High-Energy Cosmogenic Neutrinos

Similar documents
Secondary particles generated in propagation neutrinos gamma rays

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

Charged Cosmic Rays and Neutrinos

Implications of cosmic ray results for UHE neutrinos

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Cosmogenic neutrinos II

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

GZK Neutrinos after Fermi-LAT

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

IMPACT OF OSCILLATIONS ON UHE NEUTRINO ASTRONOMY

Absorption and production of high energy particles in the infrared background

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux

arxiv: v1 [astro-ph.he] 14 Jul 2017

arxiv: v2 [astro-ph.he] 10 Sep 2015

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

EeV Neutrinos in UHECR Surface Detector Arrays:

Cosmic Ray Astronomy. Qingling Ni

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Ultra High Energy Cosmic Rays: Observations and Analysis

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

IceCube: Ultra-high Energy Neutrinos

Mass Composition Study at the Pierre Auger Observatory

Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Multi-messenger aspects of the IceCube excess

A few grams of matter in a bright world

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Ultrahigh Energy Cosmic Rays propagation II

Ultra High Energy Cosmic Rays I

Cosmic Rays in large air-shower detectors

Ultrahigh Energy cosmic rays II

The Pierre Auger Observatory Status - First Results - Plans

Multi-Messenger Astonomy with Cen A?

Latest results and perspectives of the KASCADE-Grande EAS facility

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

Very high energy photons and neutrinos: Implications for UHECR

arxiv: v1 [astro-ph.he] 27 Dec 2018

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

OVERVIEW OF THE RESULTS

Ultra- high energy cosmic rays

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

Investigation on mass composition of UHE cosmic rays using CRPropa 2.0

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

On the measurement of the proton-air cross section using air shower data

Cosmic Rays in large air-shower detectors

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Air Shower Measurements from PeV to EeV

The Secondary Universe

High-Energy Neutrinos from Gamma-Ray Burst Fireballs

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

What the IceCube UHE ν results tell about the origin of UHE Cosmic Rays

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

Cosmic-ray energy spectrum around the knee

UHECRs sources and the Auger data

Particle Physics Beyond Laboratory Energies

IceCube neutrinos and the origin of cosmic-rays. E. Waxman Weizmann Institute of Science

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

Probing New Physics with Astrophysical Neutrinos

Ultra-High Energy Cosmic Rays (III)

On the GCR/EGCR transition and UHECR origin

The Pierre Auger Observatory

Dr. John Kelley Radboud Universiteit, Nijmegen

UHECR: Acceleration and Propagation

Recent Results from the KASCADE-Grande Data Analysis

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

neutrino astronomy francis halzen university of wisconsin

Ultra-high energy astrophysical cosmic rays and neutrinos: a half-century mystery. Mauricio Bustamante

Measurement of air shower maxima and p-air cross section with the Telescope Array

UHE NEUTRINOS AND THE GLASHOW RESONANCE

Lessons from Neutrinos in the IceCube Deep Core Array

Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above ev and Composition Implications

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

High Energy Emission. Brenda Dingus, LANL HAWC

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

Dr. Charles D. Dermer Naval Research Lab, Code 7653 Washington, DC USA

Cosmic ray indirect detection. Valerio Vagelli I.N.F.N. Perugia, Università degli Studi di Perugia Corso di Fisica dei Raggi Cosmici A.A.

Primary CR Energy Spectrum and Mass Composition by the Data of Tunka-133 Array. by the Tunka-133 Collaboration

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Ultra-High Energy AstroParticles!

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

The ExaVolt Antenna (EVA)

Neutrino Astronomy fast-forward

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

From the Knee to the toes: The challenge of cosmic-ray composition

arxiv: v1 [astro-ph.he] 28 Jan 2013

Ultra- High Energy neutrinos at the Pierre Auger Observatory

Transcription:

High-Energy Cosmogenic Neutrinos Markus Ahlers UW-Madison & WIPAC HEM 2014 Chicago, June 9 11, 2014 Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 1

Cosmogenic neutrinos cos-mo-gen-ic (adj.): produced by cosmic rays but this is true for all high-energy neutrinos... more specifically: not in the source or atmosphere, but during CR propagation most plausibly via pion production in pγ interactions, e.g. p + γ bgr n + π + π + µ + ν µ & µ + e + ν µν e & n pe ν e pγ / pp (e.g. Centaurus A) propagation Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 2

