Research Article Application of Functionals in Creating Inequalities

Similar documents
Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Module 3: Element Properties Lecture 5: Solid Elements

Graphical rules for SU(N)

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Learning Enhancement Team

Study on the Normal and Skewed Distribution of Isometric Grouping

Two Coefficients of the Dyson Product

SVMs for regression Non-parametric/instance based classification method

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Support vector machines for regression

Interval Valued Neutrosophic Soft Topological Spaces

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Effects of polarization on the reflected wave

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

Discussion of "Win-Win concession period determination methodology" by Xueqing Zhang

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

Performance Comparison of Three-Phase Shunt Active Power Filter Algorithms

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Statistics and Probability Letters

Lecture 4: Piecewise Cubic Interpolation

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Effectiveness of Split-Plot Design over Randomized Complete Block Design in Some Experiments

ELASTIC-VISCOPLASTIC HOMOGENIZATION ANALYSIS OF PLAIN-WOVEN GFRP LAMINATES WITH MISALIGNED PLAIN FABRICS

COMPLEX NUMBER & QUADRATIC EQUATION

The Schur-Cohn Algorithm

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

Math 124B January 24, 2012

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

Lecture 7 Circuits Ch. 27

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

PHYSICS 212 MIDTERM II 19 February 2003

Presentation Problems 5

Many-to-Many Traffic Grooming in WDM Mesh Networks

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

APPENDIX A Some Linear Algebra

1 The fundamental theorems of calculus.

Inequalities of Olympiad Caliber. RSME Olympiad Committee BARCELONA TECH

On Several Inequalities Deduced Using a Power Series Approach

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Complement of an Extended Fuzzy Set

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Math1110 (Spring 2009) Prelim 3 - Solutions

4. Eccentric axial loading, cross-section core

Math 702 Midterm Exam Solutions

International Journal of Pure and Applied Sciences and Technology

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

MCA-205: Mathematics II (Discrete Mathematical Structures)

Bulletin of the. Iranian Mathematical Society

Research Article Moment Inequalities and Complete Moment Convergence

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

Solutions to exam in SF1811 Optimization, Jan 14, 2015

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

Rational Numbers as an Infinite Field

Multicommodity Distribution System Design

A Decision-making Method of Supporting Schemes for Deep Foundation Pits Based on Prospect & Evidence Theory

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

More metrics on cartesian products

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

arxiv: v1 [math.ca] 28 Jan 2013

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains

Section 8.3 Polar Form of Complex Numbers

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Improved Frame Synchronization and Frequency Offset Estimation in OFDM System and its Application to WMAN. and

NEW INTEGRAL INEQUALITIES OF THE TYPE OF SIMPSON S AND HERMITE-HADAMARD S FOR TWICE DIFFERENTIABLE QUASI-GEOMETRICALLY CONVEX MAPPINGS

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE

Fluid Flow through a Tube

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Charged Particle in a Magnetic Field

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm.

Problem Set 4 Solutions

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

A Study on Root Properties of Super Hyperbolic GKM algebra

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

FUNCTIONS OF α-slow INCREASE

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

Improvements of the Hermite-Hadamard inequality

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Transcription:

