations perform minimal substitution L 0 (ψ,d µ ψ) µ D µ = µ iea µ invariance under local gauge transformations involves additional vector field A µ induces interaction between A µ and ψ e ψγ µ ψ A µ e j µ A µ make A µ a dynamical field by adding L A = 1 4 F µν F µν (+L fix ) p.38

3.2 Non-Abelian gauge theories Generalization: phase transformations that do not commute ψ ψ = Uψ with U 1 U 2 U 1 U 1 requires matrices, i.e. ψ is a multiplet ψ = ψ 1 ψ 2 : ψ n, each ψ k = ψ k (x) is a Dirac spinor U = n n -matrix p.39

(i) global symmetry starting point: L 0 = ψ iγ µ µ ψ where ψ = (ψ 1,,ψ n ) consider unitary matrices: U = U 1 ψ = Uψ ψ = ψ U = ψ U 1 ψ ψ = ψψ, ψ γ µ µ ψ = ψγ µ µ ψ if U does not depend on x L 0 is invariant under ψ Uψ U: global gauge transformation p.40

similar for scalar fields: φ ψ = Uφ, φ = φ 1 φ 2 : φ n each φ k = φ k (x) is a scalar field, φ = (φ 1,,φ n) terms φ φ, ( µ φ) ( µ φ) are invariant L 0 = ( µ φ) ( µ φ) is invariant p.41

relevant in physics: the special unitary n n-matrices with det=1 group SU(n) examples: ( ) ( ) SU(2) : ψ = ψ 1 ψ 2 e.g. ψ = ψ ν ψ e isospin SU(3) : ψ = ψ 1 ψ 2 e.g. ψ = ψ r ψ g colour ψ 3 ψ b p.42

SU(n) matrices U can be written as exponentials U(θ 1,,θ N ) = e iθ at a sum over a = 1, n θ 1, θ N : real parameters T 1, T N : n n-matrices, generators, T a = T a infinitesimal θ : U = 1 + iθ a T a (+O(θ 2 )) N-dimensional Lie Group det=1 and unitarity N = n 2 1 n = 2 : N = 3, n = 3 : N = 8 p.43

commutators [T a,t b ] 0 non-abelian [T a,t b ] = if abc T c Lie Algebra f abc : real numbers, structure constants f abc = f bac = antisymmetric p.44

commutators [T a,t b ] 0 non-abelian [T a,t b ] = if abc T c Lie Algebra f abc : real numbers, structure constants f abc = f bac = antisymmetric SU(2) f abc = ǫ abc (like angular momentum) T a = 1 2 σ a, σ a : Pauli matrices (a=1,2,3) p.45

commutators [T a,t b ] 0 non-abelian [T a,t b ] = f abc T c Lie Algebra f abc : real numbers, structure constants f abc = f bac = antisymmetric SU(2) f abc = ǫ abc (like angular momentum) T a = 1 2 σ a, σ a : Pauli matrices (a=1,2,3) SU(3) T a = 1 2 λ a, λ a : Gell-Mann matrices (a=1,...8) 0 1 0 λ 1 = 1 0 0,... 0 0 0 p.46

p.47

p.48

p.49

p.50

p.51

p.52

p.53

p.54

p.55

3.3. Quantum Chromodynamics (QCD) each quark field q = u,d,... appears in 3 colours q ψ = q, ψ = (q,q,q) q T a = 1 2 λ a (a = 1,...8) generators W a µ G a µ 8 gluon fields G a µν = µ G a ν ν G a µ + g s f abc G b µg c ν field strength D µ = µ ig s T a G a µ covariant derivative g s coupling constant of strong interaction, α s = g2 s 4π p.56

p.57

p.58

p.59

4. Higgs mechanism p.60

problem: weak interaction, gauge bosons are massive mass terms M 2 W a µw a, µ spoil local gauge invariance bad high energy behaviour of amplitudes and cross sections, conflict with unitarity reason: longitudinal polarization ǫ µ kµ M kµ bad divergence of higher orders with loop diagrams reason: propagators contain g µν + k µk ν M 2 additional powers of momenta in loop integration spoil renormalizability renormalizable theory: divergences can be absorbed into the parameters gauge invariant theories are renormalizable p.61

