Sterile Neutrinos as Dark Matter. Manfred Lindner

Similar documents
kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Neutrino Masses and Conformal Electro-Weak Symmetry Breaking

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Conformal Electroweak Symmetry Breaking and Implications for Neutrinos and Dark matter

Sterile Neutrinos in Cosmology and Astrophysics

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

The Standard Model of particle physics and beyond

Dark matter and entropy dilution

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Conformal Extensions of the Standard Model

Cosmological constraints on the Sessaw Scale

The first one second of the early universe and physics beyond the Standard Model

On Minimal Models with Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Big Bang Nucleosynthesis

Sterile neutrinos, moduli, and dark matter with a kev mass.

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

How many neutrino species are there?

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Constraining minimal U(1) B L model from dark matter observations

Neutrinoless Double Beta Decay and Lepton Number Violation

Production mechanisms for kev sterile neutrino dark matter in the Early Universe

Neutrino masses respecting string constraints

Is there a new physics between electroweak and Planck scale?

The Matter-Antimatter Asymmetry and New Interactions

The Yang and Yin of Neutrinos

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Leptogenesis with Composite Neutrinos

Invisible Sterile Neutrinos

Neutrino masses, dark matter and baryon asymmetry of the universe

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Versatility of the Abelian Higgs Model

Lecture 18 - Beyond the Standard Model

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Astronomy 182: Origin and Evolution of the Universe

Dark Matter Decay and Cosmic Rays

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

New Physics below the Fermi Scale. Mikhail Shaposhnikov

Recent progress in leptogenesis

On the detection of kev scale neutrino dark matter in β decay

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Astroparticle Physics at Colliders

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

U(1) Gauge Extensions of the Standard Model

Neutrino Oscillations And Sterile Neutrinos

. Thus his equation would have to be of the form. 2 t. but must also satisfy the relativistic energy-momentum relation. H 2 φ = ( p 2 + m 2 )φ (3)

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Astroparticle Physics and the LC

MICROPHYSICS AND THE DARK UNIVERSE

Searches for Beyond SM Physics with ATLAS and CMS

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Asymmetric Sneutrino Dark Matter

Gravitino LSP as Dark Matter in the Constrained MSSM

Implications of a Heavy Z Gauge Boson

SUSY Phenomenology & Experimental searches

The Standard Model and Beyond


Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Sterile Neutrinos from the Top Down

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

Heavy Sterile Neutrinos at CEPC

Neutrinos as Probes of new Physics

Non-Abelian SU(2) H and Two-Higgs Doublets

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Supersymmetry in Cosmology

The Four Basic Ways of Creating Dark Matter Through a Portal

Neutrino Mass Models

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

SUPERSYMETRY FOR ASTROPHYSICISTS

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Sterile neutrinos, moduli, and dark matter with a kev mass.

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Supersymmetry Breaking

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Baryogenesis and Particle Antiparticle Oscillations

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Introduction to Cosmology

Testing the low scale seesaw and leptogenesis

Dark Matter Implications for SUSY

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

7 Relic particles from the early universe

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

SM predicts massless neutrinos

Non-Minimal SUSY Computation of observables and fit to exp

3.5 kev X-ray line and Supersymmetry

Thermal Dark Matter Below an MeV

Higgs field as the main character in the early Universe. Dmitry Gorbunov

Vacuum Energy and the cosmological constant puzzle

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Transcription:

Sterile Neutrinos as Dark Matter Manfred Lindner 13-20 December 2012

SM works perfectly & Higgs seems to be there - mass range was shrinking and is now rather precisely known - no signs for anything else è just the SM? - It s a well defined QFT - just like QED, QCD, à 18+1 parameters à experimental input à tests by over-constraining (S,T,U, running α s, ) à per se no hierarchy problem! ß à embedding QFT self-consistency è M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 2

Triviality and Vacuum Stability Λ(GeV) 126 GeV < m H < 174 GeV SM does not exist w/o embedding - U(1) copling, Higgs self-coupling λ ML 86 126 GeV is here! è λ(m pl )=0 - just SM??? - hierarchy problem? Holthausen, ML, Lim triviality allowed vacuum stavility ln(µ) è RGE arguments seem to work è we need some embedding Λ M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 3