Ultra-High Energy (UHE) Cosmic Rays (CRs) sr -1 ] 1.6 m -2 s -1 F(E) [GeV 2.6 E 4 3 2 1 13 14 Grigorov JACEE MGU Tien-Shan Tibet07 Akeno CASA-MIA HEGRA Fly s Eye Kascade 15 galactic Kascade Grande IceTop-73 HiRes 1 HiRes 2 Telescope Array Auger Knee 16? 17 E [ev] 2nd Knee 18 Ankle extragalactic 19 20 [Particle Data Group 13, pdg.lbl.gov] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 3

Cosmogenic neutrinos Observation of UHE CRs and extragalactic radiation backgrounds guarantee a flux of high-energy neutrinos, in particular via resonant production in CMB. Guaranteed, but with many model uncertainties and constraints: (low cross-over) proton models + CMB (+ EBL) [Berezinsky & Zatsepin 69] [Berezinsky & Zatsepin 69; Yoshida & Teshima 93; Protheroe & Johnson 96; Engel, Seckel & Stanev 01; Fodor, Katz, Ringwald &Tu 03; Barger, Huber & Marfatia 06; Yuksel & Kistler 07; Takami, Murase, Nagataki & Sato 09, MA, Anchordoqui & Sarkar 09 ] + mixed compositions [Hooper, Taylor & Sarkar 05; Ave, Busca, Olinto, Watson & Yamamoto 05; Allard, Ave, Busca, Malkan, Olinto, Parizot, Stecker & Yamamoto 06; Anchordoqui, Goldberg, Hooper, Sarkar & Taylor 07; Kotera, Allard & Olinto ; Decerprit & Allard 11; MA & Halzen 12] + extragalactic γ-ray background limits [Berezinsky & Smirnov 75; Mannheim, Protheroe & Rachen 01; Keshet, Waxman, & Loeb 03; Berezinsky, Gazizov, Kachelriess & Ostapchenko ; MA, Anchordoqui, Gonzalez Garcia, Halzen & Sarkar ; MA & Salvado 11; Gelmini, Kalashev & Semikoz 12] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 4

GZK neutrinos from CMB Greisen-Zatsepin-Kuzmin (GZK) interactions of ultra-high energy CRs with cosmic microwave background (CMB) [Greisen 66;Zatsepin/Kuzmin 66] GZK -neutrinos at EeV energies from pion decay [Berezinsky/Zatsepin 69] three neutrinos (ν µ/ ν µ/ν e) from π + : E νπ 1 4 x Ep 1 20 Ep one neutrino from neutron decay: E νe mn mp E p 3 E p m n log E dn/de, per cm 2.s.ster log E dn/de, per cm 2.s.ster -16-17 -18-19 -20-16 -17-18 -19 W&B -20 12 14 16 18 20 22 E ν, ev FIG. 4. Fluxes of electron[engel, neutrinos Stanev (dashed& lines) Seckel 01] and antineutrinos (dotted lines) generated in propagation of protons are shown in the upper panel. The lower panel shows the Markus Ahlers (UW-Madison) High-Energy Cosmogenic fluxes Neutrinos of muon neutrinos andjune antineutrinos. 9 11, 2014 Solid lines slideshow 5 ν e ν µ tr th a a b p a a h n su sh A ti b ti o fa th o ti a o b th tr h th sp se c

Flavor Composition in general, initial flavor ratio (ν e:ν µ:ν τ ) depend on process and environment mixing between flavor and mass eigenstates ν α = j U αj ν j, flavor oscillations average out over cosmic distances remaining parameter space 50% 25% ν µ 75% 50% 25% pion decay (1:2:0) neutron decay (1:0:0) P να ν β i U αi U βi 2 75% 25% 50% 75% remaining phase space thin black line crossing (1:1:1) ν τ ν e Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 6

Extra-galactic background light (EBL) λ [µm] 3 2 1 0 2 E u(e) [erg cm -3 ] -14-15 -16 Finke et al. (20) Kneiske et al. (2004) Franceschini et al. (2008) Gilmore et al. (2008) Razzaque et al. (2009) Stecker et al. (2006) -3-2 -1 0 1 E [ev] 1 0 E I(E) [nw m -2 sr -1 ] [Finke, Razzaque & Dermer ] BL models, measurements, and constraints. See Finke et al. for details and re PeV cosmogenic neutrinos via optical-uv background: E ν 8PeV (ev/e γ) Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 7

