Chapter 3. Antimagic Gl'aphs

Similar documents
Super Fibonacci Graceful Labeling of Some Special Class of Graphs

Harmonic Mean Labeling for Some Special Graphs

Chapter V DIVISOR GRAPHS

Super Mean Labeling of Some Classes of Graphs

Department of Mathematics, Sri Krishna Institute of Technology, Bengaluru , Karnataka, India. *Correspondence author s

SQUARE DIFFERENCE 3-EQUITABLE LABELING FOR SOME GRAPHS. Sattur , TN, India. Sattur , TN, India.

arxiv: v1 [math.co] 23 Apr 2015

On Odd Sum Graphs. S.Arockiaraj. Department of Mathematics. Mepco Schlenk Engineering College, Sivakasi , Tamilnadu, India. P.

On (Super) Edge-Magic Total Labeling of Subdivision of K 1,3

Some Edge-magic Cubic Graphs

New Constructions of Antimagic Graph Labeling

k-difference cordial labeling of graphs

Odd-even sum labeling of some graphs

arxiv: v2 [math.co] 26 Apr 2014

arxiv: v2 [cs.dm] 27 Jun 2017

Graceful Tree Conjecture for Infinite Trees

ON CONSTRUCTIONS OF NEW SUPER EDGE-MAGIC GRAPHS FROM SOME OLD ONES BY ATTACHING SOME PENDANTS

On (k, d)-multiplicatively indexable graphs

Some Results on Super Mean Graphs

Magic Graphoidal on Class of Trees A. Nellai Murugan

Super Fibonacci Graceful Labeling

Available Online through

Skolem Difference Mean Graphs

Further Results on Square Sum Graph

Super edge-magic labeling of graphs: deficiency and maximality

Sum divisor cordial labeling for star and ladder related graphs

OF STAR RELATED GRAPHS

NEW METHODS FOR MAGIC TOTAL LABELINGS OF GRAPHS

Pyramidal Sum Labeling In Graphs

Difference Cordial Labeling of Graphs Obtained from Double Snakes

necessita d'interrogare il cielo

Edge-N eighbor-integrity of Trees. Department of Mathematics Northeastern University Boston, MA 02115, USA

Q(a)- Balance Edge Magic of Sun family Graphs

Rainbow eulerian multidigraphs and the product of cycles

SUPERMAGIC GENERALIZED DOUBLE GRAPHS 1

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Graceful Labeling of Some Theta Related Graphs

On the super edge-magic deficiency of some families related to ladder graphs

Spectra of Digraph Transformations

ON THE ERDOS-STONE THEOREM

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

Odd Sum Labeling of Tree Related Graphs

Integral Root Labeling of Graphs 1 V.L. Stella Arputha Mary & 2 N. Nanthini

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations

Chapter 4. Matrices and Matrix Rings

CONJECTURE OF KOTZIG ON SELF-COMPLEMENTARY GRAPHS

H-E-Super magic decomposition of graphs

< < or a. * or c w u. "* \, w * r? ««m * * Z * < -4 * if # * « * W * <r? # *» */>* - 2r 2 * j j. # w O <» x <» V X * M <2 * * * *

ODD HARMONIOUS LABELING OF PLUS GRAPHS

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms

SUPER ROOT SQUARE MEAN LABELING OF SOME NEW GRAPHS

GRAPH CHOOSABILITY AND DOUBLE LIST COLORABILITY. Hamid-Reza Fanaï

Given any simple graph G = (V, E), not necessarily finite, and a ground set X, a set-indexer

On Orthogonal Double Covers of Complete Bipartite Graphs by Disjoint Unions of Graph-Paths

On Graceful Labeling of Some Bicyclic Graphs

Graceful Labeling for Complete Bipartite Graphs

Mixed cycle-e-super magic decomposition of complete bipartite graphs

Journal of Integer Sequences, Vol. 3 (2000), Article Magic Carpets

On Super Edge-magic Total Labeling of Modified Watermill Graph

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

T h e C S E T I P r o j e c t

5 Flows and cuts in digraphs

A Questionable Distance-Regular Graph

SUPER MEAN NUMBER OF A GRAPH

SUMS PROBLEM COMPETITION, 2000

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl --

Approximate results for rainbow labelings

SOME EXTENSION OF 1-NEAR MEAN CORDIAL LABELING OF GRAPHS. Sattur , TN, India.

Further results on relaxed mean labeling

Power Mean Labeling of Identification Graphs

C 7 -DECOMPOSITIONS OF THE TENSOR PRODUCT OF COMPLETE GRAPHS

Using Laplacian Eigenvalues and Eigenvectors in the Analysis of Frequency Assignment Problems

/ (qs0 + y) =! (q81 + y)... I (q~ + y),

Algorithmic Approach to Counting of Certain Types m-ary Partitions

ON ADDITIVE PARTITIONS OF SETS OF POSITIVE INTEGERS

Bulletin of the Iranian Mathematical Society

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

Graceful Labelings. Charles Michael Cavalier. Bachelor of Science Louisiana State University 2006

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

ON SUPER HERONIAN MEAN LABELING OF GRAPHS

Characterizing binary matroids with no P 9 -minor

AN INDEFINITE-QUADRATIC-PROGRAMMING MODEL FORA CONTINUOUS-PRODUCTION PROBLEM

Chapter 30 Design and Analysis of

Parts Manual. EPIC II Critical Care Bed REF 2031

Oi ir\ o CM CM ! * - CM T. c *" H - VO - a CM - t - T - j. Vv VO r t- CO on *- t- «- - ** <* - CM CM CM b- f - on on. on CM CVJ t - o.