Journ of Funton Spes Voume 016, Arte ID 934804, 6 pges http://dx.do.org/10.1155/016/934804 Reserh Arte Appton of Funtons n Cretng Inequtes Ztko PvT, 1 Shnhe Wu, nd Vedrn Novose 1 1 Mehn Engneerng Futy n Svonsk Brod, Unversty of Osjek, Trg Ivne BrćMžurnć, 35000 Svonsk Brod, Crot Deprtment of Mthemts, Longyn Unversty, Longyn, Fujn 36401, Chn Correspondene shoud e ddressed to Shnhe Wu; shnhewu@gm.om Reeved 14 Juy 016; Aepted 7 Septemer 016 Adem Edtor: Cogero Vetro Copyrght 016 Ztko Pvć et. Ths s n open ess rte dstruted under the Cretve Commons Attruton Lense, whh permts unrestrted use, dstruton, nd reproduton n ny medum, provded the orgn work s propery ted. The pper des wth the fundment nequtes for onvex funtons n the ounded osed nterv. The mn nequty nudes onvex funtons nd postve ner funtons extendng nd refnng the funton form of Jensen s nequty. Ths nequty mpes the Jensen, Fejér, nd, thus, Hermte-Hdmrd nequty, s we s ther refnements. 1. Introduton In our reserh, we ppy the theory of postve ner funtons to onvex nyss. Let us rememer the nt notons reted to postve ner funtons on the spe of re funtons. Let S e nonempty set, nd et F = F(S) e suspe of the ner spe of re funtons on domn S. We ssume tht spe F ontns unt funton u defned y u(s) = 1 for every s S.SuhspeF ontnseveryreonstntκwthn the menng of κ=κund every omposte funton f(g) of funtong F nd n ffne funton f:r R.Atuy, f f(x) = κ 1 x+κ, then the omposton f (g) =κ 1 g+κ u (1) eongs to F. Let L = L(F) e the spe of ner funtons on spe F. FuntonL Ls sd to e unt (normzed) f L(u) = 1. Suh funton hs property L(κu) = κ for every re onstnt κ.ifg F s funton nd f L Ls unt funton,thenffnefuntonf:r R stsfes equty f(l(g))=l(f(g)). () Funton L L s sd to e postve (nonnegtve) f nequty L(g) 0 hods for every nonnegtve funton g F. If pr of funtons g 1,g F stsfes nequty g 1 (s) g (s) for every s S,thentfoowstht L (g 1 ) L(g ). (3) If g F s funton wth the mge n nterv [, ] (.e., u g u), then every postve unt funton L L meets nuson L(g) [, ] (.e., L(g) ). The sme s true for eh osed nterv I R. Introdung ontnuous onvex funton, we n expose the funton form of Jensen s nequty. Theorem A. Let g F efuntonwththemgenosed nterv I R,nd et L L e postve unt funton. Then eh ontnuous onvex funton f:i R suh tht f(g) F stsfes nequty f(l(g)) L(f(g)). (4) We w onsder onvex funtons n ounded osed nterv [, ] wth endponts <.Ehpontx [,]n e represented y the unque nom onvex omnton where x=α x +β x, (5) α x = x, β x = x. (6)

Journ of Funton Spes Convex funton f:[,] R s ounded y two nes. The sent ne of funton f psses through grph ponts A(, f()) nd B(, f()),ndtsequtons f se x (x) = x f () + f (). (7) Let (, ) e n nteror pont. The support nes of funton f pss through grph pont C(, f()).ehsupport ne s spefed y sope oeffent κ [f ( ), f (+)],nd ts equton s (x) =κ(x ) +f(). (8) The support-sent ne nequty (x) f(x) f se (x) (9) hods for every x [,]. In 1931, Jessen (see [1, ]) stted the funton form of Jensen s nequty for onvex funtons n nterv I R. In 1988, I. Rs nd I. Rş (see [3]) ponted out tht I must e osed otherwse t oud hppen tht L(g) I nd tht f must e ontnuous otherwse t oud hppen tht the nequty n formu (4) does not ppy. In Theorem A, we hve tken nto ount I. Rs nd I. Rş s remrks. Some generztons of the funton form of Jensen s nequty nefoundn[4]. A onse ook on funton nyss, whh ontns n essent overvew of opertor theory nd ndtes the mportne of postve ner funtons, s ertny the ook n [5].. Mn Resuts We frsty present the extenson of the nequty n formu (4) onernng nterv [, ]. Lemm 1. Let g F e funton wth the mge n [, ], nd et L L e postve unt funton. Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes doue nequty f(l(g)) L(f(g)) f se (L (g)). (10) Proof. The pont =L(g)s n nterv [, ]. Weskeththe proof n two steps dependng on the poston of. If (, ),wetkesupportne of f t. By ppyng postve funton L to the support-sent nequty n formu (9) wth x=g(s),wheres S,weget L( (g)) L (f (g)) L (f se (g)). (11) By utzng the ffnty of funtons (), the ove nequty tkes the form where the frst term nd f se v formu (L (g)) L(f (g)) f se (L (g)), (1) (L (g)) = f (L (g)). (13) If {, },wereyontheontnutyoff usng support ne t pont of open nterv (, ) tht s ose enough to. Gven ε>0,wenfnd (, ) so tht f () ε< (). (14) By omnng the ove nequty nd the nequty n formu (1) wth the support ne t,weotn f () ε< () L(f (g)) f se () =f(). (15) Lettng ε pproh zero, we reh the onuson L(f(g)) = f(). Inthsse,trvnequtyf() f() f() represents formu (10). Formu (10) n e expressed n the form whh nudes the onvex omnton of nterv endponts nd. The respetve form of Lemm 1 s s foows. Corory. Let g F e funton wth the mge n [, ], nd et L L e postve unt funton. Let =L(g) =α +β. (16) Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes doue nequty f(α +β ) L (f (g)) α f () +β f (). (17) Proof. As regrds to the st terms of formue (10) nd (17), we hve f se (L (g)) = α f se () +β f se () =α f () +β f () (18) euse of the ffnty of f se nd ts ondene wth f t endponts. In order to refne the nequty n formu (10), we w omne the sent nes of onvex funton f wth postve unt funtons. Lemm 3. Let (, ) e pont. Then eh onvex funton f:[,] R stsfes the sent nes nequty for every x [,]. mn {f se mx {f se (x),fse (x)} f(x) (x),fse (x)} (19) Proof. Cses x [,]nd x [,]shoud e onsdered. Suppose tht funton g F hs the mge n [, ] nd s not denty equ to or. Suh funton stsfes nequty g(s 1 ) g(s ) for some numer (, ) nd some pr of ponts s 1,s S.Inthtse,wenfndpr of funtons L 1,L L meetng reted nequty L 1 (g) L (g). (0)