Cosmogenic neutrinos & gamma-rays GZK interactions produce neutral and charged pions p + γ CMB n + π + /p + π 0 0.1 b BH p /E b π p/e H 0 Bethe-Heitler (BH) pair production: p + γ CMB p + e + + e BH is dominant energy loss process for UHE CR protons at 2 9 2 GeV. energy loss rate [Mpc 1 ] 2 3 EM components cascade in CMB/EBL and contribute to GeV-TeV γ-ray background 4 8 9 E [GeV] 11 12 13 [Berezinsky&Smirnov 75] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 8

Gamma-ray cascades CMB interactions (solid lines) dominate in casade: inverse Compton scattering (ICS) e ± + γ CMB e ± + γ pair production (PP) γ + γ CMB e + + e PP in IR/optical background (red dashed line) determines the edge of the spectrum. this calculation: Franceschini et al. 08 interaction length [Mpc] 5 4 3 2 1 0.1 2 3 4 2 E [GeV] Γ 1 Γ 1 PP (CMB) PP (IR/opt.) Γ 1 ICS (CMB) E/b syn (pg) 3 4 5 6 7 8 9 11 12 13 Rapid cascade interactions produce universal GeV-TeV emission (almost) independent of injection spectrum and source distribution. cascade bound for neutrinos [Berezinsky&Smirnov 75] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 9

Gamma-ray cascades CMB interactions (solid lines) dominate in casade: diffuse γ-ray background inverse Compton scattering (ICS) e ± + γ CMB e ± + γ 5 pair production (PP) γ + γ CMB e + + e PP in IR/optical background (red dashed line) determines the edge of the spectrum. this calculation: Franceschini et al. 08 E 2 J [GeV cm 2 s 1 sr 1 ] 6 7 8 Fermi-LAT (Abdo et al. ) Fermi-LAT fit: E 2.4 EGRET (Sreekumar et al. 98) EGRET fit: E 2.1 0.1 1 2 E [GeV] Rapid cascade interactions produce universal GeV-TeV emission (almost) independent of injection spectrum and source distribution. cascade bound for neutrinos [Berezinsky&Smirnov 75] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide

Cosmogenic neutrinos from CR protons E 2 J [GeV cm 2 s 1 sr 1 ] 5 6 7 8 9 E min = 17.5 ev HiRes I&II Fermi-LAT p (best-fit) ν, ν (99% C.L.) γ (99% C.L.) maximal cascade 11 0.1 1 2 3 4 5 6 7 8 9 11 12 E [GeV] [MA, Anchordoqui, Gonzalez-Garcia, Halzen & Sarkar 11] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 11

Cosmogenic neutrinos from CR protons E 2 J [GeV cm 2 s 1 sr 1 ] 5 6 7 8 9 E min = 18 ev HiRes I&II Fermi-LAT p (best-fit) ν, ν (99% C.L.) γ (99% C.L.) maximal cascade 11 0.1 1 2 3 4 5 6 7 8 9 11 12 E [GeV] [MA, Anchordoqui, Gonzalez-Garcia, Halzen & Sarkar 11] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 12

Cosmogenic neutrinos from CR protons E 2 J [GeV cm 2 s 1 sr 1 ] 5 6 7 8 9 E min = 18.5 ev HiRes I&II Fermi-LAT p (best-fit) ν, ν (99% C.L.) γ (99% C.L.) maximal cascade 11 0.1 1 2 3 4 5 6 7 8 9 11 12 E [GeV] [MA, Anchordoqui, Gonzalez-Garcia, Halzen & Sarkar 11] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 13

Cosmogenic neutrinos from CR protons E 2 J [GeV cm 2 s 1 sr 1 ] 5 6 7 8 9 E min = 19 ev HiRes I&II Fermi-LAT p (best-fit) ν, ν (99% C.L.) γ (99% C.L.) maximal cascade 11 0.1 1 2 3 4 5 6 7 8 9 11 12 E [GeV] [MA, Anchordoqui, Gonzalez-Garcia, Halzen & Sarkar 11] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 14