Week 15-16: Combinatorial Design

The Exquisite Integer Additive Set-Labeling of Graphs

Answers Investigation 3

Labeling, Covering and Decomposing of Graphs Smarandache s Notion in Graph Theory

DISTANCE LABELINGS: A GENERALIZATION OF LANGFORD SEQUENCES. 1. Introduction

Minimal Decompositions of Hypergraphs into Mutually Isomorphic Subhypergraphs

C-Perfect K-Uniform Hypergraphs

Lucky Edge Labeling of P n, C n and Corona of P n, C n

Antimagic Properties of Graphs with Large Maximum Degree

1981] 209 Let A have property P 2 then [7(n) is the number of primes not exceeding r.] (1) Tr(n) + c l n 2/3 (log n) -2 < max k < ir(n) + c 2 n 2/3 (l

P a g e 5 1 of R e p o r t P B 4 / 0 9

Connectivity of addable graph classes

On Z 3 -Magic Labeling and Cayley Digraphs

Transcription:

Chapter 3 Antimagic Gl'aphs

CHAPTER III ANTIMAGIC GRAPHS 3.1 Introduction In 1970 Kotzig and Rosa [81] defined the magic labeling of a graph G as a bijection f from VuE to {1,2,... IV u EI } such that for all edges xy, f(x) + f(y) + f(xy) is constant. In 1990 Hartsfield and Ringel [65] introduced antimagic labeling. Let G (V,E) be a (p,q) graph. Let f : E -+ {1,2,..., q} be a bijection. For each vertex v in V define f+(v) sum of the labels of the edges incident at v. If for any two distinct vertices u,v, f+(u) 1 f+ (v) then f is called an antimagic labeling. A graph is said to be antimagic if it admits an antimagic labeling. Let us investigate some antimagic graphs. 3.2 On Cycle Related Graphs First we prove In this section we give some results on cycle related graphs. Theorem 3.2.1: The crown C n 0 K 1 is antimagic for all n.. Proof: Let {v 1, v 2,...,v n ' w 1 ' w 2 '...,w n } be the vertex set of G Cn0 K1, Let {ei 11 ~ i ~ n} {vi Vi + 1 II:::; i ~ n where vn +1 v1} Label the edges of C n as follows.

f(ej) i, 1 ~ i ~ n Let us relabel the vertir.es Vj +1 by ui, 1 ~ i ~ n. Let wi be the pendant vertex adjacent with Uj, 1 ~ i ~ n, Label the edges Uj wi such that f(uj, wi) 2n - ( i - 1 ), 1 ~ i ~ n. Since each wi's are end vertices, f+ (Wj) f+ (Uj) 2n - ( i - 1 ), 1 ~ i ~ n. f( Ui, wi) + f (ej) + f(ei+1) 2n - (i - 1 ) + i + i + 1 2n + 2 + i, 1~i~n-1 f(u n, W n ) + f(e 1 ) + f(e n ) 2n - (n -1 ) + 1 + n 2n + 2 Clearly f+(u) *- f+(v) for all u, v E V(G) Hence C n 0 K 1 is antimagic for all n o.9l1ustration: C 11 0 K 1 is antimagic. W 6 6 we v 7 W g w 3 12 1 w 2 w 11 w 1 48

.9l1ustration : C 6 0 K 1 is antimagic. 10 ~,3 1 7 W 6 Remark: This result otherwise can be stated that C n 0 P1is antimagic. Then naturaly one may ask whether C n 0 Pm is antimagic. We have the following Theorem 3.2.2: C n 0 Pm is antimagic if either m nand m n +1. Proof: Case (i) Suppose m n Let v 1 v 2...,v n be the vertices of C n The set of edges are defined as e j {vjvj + l' 1 ~ i ~ n -1 and v n v1e n } Label the edges of C n by f( ej ) i, 1 ~ i ~ n Hence the edge labels are 1, 2,..., n. Next relabel the cycle vertices of C n as follows, ie., wi Vj+1' i 1,2,..., n -1 and w n v1 49

Let Pn be a path on n vertices. We can obtain C n 0 Pn by attaching Pn to each vertex of Cn' Note that C n 0 Pn is a graph with n(n +1) vertices and 2n 2 edges. Let uj j, i, j 1, 2,..., n be the path vertex adjacent with wi, i 1, 2,..., n. Label the remaining edges of C n 0 Pn as follows f (wj, u j j ) n + (2i - 2) n - (i - 2) + ( j - 1), 1 ~ j ~ n, 1 ~ i ~ n f (u jj,' U i j + 1) n + 2i n - i - ( j - 1), 1~ j ~ n -1, 1~ i ~ n Then the set of edge labels are {1, 2,..., n, n + 1,..., 2n 2 } Now f(w j, Uj 1 ) + f (wj, U j 2 ) +... + f (Wi' Uj n ) f+ (w 1 ) n [ n + (2i - 2) n - (i - 2)] + [n (n -1)] /2, n 2 (2i -1) - n (i - 2) + ( n (n - 1) ) /2 [n (n - 1)] / 2 + 2n - n 2 + i n (2n - 1) (3n - n 2 ) / 2 + i n (2n - 1), 3 + n 2 + n (n + 1)] / 2 (3n 2 + n + 6) / 2 2 ~ i ~ n-1 2 ~i~n-1. f+ (w n ) f+ (Wi) f+ (Ui1) f+ (Ujn) (n +1) + n [n + (2n-2) n - (n - 2)] + [n (n - 1)] / 2 n + n 2 (2n - 2) + 2n + (n 2 - n) /2 ( 4n 3-3n 2 + 5n ) / 2 (i + 1) + i + (3n - n 2 ) /2 + i n (2n - 1) (2 + 3n - n 2) / 2 + i ( 2 n 2 - n + 2), 2 ~ i ~ n - 1 2n + (4i - 2) n - (2i - 2), 2 + i (4n - 2), 1~ i ~ n 1~ i ~ n 2n + (4i - 2) n + (3-2i) 50