4.1 Spontaneous symmetry breaking (SSB) physical system: ground state: has a symmetry not symmetric p.62

consider complex scalar field φ φ Lagrangian with interaction V (potential), minimum at φ 0 = v L = µ φ 2 V (φ) V(φ) ϕ 1 φ V = V ( φ ) : L symmetric under φ e iα φ, U(1) v 0 : φ 0 = eiα v φ 0 not symmetric ϕ 2 V = V ( φ 0 ) = V ( φ 0 ) : vacuum is degenerate p.63

p.64

p.65

p.66

p.67

two different gauges properties φ field A µ field symmetry manifest H, θ 2 polarizations (transverse) physics manifest H 3 polarizations (2 transverse + 1 longitudinal) θ longitudinal polarization of A µ p.68

5. Electroweak interaction and Standard Model p.69

preliminaries Dirac matrices: γ µ (µ = 0, 1, 2, 3), γ µ γ ν + γ ν γ µ = 2g µν Γ = γ 0 (Γ) γ 0, Γ any Dirac matrix oder product of matrices further Dirac matrix: γ 5 = γ 0 γ 1 γ 2 γ 3 = γ 5 γ µ + γ µ γ 5 = 0, γ 5 = γ 5, γ 2 5 = 1 chiral fermions: ψ L = 1 γ 5 2 ψ left-handed spinor, L-chiral spinor ψ R = 1+γ 5 2 ψ right-handed spinor, R-chiral spinor ( 0 1 1 0 projectors on left/right chirality: ω ± = 1±γ 5 2, (ω ± ) 2 = ω ± ) p.70

chiral currents: ψ L γ µ ψ L = ψ γ µ 1 γ 5 2 ψ J µ L left-handed current ψ R γ µ ψ R = ψ γ µ 1+γ 5 2 ψ J µ R right-handed current J µ V = ψγµ ψ = J µ L + Jµ R J µ A = ψγµ γ 5 ψ = J µ L + Jµ R vector current axialvector current mass term: mψψ = m (ψ L ψ R + ψ R ψ L ) connects L and R! p.71

symmetry group: SU(2) I U(1) Y SU(2) I : weak isospin, generators T a I = 1 2 σa for L, = 0 for R U(1) Y : weak hypercharge, generator Y L T 3 I + Y/2 = Q Fermion content of the SM: (ignoring possible right-handed neutrinos) TI 3 Q ν L «leptons: Ψ L e ν L «µ ν L «τ + 1 0 2 L = e L, µ L, τ L, 1 quarks: (Each quark exists in 3 colours!) 1 2 ψl R = e R, µ R, τ R, 0 1 u L «c L «t L «+ 1 + 2 Ψ L 2 3 Q =,,, d L s L b L 1 2 1 3 ψ R u = u R, c R, t R, 0 + 2 3 ψ R d = d R, s R, b R, 0 1 3 p.72

gauge boson content SU(2) I : generators T 1 I, T 2 I, T 3 I gauge fields W 1 µ, W 2 µ, W 3 µ also: W ± µ = 1 2 ( W 1 µ ± iw 2 µ), W 3 µ U(1) Y : generator Y gauge field B µ p.73

Free Lagrangian of (still massless) fermions: L 0,ferm = iψ f / ψ f = iψ L L / ΨL L + iψ L Q / ΨL Q + iψ R l / ψr l + iψ R u / ψ R u + iψ R d / ψr d Minimal substitution: µ D µ = µ ig 2 TI a Wµ a 1 + ig 1 Y B 2 µ = Dµω L + Dµ R ω +, Dµ L = µ ig 2 0 W + «µ 2 Wµ i g2 Wµ 3 g 1 Y L B µ 0 0 2 0 g 2 Wµ 3 g 1 Y L B µ D R µ = µ + ig 1 1 2 Y R B µ «, Photon identification: ««Zµ cw s W W 3 «µ c W = cosθ W, s W =sin θ W, rotation : =, A µ s W c W B µ θ W = mixing angle Dµ L = i Aµ 2 A g2 s W g 1 c W Y L ««0! Q1 0 µ 0 g 2 s W g 1 c W Y L = iea µ 0 Q 2 charged difference in doublet Q 1 Q 2 = 1 g 2 = e normalize Y L/R such that g 1 = e c W Y fixed by Gell-Mann Nishijima relation : Q = T 3 I + Y 2 s W p.74