Cosmogenic neutrinos from CR protons IC excess (x3) IC excess (x3) [Decerpit & Allard 11] neutrino flux depend on source evolution model (strongest for FR-II ) and EBL model (highest for Stecker model) Stecker model disfavored by Fermi observations of GRBs strong evolution disfavored by Fermi diffuse background Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 15

Cosmic rays UHE CR composition 3 )] 2 50 Auger event sr -1 ] s -1 m -2 1.6 [GeV F(E) 2.6 E 2 HiRes 1 HiRes 2 Telescope Array Auger energy deposit [PeV/(g/cm 40 30 20 photon proton iron 1 18 19 E [ev] 20 200 400 600 800 00 1200 1400 1600 2 slant depth [g/cm ] [PDG 13] 27.9: Expanded view of the highest energy portion of the cosmic-ray [Kampert&Unger 12] from data of HiRes 1&2 [1], the Telescope Array [3], andfigure the Auger 9: Example of a longitudinal air shower development as measured with tory [4]. composition The HiRes stereo measurement spectrum [122] is consistent a statistical withfluorescence the HiRes basis telescopes. Data points are taken from [145] (E = (30 ± 2) EeV) nocular results. The differential cosmic-ray flux is multiplied byand E 2.6 compared. The to ten simulated [133] air showers for three di erent primary w indicates first thetwo change moments: in the plotted X data max for& a RMS(X systematic max) shift particle in the types using the hadronic interaction model Epos1.99 [36]. cale of 20%. average mass inferred, e.g. from X max : groups (see e.g. [150]) similar to what is done for surface detectors. energy Xmax data ing the ankle, one possibility is that it is the result of Xmax p a higher ln A = In the following, ln 56however, we will concentrate on the of particles overtaking a lower energy population, for example Xan extragalactic ing to dominate over the galactic flux (e.g. Ref. 0). Anotherpossibilityis max first p two moments X max Fe of the X max -distribution, hx max i and (X max ). ip structure in the region of the ankle is due to γp e + + e energy For the losses determination of the average shower maximum, experiments [8]. Thisbin the recorded events in energy and calculate the actic protons on the 2.7 K cosmic microwave radiation (CMB) re has been cited as a robust signature of both the protonic and extragalactic Markus Ahlers (UW-Madison) High-Energy Cosmogenic mean of the Neutrinos measured shower June maxima. 9 11, 2014 For this averaging slide 16 not 0

700 UHE CR composition ] 2 [g/cm ] meas X max 850 800 750 650 18 650 QGSJet01 QGSJetII SIBYLL2.1 19 EPJ Web of Conferences proton 30 700 TA. Data points are shifted to a common energy scale (text 20 for details). iron E [ev] ] 2 [g/cm σ X 70 QGSJetII Fig. 4. The hxmax meas QGSJet01 i (left) and RMS(X max ) (right) as measured by the HiRes experiment. The lines are the corresponding hxmax meas Auger 850 QGSJetII i and s X expectations for proton 70 and iron compositions. The different line SIBYLL2.1 types correspond EPOSv1.99to different Yakutskmodels. 60 ] 2 [g/cm 850 650 800 600 X meas max 550750 700 650 QGSJet01 QGSJetII SIBYLL2.1 18 proton iron 1 Fig. 3. Measured18 hx 19 18.5 19 19.5 20 max [Mass i (left) Composition and RMS(X Working max ) Group (right) Report for the 13; Auger arxiv:1306.4430] and Yakutsk experiments. The lines indicate the hx max i expectations for proton E [ev] and iron compositions using different hadronic lg(e [ev]) interaction Markus models. Ahlers (UW-Madison) Notice that the highest High-Energy energycosmogenic bin for Neutrinos Yakutsk contains only June 9 11, 3 events 2014 (Fig. slide 6). 17 60 50 40 0 19 Number of Events 3 2 19 E [ev] Fig. 2. hx max i measured by Auger and Yakutsk, together with the hxmax meas i as measured by HiRes and ] 2 [g/cm X max 800 750 700 18 19 proton iron E [ev] 2 ) [g/cm max RMS(X 50 40 30 20 0 18 19 proton iron E [ev] proton lg(e[ev]) > 18.2 HiRes (798 events) TA (279 events) Auger (5138 events) Yakutsk (412 events) iron E [ev]