G 3;)<;;60 3 + i (4n - 2), 1:::; i :::; n f+ (Uj j) 3n + (6i - 2) n - [3i + U- 1) - 3], 1:::; i :::; n, n + (6n -3) i - ( j - 4), 1:::; i :::; n, 2:::;j:::;n-1 2:::;j:::;n-1 Clearly f+ (u) of f+ (v) V U, V E V (C n 0 Pn) :. C n 0 Pn is antimagic..9llustration : C s 0 Psis antimagic 107 108 109t~~~~ 110 111 112 113 92 93 94 95 9697 98 77 78 79 80 81 82 83 Case (ii) m n + 1 If we replace m by n + 1 in the above setup we can get C n 0 Pn+1 is antimagic. 0 51

r!/);w11aifl' Theorem 3.2.3: The double crown C n 0 ~ is antimagic for all odd n, n ~ 3. Proof: Let C n be a cycle. Let V 1 'V 2 '...,v n be the vertices of Cn' Let ~ be the complete graph on two vertices. Now attach ~ to each vertex of the cycle Cn' The newly obtained graph is denoted by C n 0 K 2. Note that C n 0 K 2 is a graph with 3n vertices and 4n edges. Let aj, b i, i 1,2,,n be the vertices adjacent to the rim vertices of Cn' Let{ejl i 1,2,,n}{VjVj+11 i1,2,...,n-1}and e n v n v 1 be the cycle edge and {(aj, bj), (Vj, aj), (Vj, bj), i 1 to n be the other edges of C n 0 K 2 Define f on the edge set of C n 0 K 2 as follows f (a 1,b 1 ) (i+1)/2 ifiisodd n+1 i {--+- if i is even 2 2 2n f (aj,bj) f (vj,aj) f(v1,a1) f (vi, bj) f(v 1,b 1 ) n + (i -1), 2n + (i -1), 3n 3n + (i -1), 4n 25 is n 2 5 i 5 n 2 5 i 5 n Now f+ (Vj) (i +1) I 2 + (n + 2) 12+ (i - 1) 12 ie f+ (vi) f+ (V1) + 2n + (i -1) + 3n + (i -1) [6 i +11 n -3] 12. [6 i +11 n - 3] /2, 2 5 i 5 n f (en) + f (e1) + f(v 1 ' a 1 ) + f(v 1 ' b 1 ) (n +1) /2 + (1 + 1) I 2 + 3n + 4n 52

CR~3 r!!jgw'wfu/ ~ (15n + 3) /2 f+ (aj) f(vj, aj) +f(aj, bj) f+ (a 1 ) 5n, f+ (b 1 ) 6n 2n + (i - 1) + n + (i - 1) 3n + 2i - 2, 2 ~ i ~n f+ (b j) f (aj, bj) + f(vj, b j ) 4n + 2i - 2, 2 ~ i ~ n. Clearly f+ (u) 1:- f+ (v) Vu, V E V (C n 0 K 2 ). Hence C n 0 K 2 is antimagic for all odd n. 0..9Ilustration: C 11 0 K 2 is antimagic. by bg 6----411 22 53

Construction 2.1: Let C 4 be a cycle on 4 vertices V 1 'V 2 'V 3,V4. Attach mi, i 1, 2, 3, 4 pendant vertices with Vi, such that m 1 $; m 2 $; m 3 $; m4 Then the resulting graph is denoted!:)y G. Clearly G has m 1 + m 2 + m 3 + Theorem 3.2.4: The Graph G as per the above construction is antimagic. Proof: Let vl' v2' V3' V4 be the vertices of C4 Let v1 l' V1 2' ' V1m 1 be the vertices attached with v1 V 2 l' V 2 2' ' V2 m2 be the vertices attached with v 2 V 3 l' V 3 2' ' V 3m3 be the vertices attached with v 3 v4 l' V4 2'..., V4 m. be the vertices attached with v4 Label the edges of G as follows f (vi, Vi +1) i, 1$;i$; 3,. f (v4'v 1 ) 4 f (V 1,V 1 j) 4 + j, 1 ~ j $; m 1 f (V 2,V 2 j) 4 + m 1 +j, 1 $; j $; m 2 f (v 3,V 3 j) 4 + m 1 + m 2 + j, 1 $;j $; m 3 f (V4,V 4 j) 4 + m 1 + m 2 + m 3 + j, 1 $; j $; m 4 The resulting edge labels are { 1, 2,..., 4 + m 1 + m 2 + m 3 + m4} Now f+ (v 1 j) 4 + j, 1 $; j $; m 1 f+ (v 2 j) 4 + m 1 + j, 1 ~ j $; m 2 f+ (v 3 j) 4 + m 1 + m 2 + j, 1 $;j $; m 3 f+ (v4j) 4 + m 1 + m 2 + m 3 + j, 1 $;j $; m 3 54

f+ (v 1 ) f (V 4J V 1 ) + f (v 1, V 2 ) + 2)(V j,v i ;) (m 12 + 9m 1 + 10) /2 m, j1 m2 f+ (V 2 ) f (V 1, V 2 ) + f (V 2, V 3 ) + 2)(V 2, V 2j ) (ml + 9m 2 + 2m 1 m 2 + 6) /2 f+ (V 3 ) f (V 21 V 3 ) + f (V 3, V 4 ) + "L f (V 31 V 3j ) (m 2 3 + 9m 3 + 2m 1 m 3 + 2m 2 m 3 + 10) / 2 f+ (v4) f(v 31 V 4 ) +f(v 4, V 1 ) + "L f (V 4,V 4j ) (m 4 2 + 9m 4 + 2m 1 m 4 +2m 2 m 4 + 2m 3 m 4 +14) /2 Clearly f+ (u) -:j:: f+ (v) \fu,v E V (G). Hence G is antimagic. j1 m3 j1 m. j1 Sllustration: C 4 with m 1 5, m 2 6, m 3 7, m 4 8. 55