Journ of Funton Spes 3 For exmpe, we n tke the pont evutons t s 1 nd s, tht s, the funtons defned y L 1 (q) = q(s 1 ) nd L (q) = q(s ) for every funton q F. In the mn theorem, we use funtons L 1 nd L stsfyngthenequtynformu(0). Theorem 4. Let (, ) e pont. Let g F e funton wth the mge n [, ], ndetl 1,L L e postve unt funtons suh tht L 1 (g) [, ] nd L (g) [, ]. Let L=λ 1 L 1 +λ L e onvex omnton of L 1 nd L. Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes the seres of nequtes f(l(g)) λ 1 f(l 1 (g)) + λ f(l (g)) L (f (g)) λ 1 f se f se (L (g)). (L 1 (g)) + λ f se (L (g)) (1) Proof. By ppyng the onvexty of f to onvex omnton L(g) = λ 1 L 1 (g) + λ L (g),weget f (L (g)) λ 1 f (L 1 (g)) +λ f (L (g)). () By ppyng the eft-hnd sde of formu (10) to L 1 nd L,weotn λ 1 f(l 1 (g)) + λ f(l (g)) λ 1 L 1 (f (g)) + λ L (f (g)) = L (f (g)). (3) As the rght-hnd sde of formu (19) wth x=g(s),the nequty f(g(s)) mx {f se (g (s)),fse (g (s))} (4) hods for every s S.BytngwthL 1 n the ove nequty nd usng ssumpton L 1 (g) [, ],wefnd L 1 (f (g)) L 1 (f se (g)) =fse (L 1 (g)), (5) nd smry, y tng wth L ndusngthessumpton L (g) [, ],wefnd L (f (g)) L (f se (g)) = fse (L (g)). (6) Mutpton y λ 1 nd λ ndthensummtonyed λ 1 L 1 (f (g)) + λ L (f (g)) λ 1 f se (L 1 (g)) + λ f se (L (g)). Usng mn sent f se, we reh onuson λ 1 f se (L 1 (g)) + λ f se (L (g)) λ 1 f se =f se (L (g)). (L 1 (g)) + λ f se (L (g)) (7) (8) Puttng together the nequtes n formue (), (3), (7), nd (8) nto seres, we heve the nequty n formu (1). y=f(x) L 1 (g) L(g) L (g) Fgure 1: Geometr presentton of the nequty n formu (1). The geometr presentton of the seres of nequtes n formu (1) s reted n Fgure 1. The nequty terms re represented y fve k dots ove pont L(g). To emphsze nterv endponts nd, wepresentthe foowng verson of Theorem 4. Corory 5. Let (, ) e pont. Let g F e funton wth the mge n [, ], ndetl 1,L L e postve unt funtons suh tht L 1 (g) [, ] nd L (g) [, ]. Let L=λ 1 L 1 +λ L e onvex omnton of L 1 nd L,nd et =L(g)=α +β. Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes the seres of nequtes f(α +β ) λ 1 f(l 1 (g)) + λ f(l (g)) where L (f (g)) αf () +βf() +γf() α f () +β f (), L α=λ 1 (g) 1, L β=λ (g), γ=λ 1 L 1 (g) L +λ (g). (9) (30) Proof. To ute oeffents α, β, ndγ, we nude onvex omntons L 1 (g) = α 1 +γ 1 nd L (g) = γ +β.then the fourth term of formu (1) tkes the form λ 1 f se (L 1 (g)) + λ f se (L (g)) =λ 1 α 1 f () +λ β f () +(λ 1 γ 1 +λ γ )f(). (31)

