CHEMICAL ENGINEERING. Courses. Chemical Engineering 1. CME 325. Transport Phenomena II. 3 Hours

Similar documents
CHEMICAL AND MATERIALS ENGINEERING

Approved Technical Elective Classes for Chemical Engineering Students

Chemical Engineering (CH_ENG)

CHE Creative Inquiry in Chemical and Biomolecular Engineering 1-4 Credits (1-4 Contact Hours)

CHEMICAL ENGINEERING (CHE)

Chemical Engineering - CHEN

CHEMICAL ENGINEERING (CHE)

Blue Marble University

CHEMISTRY (CHE) CHE 104 General Descriptive Chemistry II 3

CHEMICAL ENGINEERING (CH E)

CBE2006(applied biology) is not included in major credits but included in graduation credits.

MECHANICAL ENGINEERING (ME)

COURSE MODULES LEVEL1.1

Quick Facts College of Polymer Science and Polymer Engineering

CHEMISTRY (CHEM) Chemistry (CHEM) 1

CHEMICAL ENGINEERING (CH E)

CHEMICAL AND BIOLOGICAL ENGINEERING (CBE)

Appendix A Course Syllabi Appendix A: Syllabi. Engineering Physics. Bachelor of Science in Engineering Physics. Self-Study Report

CHEMICAL ENGINEERING (CHEN)

Prerequisites: MATH 103 or a Math Placement Test score for MATH 104 or 106. Prerequisites: CHEM 109

CHEMISTRY (CHEM) CHEM 5. Chemistry for Nurses. 5 Units. Prerequisite(s): One year high school algebra; high school chemistry

CHEMISTRY (CHEM) CHEM 208. Introduction to Chemical Analysis II - SL

CHEMICAL ENGINEERING (CHEG)

CHEMICAL ENGINEERING (CHEM ENG)

EASTERN OREGON UNIVERSITY Chemistry-Biochemistry

CHEMISTRY (CHM) Chemistry (CHM) 1

CHEMICAL ENGINEERING. College of Engineering. 244 Chemical Engineering CSULB Catalog. Career Possibilities. Introduction

CHEMISTRY (CHEM) CHEM 5. Chemistry for Nurses. 5 Units. Prerequisite(s): One year high school algebra; high school chemistry

Chemistry Courses -1

Chemistry Departmental Mission Statement: Communicating Plus - Chemistry: Requirements for a major in chemistry:

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34

Department of Chemical Engineering

Chemistry. Courses. Chemistry 1

CHEMISTRY (CHEM) CHEM 5800 Principles Of Materials Chemistry. Tutorial in selected topics in materials chemistry. S/U grading only.

CHEMISTRY. Writing Requirement. Credit for Courses at the 100- and 200- Level. Introduction. Educational Objectives.

Plan of Study: Bachelor of Science in Chemical Engineering

CHEMICAL ENGINEERING. College of Engineering. 2014/2015 CSULB Catalog Chemical Engineering 231. Career Possibilities. Introduction

Polymer engineering syllabus (BSc)

Chemistry (CHEM) Chemistry (CHEM) 1

CHEMISTRY COURSE INFORMATION Chemistry Department, CB 213,

2016 ChE Undergraduate Advising Sessions Program

CHEMICAL ENGINEERING. College of Engineering. 230 Chemical Engineering 2012/2013 CSULB Catalog. Career Possibilities. Introduction

CHEMISTRY. CHEM 0100 PREPARATION FOR GENERAL CHEMISTRY 3 cr. CHEM 0110 GENERAL CHEMISTRY 1 4 cr. CHEM 0120 GENERAL CHEMISTRY 2 4 cr.

CHEMICAL ENGINEERING

CHEMISTRY. CHEM 0100 PREPARATION FOR GENERAL CHEMISTRY 3 cr. CHEM 0110 GENERAL CHEMISTRY 1 4 cr. CHEM 0120 GENERAL CHEMISTRY 2 4 cr.

Dave C. Swalm School of Chemical Engineering

CHEMISTRY, BACHELOR OF SCIENCE (B.S.) WITH A CONCENTRATION IN PROFESSIONAL CHEMIST WITH HONORS

Chemical Engineering (CHEG)

CHEMISTRY, BACHELOR OF SCIENCE (B.S.) WITH A CONCENTRATION IN PROFESSIONAL CHEMIST

CHEMISTRY (CHEM) CHEM 1200 Problem Solving In General Chemistry

The School of Science and Engineering

Table 1. First-time Freshmen Requirements for Direct Admission to the Chemical Engineering Program

General Education Foundations F1 - Composition & Rhetoric 3-6 ENGL 101 & ENGL 102