Next we consider the graph < Cn,t > consisting of t copies of C n sharing a vertex in common. Then we!lave the following theorem. Theorem 3. 2.5: < C n, t> is antimagic V t ~ 1 and V n ~ 3 Proof: <Cn, t > has tn - (t - 1) vertices and (tn) edges. Let vi j, i 1,2,...,n, j 1,2,...t be the vertices of < Cn, t >. Let w V1j 1 ~ j ~ t be the common vertex. Let {ejj, 11 ~j~t, 1 ~i~n} {Vjjvj+111 ~j~t, 1~i~n-1} and en j vn j w Define fan E «C n, t» as follows f( ej j) f( en j) Now f+ (w) i + U- 1) n, n J, f(eij) +f(enj), 1~i~n-1, 1~j~t. j1,2,...,t. I I 2)(e jj ) +2)(e nj ) j1 j1 I I L[1+(j-1)n]+L(nj) nt2 + t j1 j1 f (ei-1j) + f (ejj) (i-1) + ( j-1) n + i + U-1) n 2i - 1 + 2n U-1), 2 ~ i ~ n, 1~j~t. Clearly f+ (u) "* f+ (v) V u, v in V( < Cn, t> ) Hence < C n, t > is antimagic. 56

3llustration < C a, 6 > is antimagic. 10 15 20 11 14 Theorem 3.2.6: The grid C n x C n is antimagic for all even n. Proof: C n x C n has 2n 2 edges and n 2 vertices. Let the vertices of C n x C n be as follows, a 1 1 a 1 2 a 21 a 22 a 1 n a 2 n 57

Here each row and each column are repectively adjacent and a 1 j, an j, 1 ~ i ~ n are adjacent, aj l' aj n, 1~ i ~ n are adjacent. Define the labeling f on E (G) as follows, From * it is clear that 3i -2, (3n - 2) + (2i - 1), 1 ~ i ~ n. (3n - 2) + (r - 3) (2n -1) + 2i-1, 1 ~ i ~ n, 4 ~ r~ n.. * f (an n - l' an n ) 3n - 2 + (n - 3) (2n - 1) + (2n - 1) To label the remaining edges Set K3n - 2 + (n - 2) (2n - 1) 3n - 2 + (n - 2) (2n - 1) (i i) f(aj l' aj+11) 3i -1, 1~i~n-1 f (aj 2, aj +1 2) I f (aj 3 ' a i + 1 3) I 3i, (3n - 3) + 3 + (i - 1) 2, 1~i~n-1 1~i~n-1 f (aj r ' aj + 1r ), (3n - 3) + (r - 3) (2n -4) + (r - 2)3+(i -1) 2, 1~ i ~ n - 1, 4 ~ r ~ n. K+ i, (iv) f(ai1,ajn) K + n + [n- (i -1)], 1 ~ i ~ n. The set of edge labels are {1,2,...,2n 2 } 2 (K + n + 2) 58

Cff--.~3 ~~~wpf~ f+ (a 1 2) 3n + K + 5 f+ (a 1 j) K + ( 6 U- 2 ) + 5) n - (2j - 6), 3~ j ~ n - 1. Also f+ (aj 1) 2n + K + 8 (i - 1) +2, 2 ~ i ~ n-1 Also f+ (an j) (6 U- 1) + 5) n + K - (2j + 2), 2~ j ~ n-1 Thus f+ (a 1 n ) 4n 2 + 2k - 5n + 5 f+ (a 2 n ) K + 6n 2-10n + 11) f+ (a 3 n) K + 6n 2-10n + 16 f+ (a 4 n) K + 6n 2-10n + 21 Hence f+ (aj n) K + 6n 2-10n + 5i +1, 2 ~i~n-1 Also f+ (aj 2) 3n + 11 (i - 1) + 3, 2 ~i~n-1 Similarly f+ (aj 3) 14n + 8 (i - 1) -5, 2 ~i~n-1 f+ (aj 4) 22n + 8 (i-1) - 9, 2 ~i~n-1 f+ (aj 5) 30n + 8 (i-1) -13, 2 ~i~n-1 f+ (aj 6) 38n + 8 (i-1) -17, 2 ~i~n-1 f+ (aj 7) 46n + 8 (i-1) -21, 2 ~ i ~ n -1 In general f+ (aij) (8j -10) n + 8 (i -1) - (4U -1)-3), 2~i~n-1, 3~j~n-1. Thus f+ (u) 1:- f+ (v) V U,V E V(Cn x Cn ) :. C n x C n is antimagic 0 59

Sllustration: Cs X C s is antimagic. 113./ 128 ------------------ --... 53 3_--- 24 ~9 127 ( ~ ~~-t 23 I- 38 I 5 "- j ~_6~j 83 '- I ~-- ~---'- 4 25 40 55 70 85 100 ~-- - 26 41 e- 56 171 _- I- 1--- - 86 ---- 126 ---I-- I-- _._.-- I... 7 27 42 57 72 87 102 8 9 28 r!3 ~8 88 ~-- -- 1--- - - 1-- -- 125 - -.---- 29 --"'-. '- 10 44 59 74 89 104 30 ~5 60 I- 75 90 I-- 1--- - - -- - 124 --- - - 11 1~_...- 31 - '- 13 46 61 76 91 106 f-- -- I-- -123 l- I- ---I- -- - ---. 14 114 15 115 U 116 47...--HI 62 118 77 119 92 120 - -- 16 33 48 63 78 93 108 \17 _ 18..-- -.--- 1--- - 1---_ I-...-- 34 122 49 64 ~-- 94 ~ /.-- 19 35 50 65 80 95 110 20.-- -- \ ~--\ 3L_-\-, L- 1 ~L_-\ 121 r!1 ~ 96 ~ 22 37 52 67 82 97 112 99 101 103 105 107 109 111 3.3. On Path Related Graphs related graphs. In this section we study the role of antimagic labeling on path Theorem 3. 3.1: The graph G Pn + K t is antimagic. Proof: Let v 1 ' v 2,..., v n be the n vertices of P n. Let w 1 ' w 2,.,Wt be the t isolated vertices of K t Join v 1 ' v 2,...,v n to each wi, 1~ i ~ t. The newly obtained graph is G Pn + ~. Clearly G has (n + t) vertices and (n - 1 + t n) edges. 60