Fermion gauge-boson interaction: L ferm,ym = e 0 /W + Ψ L F 2sW /W 0 «Ψ L F + e 2c W s W Ψ L F σ3 /ZΨ L F e s W c W Q f ψ f /Zψ f eq f ψ f /Aψ f (f=all fermions, F = all doublets) Feynman rules: f f W µ ie 2sW γ µ ω f f A µ iq f eγ µ f f Z µ ieγ µ (g + f ω + + g f ω ) = ieγ µ (v f a f γ 5 ) with g + f = s W c W Q f, g f = s W c W Q f + T 3 I,f c W s W, v f = s W c W Q f + T 3 I,f 2c W s W, a f = T 3 I,f 2c W s W p.75

gauge field Lagrangian (Yang-Mills Lagrangian) Field-strength tensors: L YM = 1 4 W a µνw a,µν 1 4 B µνb µν W a µν = µ W a ν ν W a µ + g 2 ǫ abc W b µw c ν, B µν = µ B ν ν B µ Lagrangian in terms of physical fields: L YM = 1 2 ( µw + ν ν W + µ )( µ W,ν ν W,µ ) 1 4 ( µz ν ν Z µ )( µ Z ν ν Z µ ) 1 4 ( µa ν ν A µ )( µ A ν ν A µ ) + (trilinear interaction terms involving AW + W, ZW + W ) + (quadrilinear interaction terms involving AAW + W, AZW + W, ZZW + W, W + W W + W ) p.76

Feynman rules for gauge-boson self-interactions: (fields and momenta incoming) W + µ W ν V ρ iec WWV h g µν (k + k ) ρ + g νρ (k k V ) µ + g ρµ (k V k + ) ν i with C WWγ = 1, C WWZ = c W s W W + µ W ν V ρ V σ ie 2 C WWV V h2g µν g ρσ g µρ g σν g µσ g νρ i with C WWγγ = 1, C WWγZ = c W s W, C WWZZ = c2 W, C s 2 WWWW = 1 W s 2 W p.77

Higgs mechanism masses of W and Z bosons spontaneous breaking SU(2) I U(1) Y U(1) Q unbroken em. gauge symmetry, massless photon GSW model: Minimal scalar sector with complex scalar doublet Φ = Scalar self-interaction via Higgs potential: V (Φ) = µ 2 Φ Φ + λ 4 (Φ Φ) 2, µ 2, λ > 0, φ + φ 0 «, Y Φ = 1 V = SU(2) I U(1) Y symmetric r 2µ 2 Re(φ 0 ) V (Φ) = minimal for Φ = λ v > 0 2 Im(φ 0 ) ground state Φ 0 (=vacuum «expectation value of Φ) not unique 0 specific choice Φ 0 = v not gauge invariant spontaneous symmetry breaking 2 «1 0 elmg. gauge invariance unbroken, since QΦ 0 = Φ 0 = 0 0 0 p.78

Field excitations in Φ: Φ(x) = φ + (x) 1 2 v + H(x) + iχ(x)! Gauge-invariant Lagrangian of Higgs sector: (φ = (φ + ) ) L H = (D µ Φ) (D µ Φ) V (Φ) with D µ = µ ig 2 σ a 2 W a µ + i g 1 2 B µ = ( µ φ + )( µ φ ) iev (W µ + µ φ Wµ µ φ + )+ e2 v 2 W 2s W 4s 2 µ + W,µ W + 1 2 ( χ)2 + ev Z µ µ χ+ e2 v 2 Z 2 + 1 2c W s W 4c 2 Ws 2 W 2 ( H)2 µ 2 H 2 + (trilinear SSS, SSV, SV V interactions) + (quadrilinear SSSS, SSV V interactions) Implications: gauge-boson masses: M W = ev, M Z = ev = M W, M γ = 0 2s W 2c W s W c W physical Higgs boson H: M H = p 2µ 2 = free parameter would-be Goldstone bosons φ ±, χ: unphysical degrees of freedom p.79