Thermodynamics and Rate Processes. D.Kunzru Dept. of Chemical Engineering I.I.T.Kanpur

CIM Report May 8, :01pm

Chemistry FRESHMAN PROGRAMS

Chemical Engr and Materials Science (CBEMS)

CHEMICAL ENGINEERING II (MASTERY) Professor K. Li Dr. S. Kalliadasis Professor R. Kandiyoti

Chemical and Materials Engineering

The Chemistry department approved by the American Chemical Society offers a Chemistry degree in the following concentrations:

BEng Chemical Engineering (Distance Learning)

DUAL DEGREE PROGRAM: BIOMEDICAL ENGINEERING AND CHEMICAL AND BIOLOGICAL ENGINEERING

CHEMISTRY (CHEMSTRY) Prereqs/Coreqs: P: math placement score of 15 or higher Typically Offered: Fall/Spring

CHM - CHEMISTRY. CHM - Chemistry 1

Chemistry. Faculty. Major Requirements for the Major in Chemistry

Faculty: Andrew Carr, Ryan Felix, Stephanie Gould, James Hebda, Karla McCain, John Richardson, Lindsay Zack

College of Arts and Sciences. Chemistry

Requirement for the Major in Chemistry with a Concentration in Biochemistry

LEHMAN COLLEGE OF THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF CHEMISTRY CURRICULUM CHANGE

Director, Programs and Academic Assessment

Course Code: BIO310 Course Title: Biology I (4 units)

Agricultural. Chemistry. Agricultural production: crops and livestock Agrichemicals development: herbicides, pesticides, fungicides, fertilizers, etc.

BIOLOGY ENDORSEMENT (The teaching of general science in grades 7 and 8 is included in the endorsement.)

ENV level elective. ENV 200 Intro to Environmental Science 4 credits ENV 330 Ecosystems and Ecological Design 4 credits

PHYSICS. For Senior Comprehensives. Requirements for a Major. Physics 1

CHEMISTRY COURSES UNDERGRADUATE GRADUATE FACULTY. Explanation of Course Numbers. Bachelor's programs. Combined programs. Minor.

Dana Wright, Director of Academic Program Development

Chemical and Environmental Engineering Course Descriptions

Materials Science and Engineering (MAT)

CHEMICAL ENGINEERING. Curriculum in Chemical Engineering. Program Educational Objectives. Biological Engineering Option. Cooperative Education

College of Arts and Sciences. Chemistry

CHEMISTRY (CHEM) 100 Level Courses. 200 Level Courses. Chemistry (CHEM) 1

PREREQUISITE CHECKLIST

INTRODUCTION TO CATALYTIC COMBUSTION

Department of Chemistry

SCIENCE DEPARTMENT. Prerequisite: Sophomore standing or teacher recommendation

FACULTY OF PHARMACY UNIVERSITY OF TORONTO. COURSE LENGTH: FALL x ; SPRING: ; YEAR:

2018 Guidelines for Initial IFT Approval of Undergraduate Food Science and Food Technology Programs. January 2019

CHEMICAL ENGINEEERING AND CHEMICAL PROCESS TECHNOLOGY Vol. III - Ideal Models Of Reactors - A. Burghardt

Graduate Course Structure for PhD and MS Students Specialization areas and their corresponding courses

University of Waterloo Library

Chemistry

Chemical Engineering (CHE)

CHE 230 ORGANIC CHEMISTRY I. (3) Fundamental principles and theories of organic chemistry. Prereq: CHE 107 and 115.

CHEMISTRY (CHEM) CHEM 104 GENERAL CHEMISTRY II 5 credits.

Physical Sciences. Prerequisites: CHM 1040 with a minimum grade of C- or CHM Permit

Department of Chemistry and Biochemistry

CHEMISTRY (CHEM) CHEM Fundamentals of Biochemistry

Graduate Course Structure for PhD and MS Students Specialization areas and their corresponding courses

Mechanical Engineering (MEEG)

Transcription:

Chemical Engineering 1 CHEMICAL ENGINEERING Courses CME 101. Introduction to Chemical Engineering. 0-1 Hours Introduction to the chemical engineering faculty, facilities, and curriculum; survey of career opportunities in chemical engineering. Introduction to the University first-year experience. CME 198. Research & Innovation Laboratory. 1-6 Hours collecting and analysing data, surveying and evaluating literature, brainstorming and evalutating engineering solutions and engineering designs. Proposals from terams of students will be considered. CME 200. Professional Development Seminar. 0-1 Hours Presentations on contemporary and professional engineering subjects by students, faculty, and engineers in active practice. The seminar addresses topics in key areas that complement traditional courses and prepare distinctive graduates, ready for life and work. Registration required for all sophomore students. CME 203. Material & Energy Balances. 3 Hours Introductory course on the application of mass and energy conservation laws to solve problems typically encountered in chemical process industries. Prerequisite(s): CHM 123; MTH 138 or 168. Corequisite(s): CME 211. CME 211. Introduction to Thermodynamics for Chemical Engineers. 3 Hours First law of thermodynamics, states of matter, equations of state, open and closed system energy balances, reactive energy balances, entropy, 2nd law of thermodynamics, introduction to power cycles and refrigeration. Prerequisite(s): PHY 206; CHM 123; MTH 138 or 168. CME 281. Chemical Engineering Computations. 3 Hours Development of computational skills with an emphasis on algorithm development and problem solving. Computational skills are applied to typical problems in chemical engineering, engineering data analysis and statistics. Corequisite(s): CME 203, MTH 169. CME 298. Research & Innovation Laboratory. 1-6 Hours CME 306. Chemical Reaction Kinetics & Engineering. 3 Hours Chemical reaction kinetics, ideal reactor analysis and design, multiple reactor/reaction systems, and heterogeneous catalysis. Prerequisite(s): CME 311. Corequisite(s): CME 324. CME 311. Chemical Engineering Thermodynamics. 3 Hours Development and application of the fundamental principles of chemical thermodynamics: Vapor/liquid equilibrium, solution thermodynamics, chemical reaction equilibria, and thermodynamic analysis of chemical engineering processes. Prerequisite(s): CME 203; CME 211; MTH 218. CME 324. Transport Phenomena I. 3 Hours Viscosity, shell momentum balances, isothermal equations of change, thermal conductivity, shell energy balances, non-isothermal equations of change, mass diffusivity, shell species mass balances, equations of change for multicomponent systems. Prerequisite(s): CME 203, CME 281; MTH 219. Corequisite(s): CME 381. CME 325. Transport Phenomena II. 3 Hours Multidimensional momentum, energy, and mass transport, dimensionless parameters, turbulence and numerical solution methods. Prerequisite(s): CME 324, CME 381. CME 326L. Transport Phenomena Laboratory. 1-2 Hours Viscosity, conductivity, diffusion coefficient measurements, velocity, temperature, concentration profiles, engineering instrumentation, and experimental error analysis. Prerequisite(s): CHM 124L; CME 324. Corequisite(s): CME 325. CME 365. Separation Techniques. 3 Hours Equilibrium staged separations: distillation, extraction and absorption, with an emphasis on distillation. Prerequisite(s): CME 311, CME 324. CME 381. Advances Mathematics for Chemical Engineers. 3 Hours Study of analytical and numerical techniques to support upper-level chemical engineering classes. Vector analysis, matrices, differential equations, numerical integration and differentiation, root finding, and curve fitting ordinary and partial differential equations. Prerequisite(s): CME 281; MTH 219. CME 398. Research & Innovation Laboratory. 1-6 Hours CME 408. Seminar. 0-1 Hours Presentation of lectures on contemporary chemical engineering subjects by students, faculty, and engineers in active practice. Registration required of senior students only. Corequisite(s): CME 430. CME 409. Introduction to Polymer Science - Thermoplastics. 3 Hours Broad technical overview of the nature of synthetic macromolecules, including the formation of polymers and their structure, structureproperty relationships, polymer characterization and processing, and applications of polymers. Fundmental topics such as viscoelasticity, the glassy state, time-temperature superposition, polymer transitions, and free volume will also be reviewed. The course focuses on thermoplastic polymers. Prerequisite(s): CHM 313, PHY 206, MTH 219. CME 410. High Performance Thermoset Polymers. 3 Hours Survey of high performance thermoset resins, focusing on chemistry, processing and properties of six general resin families; vinyl ester, epoxy, phenolic, cyanate ester, bismaleimide, and polyimides. The course will include fundamental discussions of polymerization mechanisms, network structure development, rheology and time-temperature transformation, resin toughening, and structure-processing-property relationships. Characterization techniques will also be reviewed. Prerequisite(s): CHM 313.

