Solar Matters III Teacher Page

Similar documents
Solar Matters III Teacher Page

Solar Matters III Teacher Page

Solar Matters II Teacher Page

Solar Matters I Teacher Page

Name Date Class. Electromagnetic Spectrum. Colors

Standards Alignment... 5 Safe Science... 9 Scienti c Inquiry Assembling Rubber Band Books...15

SNC2D/2P Summative Light and Optics 15% of your final mark

Solar Matters III Teacher Page

Heat and Temperature

Energy and Insolation Review 2

Being a Physicist Unit 5. Summary Sheets. Gleniffer High School

Most of the energy from the light sources was transferred to the sand by the process of A) conduction B) convection C) radiation D) transpiration

Activity Title: It s Either Very Hot or Very Cold Up There!

Being a Chemist. Summary Sheets. Gleniffer High School

Measuring the Solar Constant

Unit 5 Lesson 1 Images from Space. Copyright Houghton Mifflin Harcourt Publishing Company

Topic 5 Practice Test

What Is Air Temperature?

Energy is the ability to do work. Q: What is energy? Work is done when a force causes an object to move. Q: What is work? Q: Potential Energy

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

Bridge Grade Two Winter 1/09 1. GRADE TWO WINTER NATURE WALK Using Thermometers

MEASURING THE SOLAR CONSTANT

Conduction, Convection, & Radiation

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

L ESSON P LAN:DETERMINING THE E FFECT OF D ISTANCE (PART 1) AND I NCLINATION (PART 2)

10/31/2017. Calculating the temperature of earth (The greenhouse effect) IR radiation. The electromagnetic spectrum

Temperature, Thermal Energy, and Heat

Temperature Changes OBJECTIVES PREPARATION SCHEDULE MATERIALS. The students. For each student. For each team of two. For the class

Effective January 2008 All indicators in Standard / 11

Sixth Grade Science Curriculum Map Quarter 1

11/18/2010. Only part of the spectrum we can see. A rainbow of colors, each corresponding to a different wavelength.

Saturday Science Lesson Plan Fall 2008

1 A 3 C 2 B 4 D. 5. During which month does the minimum duration of insolation occur in New York State? 1 February 3 September 2 July 4 December

Solar Energy Cooking with the Sun

Solar Matters III Teacher Page

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

ELECTROMAGNETIC WAVES AND CLIMATE (MODIFIED FOR ADEED)

Heat Transfer Lesson Plan

Period 13: Earth as an Energy System

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface.

Energy Transfer Packet 9

1. The diagram below shows Earth, four different positions of the Moon, and the direction of incoming sunlight.

Properties of Matter

Atmosphere CHANGE IS IN THE AIR

Unit 2 Lesson 3 Physical and Chemical Changes. Copyright Houghton Mifflin Harcourt Publishing Company

CERT Educational Series Heat Transfer

Chapter 6. Heat is transferred from one place to another by three different processes

Ready for some more SCIENCE Homer?

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation.

P1 REVISION CHAPTER 1a Energy Tfr by Heating

Static Strokes Static Electricity Balance Your Charge Account St. Elmo s Fire...267

Solar Radiant Heating and Angle of Incidence NS 696 V: Weather and Climate for Educators

SPECIFIC HEAT OF WATER LAB 11-2

Standards Alignment...5 Safe Science...9 Scienti c n ir...11 Assem ling er and s...15 Scientists at r...17 at s t e idence...19

Section 1: The Science of Energy¹

2012 Thermodynamics Division C

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy

How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables

14 Heating and Cooling of Planets AND Daytime Observations

Chapter 11. Energy in Thermal Processes

Physics LESSON PLAN PERFORMANCE OBJECTIVE(S): STUDENTS WILL BE ABLE TO:

Period 13 Solutions: Earth as an Energy System

There are four phases of matter: Phases of Matter

SPH3U1 Lesson 03 Energy

WELCOME TO PERIOD 5: THERMAL ENERGY, THE MICROSCOPIC PICTURE. Homework #4 is due today at the beginning of class.

Measuring the Temperature of the Sun

Activity #5 How Do Atmospheres Change Over Time? The Greenhouse Effect [Cadette]

PHYSICS 149: Lecture 26

Conduction, Convection, and Radiation

heat By cillian bryan and scott doyle

ATS150 Global Climate Change Spring 2019 Candidate Questions for Exam #1

Mixtures. Part 2 Add 50 ml of water (one full syringe) to each cup. Stir and observe. Write your observations on the opposite page.