Define f on E (G) by f (Vj, Vj+1) f (v w) J, I j, 1 ~ j ~ n - 1 i n + U- 1), 1 ~ j ~ n, 1 ~ i ~ t. Now I f (V1,V 2 ) + ~)(V1Wi) i1 [nt 2 + nt + 2] / 2 [n t 2 + 3nt + 2n - 2t - 2] / 2 t f(vj_1,vj) +f(vj,vj + 1) + 'Lf(vj,w i ) i1 I (j -1 ) + j + 'L(in + j -1) i2 [nt 2 + (n - 2)t + 2 + 2j (t + 2)] / 2, 2 ~ j ~ n, n 'Lf(vj,w j ) j1 n 'L(in+j-1) j1 (n 2 (2i + 1) - n) /2, 1~ i ~ t. Clearly f+ (u) I; f+ (v) V U, V E V (G). Hence G is antimagic. 0 $llustration: P3 + K s is antimagic. Then immediately we get the following corollary. 61

Corollary 3.3.1: Fans are antimagic. Proof: By theorem 3.1, Pn + K t is antimagic. When t 1, P n + K 1 P n + K 1 is antimagic. o Construction 3. 3.1: Let F n be a fan. Take m isomorphic copies of F n Let w be an isolated vertex. Then the one point union of the centre vertex of each F i with w. is denoted as F~m). Note that F~m) has 2mn edges and m (n +1) + 1 vertices Theorem 3.3.3: The graph F~m) is antimagic. Proof: Let V [F~m)] {Uj} U {Vji} U {w}, 1 $ j $ m, 1 $ i $ n. Label the edges of F~m) f (Vj, Vj j) f ( Vj i' Vj i +1 ) f (Vj, w) as follows. 2n (j - 1) - ( j - 1) + i, 1 $ i $ n, 1$ j $ m. (2j-1)n-(j-1)+i, 1 $i$n-1,1 $j$m. 2mn - (j - 1), 1 $ j $ m. Now f+ (w) n Lf(Vj,w) j1 [m 2 (4n - 1) + m]./2 f (Vj, Vj 1 ) + f (Vj 1,' Vj 2 ) 2n (j - 1) - (j - 1) + 1 + (2j - 1) n - (j-1) + 1 4-3n + (4n - 2) j, 1 $ j $ m f (Vj, Vj n) + f (Vj n -1,Vj n) 1-n+j(4n-2), 1 $j$m t f( V j ' vjj +f( w, Vj) j 1 (j -1) (2n2 - n + 1) + 2mn +(1/2) [n (n + 1)], 1 $j $ m 62

f (Vj _ 1,Vj j) + f (Vj j. Vj j + 1 ) + f (Vj, Vj j ) (6n - 3) j - 4n + 2 + 3i, 1 ~ j ~ m, Clearly f+ (u) 7:- f+ (v) \j U, v in V (F~m»). 2 ~ i ~ n-1. Hence F~m) is antimagic. o 3Ilustration: F~5) is antimagic. V45 V 21 v 1 v 44 40 v22 v 43 v 42 v 4 W 39 v23 37 v 2 38 v 3 v 24 v 41 Theorem 3 3.4: Pn x C 3 is antimagic for even n. Proof: The graph G Pn x C 3 has 3n vertices and 6n - 3 edges. Let the vertices of G be { aj j, 11 ~ i ~ 3, 1 ~ j ~ n}. Let the edges of G be {aj j aj j+1 I 1 ~ i ~ 3, 1 ~ j ~ n - 1} u 63

{ a1 j a2 j I 1:::; i :::; n} u {a 1 j a 3 j I 1:::; i :::; n} u {a 2 j a 3 j I 1:::; i :::; n}. Suppose n. 2r. Define fan E (G) as follows. f (a12i-l' a12i) 6i -5, 1 :::; i :::; r f(a12j a12j+1) 6i, 1:::;i :::; r - 1, f(a2 2i - l'a2 2i ) 6i -4, 1 :::; i :::; r f (a2 2i, a2 2i + 1) 6i -1, 1 :::; i :::; r - 1 f (a3 2i - 1,a3 2i) 6i -3, 1 :::; i :::; r f (a3 2i, a3 2i + 1) 6i -2, 1 :::; i :::; r - 1 f (a1 2i a. ) 3 (n - 1) + i, 1 :::; i :::; r - l' 321-1 3 (2r - 1) + i, 1:::;i :::; r f (a12i,a3 2i ) 3 (2r - 1) + r + i, 1 :::; i :::; r f (a1j. a2 i ) (4n - 2) + 2(i - 1), 1 :::; i... n f (a2j, a3i) (4n - 1) + 2 (i - 1), 1 :::; i :::; n. Clearly the set of edge values are {1, 2,..., 6n - 3}. 1 + (4n - 2) + 3(n - 1) + 1 7n - 3 (4n - 2) + (4n - 1) + 6-4 8n-1 (4n-1)+(6-3)+3(n-1)+1 7n 64