4 Journ of Funton Spes Tkng the oeffent of f() nd usng formu (6), we ute L α=λ 1 α 1 =λ 1 (g) 1. (3) Smry we determne β nd γ. Let us fnsh the seton y presentng the generzton of Theorem 4 tht uses sever sent nes. Corory 6. Let = 0 < 1 < < n 1 < n = e ponts. Let g F e funton wth the mge n [, ],ndet L L e postve unt funtons suh tht L (g) [ 1, ] for = 1,...,n.LetL= n =1 λ L e onvex omnton of funtons L. Then eh ontnuous onvex funton f:[,] R suh tht f(g) F stsfes the seres of nequtes f(l(g)) n =1 n =1 λ f(l (g)) L (f (g)) λ f se 1 (L (g)) f se (L (g)). 3. Apptons to Integr nd Dsrete Inequtes (33) We frsty utze Lemm 1 to otn very gener ntegr nequty. Corory 7. Let g : [,] R e n ntegre funton wth the mge n [, ], ndeth:[,] R e postve ntegre funton. Thenehonvexfuntonf:[,] R stsfes doue nequty f( gh dx ) f(g)hdx hdx hdx ( g) h dx f () ( ) hdx + (g )hdx ( ) hdx f (). (34) Proof. Let F ethespeofntegrefuntonsover domn S = [,]. Composton f(g) s ounded n [, ] nd ontnuous most everywhere n [, ]. Therefore f(g) s ntegre over [, ],tht s,f(g) F. The ntegrtng ner funton L defned y L(q)=L(q;h)= qh dx (35) hdx for every q F s postve nd unt. The frst term of formu (34) s equ to f(l(g)), theseondtermsequ to L(f(g)), ndthethrdtermsequtof se (L(g)). Thus, formu (34) fts nto the frme of formu (10), nd t s vd for ontnuous onvex funton f. Let us verfy tht the nequty n formu (34) ppes to onvex funton whh s not ontnuous t endponts. We oserve the poston of pont =L(g)= gh dx. (36) hdx If (, ), then we my utze ontnuous extenson f of f/(, ) to [, ] n formu (34). The frst two terms re the sme s we use f, nd the st terms stsfy nequty α f () +β f () = fse () <fse () (37) =α f () +β f (). So, formu (34) ppes to f n ths se. If {, }, then ether g(x) 0 or g(x) 0for every x [,]. We rerrnge formu (36) to e ntegr equton (g )hdx=0, (38) from whh t foows tht g(x) = for most every x [,]. Thuswehvethtf(g(x)) = f() for most every x [,], nd nequty f() f() f() represents formu (34). Respetng onsdertons, we my onude tht the nequty n formu (34) ppes to ny onvex funton f. The nequty n formu (34) s the extended verson of Jensen s nequty for the rto of ntegrs n nterv [, ], s we s the generzed form of the Fejér nd Hermte- Hdmrd nequty. Let us demonstrte the smpftons of the nequty n formu (34) retng to the dentty, unt, nd symmetr funton. Usng h(x) = 1, we get the extenson of the ss ntegr form of Jensen s nequty (see [6]) f( gdx ) f(g)dx ( g) dx ( ) f () + (g ) dx ( ) f (). (39) Usng dentty funton g(x) = x nd funton h(x), stsfyng equton h(x) = h( + x), whh represents the symmetry wth enter t mdpont ( + )/, wehvethe ss form of Fejér nequty (see [7]) f( + ) fh dx hdx f () +f(). (40)