UNIT PLAN. Big Idea/Theme: Measurement systems are used to solve real world problems.

Ready for some more SCIENCE Homer? ( Homer gives his brain a pep talk )

Institute for Global Environmental Strategies: Discover Earth Program Materials

Name: Section: Forms of Energy Practice Test

Chapter 2. Heating Earth's Surface & Atmosphere

Physical and mathematical models of the greenhouse effect

Science - 4th grade practice test

CPO Science Foundations of Physics. Unit 8, Chapter 26

Physics/Science Unit P1: Universal Physics

Lecture 4: Heat, and Radiation

Year 9- Physics First Term Revision

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Solar and Renewable Energies

Kindergarten Math Pacing Guide

States of matter. Name: Date:

Properties of Waves. Before You Read. What are the features of a wave?

Effective January 2008 All indicators in Standard / 14

Unit: Weather and Climate General Task Air pressure and Storms

The Layered Atmosphere:

Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis

Conducting Energy and Heat. Energy Likes to Move. Radiating Energy

The Ups and Downs of Weather

) in the box next to your answer. (1) (b) Explain why it is difficult to predict when an earthquake will happen. (2)

Physical Science Jeopardy!

From Last Time Pearson Education, Inc.

MIDTERM REVIEW QUESTIONS - PACKET #2 (75 MULTIPLE CHOICE QUESTIONS)

Energy Transformations Activities Students engage in different activities to observe energy changing form!

Transcription:

Solar Matters III Teacher Page Hot or Not? Student Objective The student: will be able to explain how the sun s rays through conduction and convection heat things on the Earth will be able to explain the various factors that determine how much radiant energy is absorbed by a solar collector on Earth will be able to calculate the solar heat gain in a solar thermal collector in BTUs will be able to explain the Solar Constant Key Words: British Thermal Unit (BTU) conduction convection radiation reflection thermal Time: (1) class Materials: quart size zipper type plastic bags (3 per group) thermometers (3 per group) black construction paper white paper stiff cardboard masking or duct tape binder clips or clothespins (2 per group) box cutters rulers scale timer or stopwatch graph paper colored pencils Science Journal Background Information Energy from the sun travels through space and our atmosphere by radiation. This radiant energy travels through the clear glazing on the collector (i.e. glass, plexiglass or plastic) which changes its wavelength so it can be absorbed as heat. The water in the collector heats up by convection. Heat in the collector is trapped by the glazing and the collector gets hotter and Florida Solar Energy Center Hot or Not? / Page 1

hotter inside. Procedure 1. Lead the class in a discussion of heat energy from the sun. Points to cover should include: heat from the sun occurs during all seasons and weather heat rays are the infrared waves of the electromagnetic spectrum. energy from the sun travels through the vacuum of space by radiation. Even though the sun is 90 million miles from the Earth, it takes less than 10 minutes for the heat to reach us. heat energy travels through materials by conduction heat energy travels through a gas or a liquid by circulation of currents in the gas/liquid. This is convection. 2. Explain to the class that they will be investigating how much solar energy they can capture in water in several different conditions and calculating the amount of solar heat gain in British Thermal Units, commonly called BTUs. 3. Write the BTU formula for water on the board BTU = amount of energy needed to raise 1 pound of water 1 o F 4. Explain that BTU is a unit of measurement used when describing the amount of heat energy in sunlight and fuels, and also when describing the ability of appliance to heat or cool. 5. Divide the class in groups of 2-4 students per group. 6. Explain the procedure to the class each group is to make a stand for their experiment out of cardboard make up three experiment bags each one will hold one pound of water and a thermometer. Seal the bags tightly with as little air in the bags as possible. (Note: 1 pound of water also equals 454 ml, 454 grams, or 2 cups minus 4 teaspoons) place the experiment stand in full sun and follow the directions in their Science Journal 7. Assist the students as necessary during the set-up of the experiment. 8. Students should complete their Science Journals. 9. Have one of the groups report their results to the class. Ask the other groups if their results were identical. Lead a discussion about why there are small discrepancies between groups (differences in position in relation to the sun, different material underneath the stands, more/less time handling the bags before beginning, inaccuracies in measurements, etc). 10. Explain to the students the difference between replication of an experiment by different groups, and repetition of the experiment by the same group, and how repetition can minimize many of the discrepancies of materials, set-up and handling. 11. Lead a discussion on the factors that influence the amount of solar heat that strikes the earth. Make sure the students include weather factors as well as seasonal effects. Note: If you had passing clouds during the experiment time, discuss how the clouds affected the rate of temperature increase (as shown in the graphs). Florida Solar Energy Center Hot or Not? / Page 2