f (a 1 n - 1 ) + f (a 1 n, a 2 n) + f ( a 1 n, a 3 n) f (a 1 2r _ 1 a 1 2r )+(4n-2) + 2(n-2)+3(2r - 1) + 2r,, 14r + 6n -12 26 r-12 4n - 2 + 2 (n - 1) + 4n - 1 + 2 (n - 1) + 6r - 4 12n + 6r - 11 30 r - 11 [3 (2r - 1) + r + r] + [(4n - 1) + 2 (n -1 )]+ 6r - 3 (6r - 3 + 2r) + 6n - 3 + 6r - 3 14r + 6n - 9 26 r - 9 + f(a 1 2i' a 32 i) 6i - 5 + 6i + 4n - 2 + 2 (i - 1) + 3 (2r - 1) +r + i 17i + 4n + 7r -12 15r + 17i -12, 1 ~ i ~ r - 1 f (a 1 2i' a 1 2i + 1) + f (a1 2i + l' a1 2i + 2 ) + f (a 1 2i + l' a 22 i + 1 ) + f (a1 2i+1' a32i+1) [6i + 6 (i + 1) - 5] + 4n - 2 + 2 (2i + 1-1) + 3 (n - 1) + (i +1) 17i + 7n 14r+17i, 1~i~ r-1 f (a 3 2i _ l' a 3 2i ) + f (a3 2i' a3 2i + 1) + f (a 22 i. a 32 i) + f (a1 2i> a3 2i ) 65

6i-3 + 6i-2 + 4n -1 + 2(2i -1) + 3(2n-1) + r + i 15r + 17i -11 f (a 3 2i, a 3 2i+1) + f (a 3 2i+1' a 3 2i+2) + f (a 2 2i+1' a3 2i+1) + f (a 1 2i+1' a3 2i+1) [6i - 2 + 6 (i + 1) - 3] + 4n - 1 + 2 (2i + 1-1) + 3 (2r - 1) + i + 1 ie.. 12i + 4-3 + 4n - 1 + 4i + 6r - 3 + i +1 17i-2+4n+6r 14r+17i-2. 1~i~ r-1 f (a 2 2i _ 1. a 2 2i ) + f (a 2 2i. a 2 2i + 1) + f (a 1 2i. a 2 2i) + f (a 2 2i. a 32 i) 6i - 4 + 6i - 1 + 4n - 2 + 2 (2i - 1) + 4n - 1 + 2 (2i - 1) 12i - 5 + 4n - 2 + 4i - 2 + 4n - 1 + 4i 2 20i + 8n -12 16r + 20i -12, 1 ~ i ~ r - 1 f (a 2 i> a 2 2i + 1) + f (a 2 2i + l' a3 2i + 2) + f (a 1 2i + 1. a 2 2i + 1) + f (a2 2i + 1. a3 2i +1) 6i -1 + 6 (i +1) - 4 + 4n - 2 + 2 (2i +1-1) + (4n -1) + 2 (2i + 1-1) 12i + 1 + 4n - 2 + 4i + 4n - 1 + 4i 20i + 8n - 2 16r + 20i - 2. 1 ~ i ~ r - 1 Clearly f+ (u) :f- f+ (v) V U V E V (G). Hence G is antimagic. 0 66

.9l1ustration: P12 X C 3 is antimagic 45 39 32 66 44 29 38 26 62 43 23 37 20 58 42 36 54 12 41 7 35 8 50 6 40 5 34 2 117 Definition 3.3.1: Triangular snake is a connected graph in which all blocks are triangles and the block-cut point graph is a path. If it has n blocks then it is said to be of length n. 67

Theorem 3.3.5: Triangular snakes are antimagic. Proof: Let R n be a triangular snake with length n. Let V(R n ) {aj I0 ~ i ~ n} u {bj1' 1 ~ i ~ n} E(R n ) {ajai+1' 10 ~i~n-1} u {aj bj + 11 1 0 ~i~n-1} u {aj b i1 1~ i ~ n}. Define f on E (R n ) as follows, f(aj,ai+1) i+1, 0 ~i~n-1 f(aj,b i + 11 ) (n+1)+2i, 0 ~i~n-1 f(aj,b j1 ) n+2+2(i-1), 1~i~n. With the above labeling the set of edge values are {1.2,...,3n}. Now f+ (a o ) f (a o b 11 ) + (a o a1) (n+1)+1 n + 2 f (a n -1. an) + f (an. bn1 ) (n -1) + n + 2 + 2 (n - 1) 4n f(aj, aj1) +f(aj, aj + 1) +f(ai1' bi1 ) +f(aj, bj + 11) (i-1 +1)+(i+1)+(n+2)+2(i-1 )+n+1 +2i 2n + 6i +2, 1 ~ i ~ n - 1 f(aj, b i1 ) +f(aj_1' bi1 ) n + 2 + 2 (i-1) n + 1 + 2 (i - 1) 2n - 1 + 4i, 1 ~ i ~ n. Clearly f+ (u) ~ f+ (v) V U,V E V (R n ). Hence Rn is antimagic. 0 311ustration: R s is antimagic. b b 21 b31 b 41 bs1 11 6 7 8 68