UHEUHECR2012: composition International Symposium on Future Directions in UHECR Physics (a) using QGSJet-II model. (b) using SIBYLL model. Fig. 11. Comparing the [Mass average Composition composition Working (hlnai) Groupestimated Report 13; using arxiv:1306.4430] Auger, HiRes, TA and Yakutsk data. The shaded regions correspond to the systematic uncertainty ranges. To infer the average composition from hx max i, QGSJet-II and SIBYLL models have been used. inferred mass depend on hadronic interactions models large systematic uncertainties! Auger 2 results are consistent within systematic2 uncertainties with TA and Yakutsk, 0 0 but not fully Auger consistent with HiRes. Auger [arxiv:1306.4430] lna lna 17 17.5 18 18.5 19 19.5 2 17 17.5 18 18.5 19 19.5 2 0 0 HiRes HiRes Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 18 lna lna

Composition dependence of UHE CR sources E 3 J [GeV 2 cm 2 s 1 sr 1 ] 3 2 HiRes I&II (E/1.2) Auger p source Fe source E 2 J [GeV cm 2 s 1 sr 1 ] 6 7 8 9 Fermi-LAT IceCube (IC40) p source Fe source 11 9 11 E [GeV] 0.1 1 2 3 4 5 6 7 8 9 11 12 E [GeV] UHE CR emission toy-model: 0% proton: n = 5 & z max = 2 & γ = 2.3 & E max = 20.5 ev 0% iron: n = 0 & z max = 2 & γ = 2.3 & E max = 26 20.5 ev Diffuse spectra of cosmogenic γ-rays (dashed lines) and neutrinos (dotted lines) vastly different. [MA&Salvado 11] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 19

Approximate scaling law of energy densities ω ν i A 2 γ E i thq 2 i(e th) i 2 γ i } {{ } composition zmax 0 dz (1 + z)n+γ i 4 H(z) } {{ } evolution * disclaimer: source composition Q i with mass number A i and index γ i applies only to models with large rigidity cutoff E max,i A i E GZK previous examples (z max = 2 & γ = 2.3): 0% proton: n = 5 & E max = 20.5 ev ω γ 1 12 0% iron: n = 0 & E max = 26 20.5 ev ω γ 0.27 0.5 relative difference: 82. Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 20