Answer Key 1. Air temperature and the surface that the bag is setting on (which has also been heated by the air if it is in the shade). All environmental temperature came from the sun originally. 2. Answers will vary, but this number should = Sun/White BTU - Shade BTU (Check to make sure the students did the BTU calculations in Table B correctly. 3. Answers will vary, but this number should = Sun/Black BTU - Sun/White BTU. 4. Answers will vary. Students should have time on the x-axis and temperature on the y- axis. They should also include an appropriate key for their colors. 5. Answers will vary, but students should explain that the slope for the Sun/Black temperature is steeper. 6. Answers will vary, but students should have made the proper unit change, rounded their answer to two decimal places and labeled their units correctly. 7. Answers will vary. Students should multiply their answer from question 6 by 25 then divide by 1800. 8. Students should recognize that the majority of the losses are from the sunlight going through the atmosphere, but may additionally mention being blocked by clouds and jet contrails, as well as the seasonal variations in the distance between the earth and the sun. Key Words & Definitions British Thermal Units (BTU) - the amount of energy needed to raise the temperature of o one pound of water 1 F. One BTU is roughly equal to 1055 joules and.253 Kcal. conduction - the transmission of heat across matter convection - heat transfer in a gas or liquid by the circulation of currents from one region to another radiation - the way we receive heat from the sun each day. The energy is emitted in the form of waves/particles, and can move from one object to another without heating the area in-between. reflection - the throwing back of rays of light, heat, or sound by a surface without absorbing them. thermal - relating to heat and cold Related Research 1. What would happen if you had a larger bag with 2 gallons of water in it? Would the BTUs remain the same? Try it and find out. 2. What would happen if you placed your bag on a reflective surface? On a different colored surface than black or white? Would colored water heat faster than plain water? Design an experiment and test it out. 3. How could you use mirrors or other reflectors to concentrate the Sun s energy? What about sheet magnifiers? Have a competition between lab groups to see who can capture the most solar energy as heat. Related Reading Florida Solar Energy Center Hot or Not? / Page 3

Solar Energy Projects for the Evil Genius by Gavin Harper (McGraw-Hill, 2007) This book includes more than 50 solar energy projects with plans, diagrams and schematics. Internet Sites https://www.youtube.com/watch?v=uowznbxk3ss Short video, From Solar Energy to Heat, explains how photons from the sun turn into heat http://www.neok12.com/video/solar-energy/zx4501794c04647766705041.htm Video on Solar Thermal usage in Europe Florida Solar Energy Center Hot or Not? / Page 4

Solar Matters III Florida Next Generation Sunshine State Standards Hot or Not? Grade 6 Practice of Science # 1 SC.6.N.1 X X.1.2.3.4.5.6.7.8.9.10.11.12 Earth Systems & Patterns # 7 SC.6.E.7 X Grade 7 Practice of Science # 1 SC.7.N.1 X X X Forms of Energy # 10 SC.7.P.10 X X Energy Transfer & Transformations # 11 SC.7.P.11 X X Grade 8 Practice of Science # 1 SC.8.N.1 X Earth in Space & Time # 5 SC.8.E.5 X Sixth Grade Benchmarks Science Big Idea 1: The Practice of Science SC.6.N.1.1 - Define a problem from the sixth grade curriculum, use appropriate reference materials to support scientific understanding, plan and carry out scientific investigation of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions. SC.6.N.1.4 - Discuss, compare, and negotiate methods used, results obtained, and explanations among groups of students conducting the same investigation. Science Big Idea 7: Earth Systems and Patterns SC.6.E.7.1 - Differentiate among radiation, conduction, and convection, the three mechanisms by which heat is transferred through Earth s system. Seventh Grade Benchmarks Science Big Idea 1: The Practice of Science SC.7.N.1.1 - Define a problem from the seventh grade curriculum, use appropriate reference materials to support scientific understanding, plan and carry out scientific investigation of various types, such as systematic observations or experiments, identify Florida Solar Energy Center Hot or Not? / Page 5

variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions. SC.7.N.1.2 - Differentiate replication (by others) from repetition (multiple trials). SC.7.N.1.4 - Identify test variables and outcome variables in an experiment. Science Big Idea 10: Forms of Energy SC.7.P.10.1 - Illustrate that the sun s energy arrives as radiation with a wide range of wavelengths, including infrared, visible, and ultraviolet, and that white light is made up of a spectrum of many different colors. SC.7.10.2 - Observe and explain that light can be reflected, refracted, and/or absorbed. Science Big Idea 11: Energy Transfer and Transformations SC.7.P.11.1 - Recognize that adding heat to or removing heat from a system may result in a temperature change and possibly a change of state. SC.7.P.11.2 - Investigate and describe the transformation of energy from one form to another. Eighth Grade Benchmarks Science Big Idea 1: The Practice of Science SC.8.N.1.1 - Define a problem from the eighth grade curriculum, use appropriate reference materials to support scientific understanding, plan and carry out scientific investigation of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions. Science Big Idea 5: Earth in Space and Time SC.8.E.5.11 - Identify and compare characteristics of the electromagnetic spectrum such as wavelength, frequency, use, and hazards and recognize its application to an understanding of planetary images and satellite photographs. Florida Solar Energy Center Hot or Not? / Page 6

Solar Matters III Science Journal Hot or Not? The BTU (British Thermal Unit) is a unit of measurement used when describing the amount of heat energy in sunlight and fuels, and also when describing the ability of appliances, solar water heaters, and air conditioning systems to heat or cool. By definition: 1 BTU = amount of energy needed to raise 1 pound of water 1 o F o (Or in Celsius: 1.8 BTU = amount of energy needed to raise 1 pound of water 1 C) In this experiment you will measure how much heat energy (BTUs) you can capture from sunlight in water, and experiment with different materials to see what methods work better to capture more heat energy. Make up three sandwich bags of plain water for your experiment. Put 1 lb. of water and a thermometer in each bag. Squeeze out as much air as possible, and seal tightly. Make a stand out of cardboard (see diagram below). Each side of the triangular stand should be at least the width of two plastic baggies side by side and the height of one baggie. (For our example, each side of the triangular stand was 17" wide and 9" tall.) Make your stand 3-sided (with a bottom) for stability and also to give a similar surface for your control (shade) bag to rest on. Put white paper on the left side of the face of the stand and black paper on the right side. Cut a slit on the top seam of the triangle on both sides for the clips that hold the baggies. Record the starting temperature of the water (in Celsius) in the chart for all three bags. Place the stand in the sun on a piece of cardboard or insulation (not directly on the hot concrete!). Florida Solar Energy Center Hot or Not? / Page 7

Clip one bag on the white paper side and one bag on the black paper side. Place one bag in the shade inside of the stand. For each bag, record the temperature every 5 minutes and fill in the table below. Table A Shade Sun/White Sun/Black Start Temp 5 min 10 min 15 min 20 min 25 min 30 min Calculate the change in temperature during the 30 minutes for each bag, record below and then calculate the BTUs for each bag. Table B Change in temperature ( T) BTUs in 30 min. (1.8 x degrees C) o Shade C BTUs o Sun/White C BTUs o Sun/Black C BTUs 1. The bag in the shade gained heat from the environment instead of directly from the sun s rays, what was the source of this heat? 2. The bag in the sun on the white paper gained heat energy from the environment and from direct sunlight. How much heat energy did this bag get from direct sunlight? Give your answer in BTUs. 3. How much more heat energy did the black background absorb than the white? Florida Solar Energy Center Hot or Not? / Page 8

4. Graph the data from Chart A (rate of temperature increase) below, using a different color for each bag. Label both axis, and include a key. 5. Which bag gained heat at the fastest rate? Explain. Florida Solar Energy Center Hot or Not? / Page 9

6. In your science classes, we have typically used joules (J) as the standard unit of measure of energy. The conversion from BTU to joules is 1 BTU = 1055.05585 joules How many kj of energy did the Sun/Black water absorb? (round to two decimal places) Challenge Questions 7. One kilojoule per second is approximately the amount of solar radiation received by one square meter of the Earth s atmosphere in full daylight. This is called the Solar Constant. What part of a Solar Constant did the water in your experiment absorb? In other words, how many kj per second / per square meter did the water absorb? To figure this out: calculate how many kj per meter your system would absorb (assume that your baggie measures 200cm x 200cm 1/25th of a square meter) calculate how much of your 30 minute energy total would be collected in one second. 8. What factors account for the decrease in solar radiation that was collected in the water during your experiment compared to the Solar Constant? Florida Solar Energy Center Hot or Not? / Page 10