Theorem 3.3.6: Quadrilateral snakes are antimagic. Proof: Let Q n stand for the quadrilateral snake whose length is n. {aj I 0 :s; i :s; n} u {bj l' b j 2 I 1:s; i :s; n } { aj,aj+1 I 0 :s; i :s; n-1 } u {bj l' bj 2 I 1 :s; i :s; n } u { aj, bj + 11 I 0 :s; i :s; n-1 } u {ai, bj 2I 1:s; i :s; n } Clearly Q n has (3n + 1) vertices and 4n edges. Label the 'edges of Q n as follows, f(aj,aj+1) i +1, o :s;i:s;n-1 f (b j l' b j2) (n + 2) + (i -1)3, f(aj,b i + 11 ) (n + 1) + 3i, f (aj, bj 2) (n +3) + (i -1)3, o :s;i:s;n-1 1 :s; i :s; n. Then the set of edge labels are {1,2,3,...,4n}. Now f+ (aj) f (aj, aj + 1) + f (aj _ l' aj) + f (ai, bj + 1,1) + f (aj, b j2) (i +1) + (n + 1) + 3i + (n + 3) + (i - 1)3 + (i -1) +1 2n + 8i + 2, f (a o, a 1 ) + f (a o, b11 ) 1 + (n + 1) n + 2 f (an _ 1 ' an) + f (an, bn2) (n - 1 +1) + (n + 3) + (n -1) 3 1 :s; i :s; n - 1. n + n + 3 + 3n - 3 5n f (aj _ l' b i1 ) + f (b j1, bj2) (n + 1) + 3 (i - 1) + (n + 2) + 3 (i - 1) 2n + 3 + 6i - 6 2n + 6i - 3, 1:s; i :s; n 69

f(aj, b i2 )+f(b i1, bj2) n + 3 + (i - 1) 3 + (n + 2) + (i - 1) 3 2n + 5 + 6i - 6 (2n - 1) + 6i 1 ~ i ~ n Then f+ (u) I: f+ (v) V U, V EV (Q n ). Hence Q n is antimagic Vn. 0.9Ilustration: Q 6 is antimagic. b 11 8 b 12 b21 11 ~2 b 31 14 b b! 32 \/ \} \f 41 S/::' 23\_ 17;;:" 20 a o 1 a 1 2 a 3 a 3 4 a 4 5 a 6 96 2 5 Theorem 3. 3.7: K 4 snakes are antimagi~. Proof: Let R n stand for the K 4 snake whose length is n. R n has 6n edges and 3n + 1 vertices. {aj I 0 ~ i ~ n} u {bi1, bi2, I 1 ~ i ~ n }. { aj, ai+1 I0 ~ i ~ n -1} u {bj1, bj2 I 1 ~ i ~ n } u { aj, b i + 1 1I0 ~ i ~ n -1} u {aj, bi2 11 ~ i ~ n } u { aj, bj+ 1 2 I0 ~ i ~ n - 1} u {ai, bj, 111 ~ i ~ n }. Label the edges of R n as follows, f(aj,ai1) 6i+1, f (bj l' bj 2) 6i -2, f(aj, bj + 11) 6i + 2, o ~i~n-1 o sisn-1 f (aj, bj 2) 6i, 70

r.ql~... ~/I~ f(aj,b i + 12 ) 6i+5, 0 ~i~n-1 f(aj,bj1 ) 6i-3, 1~i~n. The set of edge values are {1,2,...,6n}. f+ (aj) f (aj, aj +1) + f (aj, bj +11) + f (aj, bj 2) + f (ai, bj +1 2 ) + f (ai, bj 1) + f (aj -1' aj) 6i +1 + 6i + 2 + 6i + 6i + 5 + 6i -3 + 6 (i - 1) + 1 36i, 1 ~ i ~ n - 1 f+ (a o ) f (a o, a 1 ) + f (a o, b 1 2) + f (ao, b1 1) 1+5+2 8 f+ (b j 2) f (b j l' bj 2) + f (aj, b i 2) + f (aj _ l' bj 2) 6i - 2 + 6i + 6 (i - 1) + 5 18 i - 3, 1 ~ i ~ n f+(b i1 ) f(bj1,bj2)+f(aj,bj1)+f(aj_1,bj1) 6i - 2 + 6i - 3 + 6 (i -1) + 2 18 i-9, 1~i~n f+ (an) f (an _1' an) +f( an, bn2 ) +f(an. bn 1) 6 (n-1) + 1 + 6n + 6n-3 18n-8 Hence f+ (u) ::j:. f+ (v) 'tj U,V E V (R n ). Thus Rn is antimagic. 0..9llustration: R 4 is antimagic. 71

Theorem 3.3.8: nk 2 is not antimagic. Proof: nk 2 has n edges and 2n vertices. If we label the edges as 1,2,...,n, then vertices incident with each edge has the same sum. Hence it is not antimagic. o 3.4. On Star Related Graphs In this section we give some results related to antimagic labeling on stars and the graphs which contain stars. Theorem 3.4.1: The graph G K 1 n + K t is antimagic., be the vertices of the star K 1 nand w 1 ', Define fan E (G) by f (va' Vj) j, 1 ~j ~n f (va' wk) (n +1) k, 1 ~k ~t f (Vj, wk) k (n +1) +j, 1 ~j ~ n, 1 ~k ~t. Now f+ (va) L f( v0' v j) +L f( v0' Wk ) n j1 k1 (n+1) (t2 + t + n) /2 f+ (Vj) f (va' Vj) +L f( v!' w k ) k1 t t [(n + 1) t 2 + t (n + 2j + 1) + 2j] /2 For 1 ~k ~ t, f+ (wk) f(v o, wk) +if(vi'w k ) 11 (n+1) [2k (k + 1) + n] /2 72

Clearly f+ (u) 7:- Hence G is antimagic. f+ (v) V u,v in V (G). o $llustration: K 1 5 +K 2 is antimagic., Theorem 3. 4.2: Book graph B n is antimagic for all n. the common vertices of Bn B n has 2 (n + 1) vertices and 3n + 1 edges. Label the edges of B n as follows, f (Xc,Yo) 1, f (aj, bj) 3i, 1 ~i ~ n f (x o, aj) 3i-1 I 1 ~i ~ n f (Yo, bj) 3i + 1 I 1 ~i ~ n. Then the set of edge labels are {1, 2,...,3n+1} 73