The SM works perfectly but it must be extended. Many theoretical reasons for BSM physics: - Flavour problem ß à maybe insights via neutrinos - Hierarchy problem - only a problem once the SM is embedded à GUTs, - separation of two scalar scales: SM Higgs and some other scalar at Λ - Planck scale physics à new concepts, spin 2, no new scalars? è no 2 nd scalar for direct embeddings at the Planck scale? è SM boundary conditions that point to Λ Planck à vacuum stability line! Experimental facts: - SM cannot explain Baryon Asymmetry of the Universe - BUT: neutrino masses require SM extension è SM+è - leptogenesis = one of the best BAU explanations - Dark Matter - some extra particle is required which is DM - particles connected to the hierarchy problem, strong CP, - massive neutrinos require new physics ß à DM?! M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 4

WIMP Searches versus CMSSM How generic is this WIMP range? How small can the WIMP cross-section be? M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 5

WIMPs in the MSSM DM candidates in BSM models ç è hierarchy problem à SUSY: Neutralino WIMP miracle è correct abundance MSSM @ EW scale à scan 11 dimensional parameter space: Pick correct abundance à M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 6

Most favoured Dark Matter: WIMPs MSSM neutralino: Level of fine-tuning à Δ tot ß XENON100-2010 ß XENON100-2012 Grothaus, ML, Takanishsi ß future: XENON1T * becoming more tuned * non-susy WIMPS worse ß à neutalino is mixture other candidates..? surprise for negative µ M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 7

New Directions: Asymmetric Dark Matter è Why is Ω DM ~ 5 * Ω baryonic? (a factor 5 or 500?) Ω DM ç SM x hidden sector è!! suitable coupling è heavy scale which is integrated out, but connects B, L è links amount of DM to amount of matter è various realizations = DM particles & sigantures! è extra new physics! matter anti-matter! dark anti-dark! M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 8

Most minimalistic: SM + Neutrino Masses M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 9

New Physics: Neutrino Mass Terms _ SM ~mφlr = (2,1) à new fields è Simplest possibility: add 3 right handed neutrino fields ν L g N ν R x <φ> = v ν R x ν R Majorana L / è c 0 m ν c D L ( ν ) L ν R md MR ν R like quarks and charged leptons è Dirac mass terms (including NMS mixing) New ingredients: 1) Majorana mass (explicit) 2) lepton number violation 6x6 block mass matrix block diagonalization M R heavy è 3 light ν s NEW ingredients, 9 parameters è SM+ and sea-saw M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 10

The Neutrino Spectrum The standard picture: 3 heavy sterile neutrinos typ. > 10 13 GeV è leptogenesis, role in GUTs, Some mechanism which makes 1, 2, heavy states light? è light sterile neutrino(s) è tiny heavy-light mixing expected θ 2 < O(m ν /m s ) 3 light active neutrinos è this cold easily be wrong - more than 3 N R states, - M R may have special eigenvalues, è light sterile neutrinos?!

Evidences for Light Sterile Neutrinos Particle Physics:! Reactor anomaly, LSND, MiniBooNE, MINOS, Gallex è sterile ν s?! è New and better data / experiments are needed to clarify the situation! è ev scale and mixings up to a few percent! CMB: extra ev-ish neutrinos possible Hamann et al., BBN: N ν ~ 3.7 + 1 à possible Aver, Olive, Skillman, Izotov, Thuan! Astrophysics: Effects of kev-ish sterile ν s on pulsar kicks, PN star kicks, Kusenko, Segre, Mocioiu, Pascoli, Fuller et al., Biermann & Kusenko, Stasielak et al., Loewenstein et al., Dodelson, Widrow, Dolgov, Evidences point to different sterile states Most likely not all of them are true è any one of them has far reaching consequences!

Could Neutrinos be Dark Matter? Active neutrinos would be perfect Hot Dark Matter è ruled out: - destroys small scale structures in cosmological evolution - measured neutrino masses too small à maybe HDM component kev sterile neutrinos: Warm Dark Matter è workes very well: è relativistic at decoupling è non-relativistic at radiation to matter dominance transition OK for M X ~ few kev with very tiny mixing reduced small scale structure è smoother profile, less dwarf satellites è scenario where one sterile neutrino is kev-ish, the others heavy è tiny active sterile mixings O(m ν /M R ) ç è observational hints from astronomy - hints that a kev sterile particle may exist è right-handed neutrino? Note: Right-handed neutrinos exist probably anyway just make one light!

kev sterile Neutrinos as WDM

The νmsm Asaka, Blanchet, Shaposhnikov, Asaka, Shaposhnikov Particle content: Gauge fields of SU(3) c x SU(2) W x U(1) Y : γ, W ±, Z, g Higgs doublet: Φ=(1,2,1) Matter x3 generations è lepton sector more symmetric to the quark sector è Majorana masses for N è choose for one sterile ν ~kev mass è exceeds lifetime of Universe M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 15