bution of neutrino events that were detected, showing that the in neutrino angular acceptance spans a range from 5 below ne the horizon to 45 above the horizon, more than 6 steradi- ac ta A Auger Observatory, while probing a similar energy sta TABLE ARA, II: does Expected notnumbers have of asevents highnν afrom neutrino several UHE sensitivity neutrino models, comparing published values from the 2008 ANITA-II asa flight marily with predicted a UHECR events for instrument. a three-year exposure ARAforwill ARA-37. complem m other instruments by making high sensitivity obser tio themodel 0.1- & references EeV energy Nν: range, ANITA-II, matchingara, the peakth (2008 flight) 3 years pected cosmogenic neutrino fluxes. Cosmogenic neutrinos from heavy ans of solid nuclei angle. Yuksel & Kistler 07 ESS 01 strong Kotera et al. max ESS 01 baseline Ahlers et al. 11 re Baseline cosmogenic models: w ar Protheroe & Johnson 1996 [27] 0.6 59 al Engel, Seckel, Stanev 2001 [28] 0.33 47 ca Kotera,Allard, & Olinto 20 [29] 0.5 59 V. CONCLUSIONS Strong source evolution models: ac Engel, Seckel, Stanev 2001 [28] 1.0 148 Th We Kalashev havet al. described 2002 [30] the design5.8 and initial 146 perfo tin Barger, Huber, & Marfatia 2006 [32] 3.5 154 a new ultra-high energy neutrino detector at the su S Yuksel & Kistler 2007 [33] 1.7 221 fe themixed-iron-composition: 16-antenna, self-triggering ARA-testbed, which tim Kotera et al. mid fidelity Ave et prototype al. 2005 [34] for future ARA0.01 detector6.6 stations. th Kotera et al. low Stanev 2008 [35] 0.0002 1.5 operation extending well into the the extreme therma Ave et al. 07 Fe mix Kotera, Allard, & 20 [29] upper 0.08 11.3 al ANITA II (20) mentkotera, of the Allard, austral & Olintowinter 20 [29] indicates lower 0.005 that radio-freque 4.1 te IceCube 40 (2011) ference Models constrained is infrequent by Fermi cascade and has bound: only a slight impact on am Auger (2009) for our Ahlerstestbed et al. 20 [36] detector, which is0.09 closest20.7 of any fu m ARA 37 3 yrs projected Waxman-Bahcall (WB) fluxes: tu stations to the primary sources of interference at WB 1999, evolved sources [37] 1.5 76 PoleWB station. 1999, standard Other [37] than brief periods 0.5 of sporadic 27 int tin the baseline radio noise levels are dominated by the [ARA 11] mal In Table noiseii floor we give ofexpected the ambient neutrinoice, event and totals thefrom thermal a usn wide range of currently allowed cosmogenic neutrino models tim not appear to be correlated to wind velocity. We hav for ARA in three years of operation, compared to recent published strate evolution expectations the ability for models the to best maintain current and limits impulse source to date, trigger from thesensi FIG. 27: Compilation of sensitivity estimates from existing instru- ANITA-II level close flight to [3]. the It isthermal evident that noise. ARA-37We willhave extenddemons in Range of GZK neutrino predictions of various ments, published limits, compositions and a range of GZKrange neutrino models, over two alongorders sensitivity ofabove magnitude! ANITA-2 s sensitivity by factors of two orders of magnitude or more. For strong-source-evolution and impulse propagation of more than 3 km slant rang with the expected 3 year ARA sensitivity. baseline the South models, Pole ARA-37 ice without detects between significant of order loss 50 toofover signaltim c 200 Weevents haveindemonstrated three years of operation, inter-antenna enough to pulse establishtiming the pr m Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos basic order characteristics 0 ps, implying of the June energy 9 11, angular spectrum 2014 and resolutions source slide arrival 21 which Th

Nucleon cascade Observed composition is result of source composition and nucleon cascades. A+5 Backtracking conserves energy per nucleon. Bethe-Heitler (BH) loss breaks this approximation b A,BH(E) Z 2 b p,bh(e/a) A+4 Minimal cosmogenic neutrino production from fit to Auger data assuming: maximal backtracking minimal BH loss p He A minimal nucleon emissivity Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 22

Nucleon cascade Observed composition is result of source composition and nucleon cascades. A+5 Backtracking conserves energy per nucleon. Bethe-Heitler (BH) loss breaks this approximation b A,BH(E) Z 2 b p,bh(e/a) A+4 Minimal cosmogenic neutrino production from fit to Auger data assuming: maximal backtracking minimal BH loss p He A minimal nucleon emissivity Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 23

Guaranteed cosmogenic neutrinos nucleon spectrum for observed mass number A obs: J min N (E N) = A 2 obsj CR(A obse N) dependence on cosmic evolution of sources: no evolution (dotted) star-formation rate (solid) ultimate test of UHE CR proton models with ARA-37 generalization to arbitrary composition via JN min (E N) = i f i(a ie N)A 2 i J CR(A ie N) E 2 J [GeV cm 2 s 1 sr 1 ] 7 8 9 11 12 IC-86 (yr) p He N Si Fe HiRes TA Auger ARA-37 (3yr) 6 7 8 9 11 E [GeV] [MA&Halzen 12] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 24

Guaranteed cosmogenic neutrinos nucleon spectrum for observed mass number A obs: J min N (E N) = A 2 obsj CR(A obse N) dependence on cosmic evolution of sources: no evolution (dotted) star-formation rate (solid) ultimate test of UHE CR proton models with ARA-37 generalization to arbitrary composition via JN min (E N) = i f i(a ie N)A 2 i J CR(A ie N) E 2 J [GeV cm 2 s 1 sr 1 ] 7 8 9 11 12 IC-86 (yr) bestfit HSFR H0 HiRes TA Auger ARA-37 (3yr) 6 7 8 9 11 E [GeV] [MA&Halzen 12] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 25