Journ of Funton Spes 5 Nmey, s onsequene of the symmetry we hve euse xh dx = (x (+)/) hdx hdx hdx + ((+) /) hdx hdx = + (41) (x + )hdx=0. (4) Foowng formu (41), we n onude tht the Fejér nequty s vd for funton h stsfyng weker ondton xh dx/ h dx = ( + )/. Usng h(x) = 1 n Fejér s nequty n formu (40), we otn the ss form of Hermte-Hdmrd nequty (see [8, 9]) f( + ) fdx f () +f(). (43) To otn refnements of the nequty n formu (34), we use pont (, ) nd ppy Theorem 4. Corory 8. Let (, ) e pont. Let g:[,] R e n ntegre funton suh tht g(x) [, ] for x [,]nd g(x) [, ] for x [,],ndeth:[,] R e postve ntegre funton. Then eh onvex funton f:[,] R stsfes the seres of nequtes Proof. Just s n Corory 7, we use F s the spe of ntegre funtons n nterv [, ]. In order to ppy Theorem 4, we defne ntegrtng ner funtons L 1 (q) = L 1 (q; h) = qh dx hdx, L (q) = L (q; h) = qh dx hdx (45) for every q F.FuntonsL 1 nd L re postve nd unt. Sne g(x) [, ] for x [,],pontl 1 (g) fs nto [, ], ndsmrypontl (g) fs nto [, ]. Usng oeffents λ 1 = hdx hdx, λ = hdx hdx (46) nd funton onvex omnton L=λ 1 L 1 +λ L,weget L(g)=λ 1 L 1 (g) + λ L (g) = gh dx, hdx L(f(g))= f(g)hdx hdx. (47) By further utng the funton terms ordng to formu (1), we otn the ntegr terms of formu (44). f( gh dx ) hdx hdx f( gh dx hdx hdx ) + hdx f( gh dx ) f(g)hdx hdx hdx hdx ( g)hdx f () + (g )hdx f () ( ) hdx ( ) hdx +( (g )hdx + ( g)hdx )f() ( ) hdx ( ) hdx ( g) h dx f () + (g )hdx f (). ( ) hdx ( ) hdx (44) The seres of nequtes n formu (44) wth g(x) = x nd h(x) = 1 gves the refnement of the Hermte-Hdmrd nequty n formu (43) s foows: f( + ) f(+ fdx )+ f(+ ) f () + f () ( ) ( ) + 1 f () +f() f (). (48) The ove refnement hods for eh (, ). The verson of the ove refnement ws otned n [10] y usng the Jensen type nequty for onvex omntons wth the ommon enter. Tht nequty ws used to refne some mportnt mens. The nequty n formu (44) wth dentty funton g(x) = x nd symmetr funton stsfyng equton