Virtue and Problem of the νmsm νmsm: Scenario with sterile ν and tiny mixingè never enters thermal equilibrium è requires non-thermal production from other particles (avoid over-closure) è new physics before the beginning of the thermal evolution sets abundance m ν νmsm heavy sterile neutrinos typ. > 10 13 GeV è some mechanism required one light sterile neutrino ~ kev = DM light active neutrinos < ev M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 16

Alternative Scenario with Thermal Abundance An alternative scenario: Bezrukov, Hettmannsperger, ML Three right-handed neutrinos N 1, N 2, N 3 Dirac and Majorana mass terms N Charged under some (BSM) gauge group è scale M (~sterile) Specific example: LR-symmetry SU(3) c x SU(2) L x SU(2) R xu(1) B L Roles played by the sterile (~right-handed) neutrinos: M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 17

Thermal production of the correct abundance in our model: m ν our scenario heavy sterile neutrinos typ. > 10 13 GeV è some mechanism required one light sterile neutrino ~ kev = DM light active neutrinos < ev M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 18

Obtaining the correct Abundance Usual thermal WIMP case: HDM: CDM: (M>>MeV) kev sterile neutrinos: our scenarioè = thermal νmsm = adjustments è M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 19

Sterile Neutrino DM Freeze-Out & Abundance Decoupling of N 1 in early Universe: sterile neutrino DM is light à freezout while relativistic à calculation like for active neutrinos + suppression of annihilation x-section by M Freeze-out temperature: Abundance of N 1 today: Required entropy generation factor:

Entropy Generation by out-of Equilibrium Decay Heavy particle (here: N 3 ) dropping out of thermal equilibrium while relativistic T f > M 2 : è bounds gauge scale from below è sufficiently long lived è become non-relativistic è dominates expansion of Universe during its decay è entropy generation factor è è fixes decay width Γ 2 M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 21

Allowed Parameter Range M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 22

Observing kev-ish Neutrino DM LHC - sterile neutrino DM is not observable - WIMP-like particles still possible but not DM direct searches - sterile ν DM extremely difficult; maybe in β-decay (MARE) astrophysics/cosmology è at some level: kev X-rays è sterile neutrino _ DM is decaying into active neutrinos - decay N 1 à ννν, N 1 à ννν - not very constraining since τ >> τ Universe

- radiative decays N 1 à νγ è photon line E γ =m s /2 - so far: observational limit on active-sterile mixing angle - mixing tiny, but naturally expected to be tiny: O(scale ratio)

Explaining kev-ish Sterile Neutrinos Possible scenario: See-saw + a reason why 1 sterile ν is light m ν heavy sterile neutrinos typ. > 10 13 GeV?! è extra dimensional physics è split see-saw Kusenko, Takahashi, Yanagida, è flavour symmetries explaining active neutrino masses + charged leptons + quarks à consequences for heavy mass matrix à L e -L µ -L τ DMß à flavour problem ML, Merle, Niro ; Merle, Niro, Barry, Rodejohann, Zhang one light sterile neutrino ~ kev = DM light active neutrinos < ev M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 25

Light Sterile Neutrinos from L e -L µ -L τ Flavour symmetries have been studied to explain apparent regularities of masses and mixing: A4, S3, D5, è implications for sterile sector? è could the same symmetries explain a kev-ish sterile ν? Model with L e -L µ -L τ symmetry: by Lavoura & Grimus è extended: ML, Merle, Niro SM + ν ir + softly broken U(1) ß à type II see-saw è +Higgs triplet M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 26

Mass matrix for right-handed neutrinos: Dirac masses In addition: Triplet masses M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 27

Neutrino mass matrix: det(m ij ) =0 è M 1 =0 è massless sterile state + soft breaking è naturally light sterile ν è mechanism possible in models M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 28

Leptogenesis there still exist heavy sterile states m ν heavy sterile neutrinos typ. > 10 13 GeV è Leptogenesis from the decay of the remaining heavy sterile neutrinos works perfectly! Bezrukov, Kartavtsev, ML leptogenesis one light sterile neutrino ~ kev = DM light active neutrinos < ev M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 29

Conclusions A kev-ish sterile neutrino is a very well motivated and good working Warm Dark Matter candidate ç è finite ν-masses Right handed neutrinos probably exist anyway è requires only some mechanism for light sterile mass O(keV) Simplest realization: νmsm è requires non-thermal production Our scenario: Sterile ν s which are charged under some extended gauge group è abundance from thermal production Combination with Leptogenesis è DM + BAU è More general scenarios: any mechanism which naturally explains light sterile neutrinos M. Lindner, MPIK Miami 2012, Dec 13-20, 2012 30