Guaranteed cosmogenic neutrinos nucleon spectrum for observed mass number A obs: J min N (E N) = A 2 obsj CR(A obse N) dependence on cosmic evolution of sources: no evolution (dotted) star-formation rate (solid) ultimate test of UHE CR proton models with ARA-37 generalization to arbitrary composition via JN min (E N) = i f i(a ie N)A 2 i J CR(A ie N) E 2 J [GeV cm 2 s 1 sr 1 ] 7 8 9 11 12 IC-86 (yr) p@0eev: 0% % 1% HiRes TA Auger SFR evolution ARA-37 (3yr) 6 7 8 9 11 E [GeV] [MA&Halzen 12] Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 26

Summary Cosmogenic neutrinos guarantee a diffuse flux of UHE neutrinos. Present neutrino limits start to constrain optimistic (proton-dominated) model. A cosmogenic origin of the IceCube excess at TeV-PeV energies is very unlikely. Model uncertainties of predictions are large (UHE CR source composition and evolution). Future EeV neutrino observatories (ARA or ARIANNA) will be able to probe proton-dominated CR models. Markus Ahlers (UW-Madison) High-Energy Cosmogenic Neutrinos June 9 11, 2014 slide 27

Backup

Diffuse CR fluxes spatially homogeneous and isotropic distribution of sources Boltzmann equation of comoving number density (Y = n/(1 + z) 3 ): Ẏ i = E(HEY i) + E(b iy i) Γ i Y i + de j γ jiy j + L i, j H : Hubble rate b i : continuous energy loss γ ji (Γ i) : differential (total) interaction rate power-law proton emission rate: L p(0, E) (E/E 0) γ exp( E/E max) exp( E min/e) redshift evolution of source emission or distribution: L p(z, E) = L p(0, E)(1 + z) n Θ(z max z)θ(z z min)

Proton-dominance in UHE CRs? GoF based on Hires-I/II data ( E/E 25%) fixed: E max = 21 ev z min = 0 / z max = 2 priors: 2.1 γ 2.9 2 n 6 ω cas ω Fermi range of spectra: 99% C.L. increasing crossover energy from 2nd knee to ankle [MA, Anchordoqui, Gonzalez-Garcia, Halzen & Sarkar 11]

Propagation of CR nuclei 52 Ti 53 V 54 Cr 55 Mn 56 Fe 49 Ca 50 Sc 51 Ti 52 V 53 Cr 54 Mn 55 Fe fast photo-disintegration of nuclei (mass number A = N + Z) beyond the giant dipole resonance (GDR): λ GDR 4 A Mpc stable nuclei N longlived nuclei PSB-chain Z 48 Ca 49 Sc 50 Ti 51 V 52 Cr 53 Mn 54 Fe 46 K 47 Ca 48 Sc 49 Ti 50 V 51 Cr 52 Mn 53 Fe 44 Ar 45 K 46 Ca 47 Sc 48 Ti 49 V 50 Cr 51 Mn 52 Fe 43 Ar 44 K 45 Ca 46 Sc 47 Ti 48 V 49 Cr 42 Ar 43 K 44 Ca 45 Sc 46 Ti 47 V 48 Cr 40 Cl 41 Ar 42 K 43 Ca 44 Sc 45 Ti 38 S 39 Cl 40 Ar 41 K 42 Ca 43 Sc 44 Ti 37 S 38 Cl 39 Ar 40 K 41 Ca 36 S 37 Cl 38 Ar 39 K 40 Ca 35 S 36 Cl 37 Ar 38 K 32 Si 33 P 34 S 35 Cl 36 Ar strong influence of mass composition at very high energy BUT: conserves total number of nucleons with nucleon energy E/A! 31 Si 32 P 33 S 28 Mg 29 Al 30 Si 31 P 32 S 27 Mg 28 Al 29 Si 30 P 24 Ne 25 Na 26 Mg 27 Al 28 Si 24 Na 25 Mg 26 Al 22 Ne 23 Na 24 Mg 21 Ne 22 Na 18 O 19 F 20 Ne 17 O 18 F 14 C 15 N 16 O 17 F 13 C 14 N 15 O Be 11 B 12 C 13 N 14 O Neutrino production (mostly) via γ-nucleon interaction! 9 Be B 11 C 7 Li 6 Li 7 Be T 4 He D 3 He p [Puget/Stecker/Bredekamp 76;MA/Taylor ]