Fermion masses fermions in chiral representations of gauge symmetry ) ( νe e L, e R mass term m e (e L e R + e R e L ) = m e ee not gauge invariant solution of the SM: introduce Yukawa interaction = new interaction of fermions with the Higgs field gauge invariant interaction, g = Yukawa coupling constant L Yuk = g [ψ L Φe R + e R Φ ψ L ] p.80

most transparent in unitary gauge ( ) ( 1 2 Φ = φ + φ 0 0 v + H apply to the first lepton generation ψ L = g 2 [ (ν L,e L ) ( 0 v + H ) e R + e R (0,v + H) ( ( ) ν L e L ν L e L ) ) ], e R : = g v 2 }{{} [e L e R + e R e L ] + g 2 H [e L e R + e R e L ] m e = m e ee + m e v H ee p.81

3 generations of leptons and quarks Lagrangian for Yukawa couplings: L Yuk = Ψ L L G lψl R Φ Ψ L Q G uψu R Φ Ψ L Q G dψd R Φ + h.c. G l, G u,g d = 3 3 matrices in 3-dim. space of generations (ν masses ignored) φ 0 «Φ = iσ 2 Φ = φ = charge conjugate Higgs doublet, Y Φ = 1 Fermion mass terms: mass terms = bilinear terms in L Yuk, obtained by setting Φ Φ 0 : L mf = v ψl LG lψl R v ψug L u ψu R v ψd LG dψd R + h.c. 2 2 2 diagonalization by unitary field transformations (f = l, u, d) ˆψ L/R f U L/R f ψ L/R f such that v 2 U L f G f (U R f ) = diag(m f ) standard form: L mf = m f ˆψL f ˆψR f + h.c. = m f ˆψf ˆψf p.82

Quark mixing: ψ f correspond to eigenstates of the gauge interaction ˆψf correspond to mass eigenstates, for massless neutrinos define ˆψL ν U L l ψ L ν no lepton-flavour changing Yukawa and gauge interactions in terms of mass eigenstates: 2ml L Yuk = φ + ˆψL v νl ˆψR l + φ 2mu ˆψRl ˆψL νl + φ + ˆψR v u V ˆψ d L + φ ˆψLd V ˆψR u 2md φ + ˆψL u V v ˆψ d R + φ ˆψRd V ˆψL u m f v isgn(t I,f)χ 3 ˆψ f γ 5 ˆψf L ferm,ym = m f v (v + H) ˆψ f ˆψf, e 0 /W + ˆΨL L 2sW /W 0 + «ˆψ L L + e 0 V /W + «ˆΨL Q 2sW V /W 0 e 2c W s W ˆΨL F σ 3 /Z ˆΨ L F e s W c W Q f ˆψf /Z ˆψ f eq f ˆψf /A ˆψ f only charged-current coupling of quarks modified by V = U L u (U L d ) = unitary ˆψ L Q Higgs fermion coupling strength = m f v (Cabibbo Kobayashi Maskawa (CKM) matrix) p.83

Features of the CKM mixing: V = 3-dim. generalization of Cabibbo matrix U C V is parametrized by 4 free parameters: 3 real angles, 1 complex phase complex phase is the only source of CP violation in SM counting: #real d.o.f. in V «#unitarity relations ««#phase diffs. of u-type quarks = 18 9 2 2 1 = 4 no flavour-changing neutral currents in lowest order, «#phase diffs. of d-type quarks «#phase diff. between u- and d-type quarks flavour-changing suppressed by factors G µ (m 2 q 1 m 2 q 2 ) in higher orders ( Glashow Iliopoulos Maiani mechanism ) p.84