0:~3 ~.!/.,/UlfjM;/ wp/,v Now f+ (Xc) m :L f(x O,a 1 ) + f (Xc, Yo) jl 1 + [3 n (n + 1)] /2 - n [2 + 3n 2 + 3n - 2n] / 2 [3n 2 + n + 2] / 2 f+ (aj) f (ai, b j ) + f (Xo, aj) 3i + 3i-1 6i -1, 1 ~i ~ n f+ (b i ) f (ai. b j) + f (Yo, bj) 3i + 3i +1 6i + 1, 1 ~i ~ n. f+ (Yo) f (xo, Yo) +:L f(yo,b 1 ) il m 1 + n + [3 n (n +1)] /2 [2 + 2n + 3n 2 + 3n] / 2 [3n 2 + 5n + 2] / 2 Clearly f+ (u) t:- f+ (v) \;j u, V E V (B n ) Hence B n is antimagic. 0..9l1ustration: B 5 is antimagic. 1 2 a1 5 a2 ---::::: 14 8 a3 11 Cl4... as 3 6 9 12 15 4 b1 7 ~ b3 ~ 10 13 b 4 16 bs 74

Theorem 3.4.3: A book B n with n-pentegonal pages is antimagic Proof: Let (Xc, bj, ai, Cj, Yo) be the ith page of B n, 1 :::; i :::; n. B n with n-pentegonal pages has 4n + 1 edges and 3n + 2 vertices. Define f on E (B n ) as follows, f (xo. Yo) 4n + 1 f (xo. bj) 4i - 3, 1:::; i :::; n f (bj, aj) 4i - 2, 1:::; i :::; n f (aj, Cj) 4i - 1, 1:::; i :::; n f (Cj, Yo) 4i, 1 :::; i :::; n. Then the set of edge labels are {1,2,... An + 1} f (x o, Yo) +i)(x o,b 1 ) n i-1 (4n 2 + 6n + 2) /2 f (x o b j ) + f (b j, aj) 4i - 3 + 4i - 2 8i - 5, 1:::; i :::; n. f (b j aj) + f (aj Cj) 4i - 2 + 4i-1 8i - 3, 1:::; i :::; n f (ai, Cj) + f (Ci' Yo) 4i - 1 + 4i 8i -1, 1 :::; i :::; n. n f (Xc, Yo) +L)(c i, Yo) i 1 i1 4n+1 + 1/2 [4n (n + 1)] [8n + 2 + 4n2 + 4n] /2 4n 2 +12n + 2] /2 Clearly f+ (u) :f. f+ (v) V U,V E V (B n ). Thus Bn is antimagic V n. 0 75

$llustration: 21 Theorem 3.4.4: Let B n be a book graph with n square pages. Let Hn be a graph obtained by subdividing the free edges of the pages exactly once. Then H n is antimagic. Proof: Let xo,yo be the common edge. Let (X o, Ii, ai, mj, bj, ni, yo) be the jth page, 1 si s n. H n contain 6n + 1 edges and 5n + 2 vertices. Label the edges of H n as follows, f (xo, Yo) 6n + 1 f (Xc, Ij) 6i -5, 1 si sn f (Ii, aj) 6i - 4, 1 si sn f (aj, mj) 6i -3, 1 si sn f (mi, bj) 6i - 2, 1 si s n f (b i, ni) 6i -1, 1 si s n f (Yo, nj) 6i, 1 si s n. 76

(ff.,~/3 The set of edge labels are {1,2,...,6n +1} n Now f+ (x o ) f (Xc, Yo) + :Lf(xo,l,) ;1 6n + 1 + 112 [6 n (n + 1)] - 5n [12n + 2 + 6n 2 + 6n - 10 n] 12 (6n 2 + 8n + 2) 12 f+ (I j) f (x o, Ij) + f (Ii, aj) 6i - 5 + 6i - 4 12i - 9, 1 ~i ~ n f+ (aj) f (Ii, aj) + f (aj, mj) 6i - 4 + 6i - 3 12i - 7, 1 ~i ~ n f+ (mj) f (aj, mj) + f (mj, bj) 6i - 3 + 6i - 2 12i - 5, 1 ~i ~n f+ (b j) f (mi, bj) + f (b j, nj) 6i - 2 + 6i - 1 12i - 3, 1 ~i ~ n f+ (nj) f (bj, nj) + f (nj, Yo) 6i -1 + 6i 12i - 1, 1 ~i ~n f+ (Yo) f (Xc, Yo) + :Lf(yo,n i ) n i1 6n + 1 + [6n (n + 1) ] 12 12n + 2 + 6n 2 + 6n/2 [6n 2 + 18n + 2] 12, 1 ~i ~ n Clearly f+ (u) :1 f+ (v) V U,V E V (H n ) Hence H n is antimagic for all n. 77 0

..9'llustration: H 4 is antimagic. Theorem 4.5: C n u K 1 m is antimagic for all m and for all odd n., Proof: Let v 1 v 2,..., v n be the vertices of C n. Assume that n is odd. Let ej {Vj vi + 1 I 1 sis n} where v n + 1 v 1. be the edges of the cycle C n Label edges of K 1 m by 1,2,...,m., Label the cycle edges by f( ej) m + i, 1 sis n. Then the set of edge labels are {1,2,..., m + n}. Then all vertex labels are distinct. The central vertex has the sum 1 + 2 +... + m m( m + 1) / 2. Each end vertex has the sum as edge labels. Also f+(u) * f+(v) \if u,v in V(C n U K 1, m ). Thus Cn U K1, m is antimagic. o 78

.JIlustration: C s u K 1 6 is antimagic. J 1 79