6 Journ of Funton Spes h(x) = h(+ x)provdes the refnements of the Fejér nequty n formu (40). At the end, et us present the dsrete verson of Corory 8. Pont evutons g(x ) nd h(x ) w e shortened y g nd h,respetvey. Corory 9. Let (, ) e pont. Let g:[,] R e funton suh tht g(x) [, ] for x [,]nd g(x) [, ] for x [,],ndeth:[,] R e postve funton. Let x 1,...,x k [,]nd x k+1,...,x n [,]e ponts. Then eh onvex funton f:[,] R stsfes the seres of nequtes f( n =1 g h n =1 h ) k =1 h n =1 h f( k =1 g h k =1 h ) + n =k+1 h n =1 h k =1 ( g )h n =1 ( ) h +( k =1 (g )h n =1 ( ) h n =1 ( g )h n =1 ( ) h f( n =k+1 g h n =k+1 h ) n =1 f(g )h n =1 h f () + n =k+1 (g )h n =1 ( ) h f () + n =k+1 ( g )h n =1 ( ) h )f() f () + n =1 (g )h n =1 ( ) h f (). (49) Proof. Let F e the spe of re funtons on domn S= [, ]. We n ppy the proof of Corory 8 to summrzng ner funtons L 1 (q) = L 1 (q; h) = k =1 q h k =1 h, L (q) = L (q; h) = n =k+1 q h n =k+1 h tng to every q F, nd oeffents (50) Aknowedgments The work of the frst nd thrd uthor hs een fuy supported y Mehn Engneerng Futy n Svonsk Brod nd Crotn Sene Foundton under Projet HRZZ-5435. The work of the seond uthor hs een supported y the Ntur Sene Foundton of Fujn provne of Chn under Grnt no. 016J0103. The uthors woud ke to thnk Vemr Pvć who hs grphy prepred Fgure 1. Referenes [1] B. Jessen, Bemærknnger om konvekse Funktoner og Ugheder meem Mddeværder I, Mtemtsk Tdsskrft B, pp.17 8, 1931. [] B. Jessen, Bemærknnger om konvekse Funktoner og Ugheder meem Mddeværder II, Mtemtsk Tdsskrft B, pp. 84 95, 1931. [3] I. Rs nd I. Rş, A note on Jessen s nequty, Itnernt Semnr on Funton Equtons, Approxmton nd Convexty, Unverstte Bes-Boy, n I. Rş, pp.75 80,Romn, Cuj-Npo, 1988. [4] Z. Pvć, Generztons of the funton form of Jensen s nequty, Advnes n Inequtes nd Apptons,vo.014, rte 33, 014. [5] W. Arveson, A Short Course on Spetr Theory, Sprnger, New York, NY, USA, 00. [6] J. L. W. V. Jensen, Sur es fontons onvexes et es négtés entre es veurs moyennes, At Mthemt, vo. 30, no. 1, pp.175 193,1906. [7] L. Fejér, Üer de fourerrehen II, Mthemtsher und Nturwssenshfther Anzeger der Ungrshen Akdeme der Wssenshften, vo. 4, pp. 369 390, 1906 (Hungrn). [8] Ch. Hermte, Sur deux mtes d une ntégre défne, Mthess,vo.3,p.8,1883. [9] J. Hdmrd, Étude sur es proprétés des fontons entμeres et en prtuer d une funton onsderée pr Remnn, Journ de Mthémtques Pures et Appquées,vo.58,pp.171 15,1893. [10] Z. Pvć, Improvements of the Hermte-HADmrd nequty, Journ of Inequtes nd Apptons, vo. 015, rte, 015. [11] J. L. W. V. Jensen, Om konvekse Funktoner og Ugheder meem Mddeværder, Nyt Tdsskrft for Mtemtk B,vo.16,pp. 49 68, 1905. λ 1 = k =1 h n =1 h, λ = n =k+1 h n =1 h. (51) Funtons L 1 nd L re ertny postve nd unt. The nequty n formu (49) s the extenson nd refnement of the fmous dsrete form of Jensen s nequty (see [11]). Competng Interests The uthors dere tht they hve no ompetng nterests.

Advnes n Opertons Reserh Advnes n Deson Senes Journ of Apped Mthemts Ager Journ of Proty nd Sttsts The Sentf Word Journ Internton Journ of Dfferent Equtons Sumt your mnusrpts t Internton Journ of Advnes n Comntors Mthemt Physs Journ of Compex Anyss Internton Journ of Mthemts nd Mthemt Senes Mthemt Proems n Engneerng Journ of Mthemts Dsrete Mthemts Journ of Dsrete Dynms n Nture nd Soety Journ of Funton Spes Astrt nd Apped Anyss Internton Journ of Journ of Stohst Anyss Optmzton