2 Chemical Engineering CME 412. Advanced Composites. 3 Hours Materials and processing. Comprehensive introduction to advanced fiber reinforced polymeric matrix composites. Constituent materials and composite processing will be emphasized with special emphasis placed on structure-property relationships, the role of matrix in composite processing, mechanical behavior, and laminate processing. Specific topics will include starting materials, material forms, processing, quality assurance, test, methods, and mechanical behavior. Prerequisite(s): (CME 409 or CME 509 or MAT 501) or permission of CME 429. Computational Chemistry. 3 Hours Introduction to computational chemistry including a discussion of ab initio, semiempical, and DFT methods and an overview of molecular mechanics and molecular simulation methods. Lectures are supplemented by simulation exercises using commercial programs such a Gaussian and Molecular Studio. Prerequisite(s): CHM 124 or permission of CME 430. Chemical Engineering Design I. 3 Hours Study of basic design concepts, safety and health issues, capital cost estimation, manufacturing cost estimation, basic economics and profitability analysis, materials of construction, materials selection and process vessel design. Prerequisite(s): CME 203; CME 306. Corequisite(s): CME 465. CME 431. Chemical Engineering Design II. 3 Hours Project-based study of principles of process design and economics, use of process flowsheet simulators, short-cut design procedures, process optimization, and plant layout. Prerequisite(s): CME 306, CME 365, CME 430, CME 465. CME 432. Chemical Product Design. 3 Hours Application of the design process to products based on chemical technology. Coverage of the entire design process from initial identification of product needs, to the generation and selection of product ideas, and culminating in the manufacture of a new product. CME 452. Process Control. 3 Hours Mathematical models, Laplace transform techniques, and process dynamics. Feedback control systems, hardware, and instrumentation. Introduction to frequency response, advanced techniques, and digital control systems. Prerequisite(s): CME 381. Corequisite(s): CME 306. CME 453L. Process Control Laboratory. 2 Hours Team-based, project oriented study of process dynamics and digital control using computer-based data acquisition and control systems with a focus on real time process monitoring and control. Prerequisite(s): (CME 452, CME 466L) or permission of CME 465. Fluid Flow & Heat Transfer Processes. 3 Hours Fluid mechanics, transportation and metering of fluids, heat transfer and its applications. Prerequisite(s): CME 311, CME 324. CME 466L. Chemical Engineering Unit Operations Laboratory. 2 Hours Study of the equipment and utilization of various chemical engineering processes. Team based experimentation includes designing, and performing experiments on common chemical process unit operations apparatuses. After experimentation, students analyze data and compare with literature for experiment validation. Report writing and group presentations are emphasized. Prerequisite(s): CME 365. Corequisite(s): CME 465. CME 486. Introduction to Petroleum Engineering. 3 Hours Introduction to the fundamental concepts in petroleum engineering. Petroleum topics include overviews of areas such as petroleum geology, petroleum fluids and thermodynamics, drilling and completion, and production and multiphase flow. In addition this course will cover refinery operations. CME 489. Principles of Biology for Bioengineers. 3 Hours This course is designed for students with undergraduate majors in engineering or non-biological sciences. The focus of the course is to provide a common broad base of basic knowledge and terminology in the biological sciences required for coursework in the bioengineering emphasis tracts. Prerequisite(s): (BIO 151, BIO 152) or permission of CME 490. Introduction to Bioengineering. 3 Hours This class provides an introduction to bioengineering - a branch of engineering focusing on biological systems, biomaterials, engineering applications in living systems, and many other areas. By the end of this course, students will be able to understand bioengineering applications and processes, and properly apply engineering fundamentals, including transport phenomena and reaction kinetics, to these systems. Prerequisite(s): ((BIO 151 or BIO 152); (CME 324 or MEE 308)) or permission of CME 491. Biomedical Engineering I. 3 Hours Introduction to the fundamental concepts in biomedical engineering with a special focus on chemical engineering applications. Biomedical topics include overviews of areas such as biomaterials, tissue engineering, biosensors and biomedical engineering technology. Prerequisite(s): ((BIO 151 or BIO 152); CME 324) or permission of CME 492. Chemical Sensors & Biosensors. 3 Hours Analysis performed with chemical sensors complement laboratory analyses and offer the potential for more rapid and on-line analyses in complex sample matrices. The demand for new chemical sensors, biosensors, and sensing concepts is rapidly increasing and associated with the growing need to understand and/or control complex chemical and biochemical processes or detect the presence of toxic chemical or biological agents. Prerequisite(s): Permission of CME 493. Honors Thesis. 3 Hours Selection, design, investigation, and completion of an independent, original research study resulting in a document prepared for submission as a potential publication and a completed undergraduate thesis. Restricted to students in University Honors Program. CME 494. Honors Thesis. 3 Hours Selection, design, investigation, and completion of an independent, original research study resulting in a document prepared for submission as a potential publication and a completed undergraduate thesis. Restricted to students in University Honors Program. Prerequisite(s): CME 493. CME 498. Research & Innovation Laboratory. 1-6 Hours CME 499. Special Problems in Chemical Engineering. 1-6 Hours Particular assignments to be arranged and approved by chairperson of the department.

Chemical Engineering 3 CME 507. Advanced Thermodynamics. 3 Hours Entropy balance. Thermodynanics of energy conversion. Mixtures. Equilibria. Current applications. CME 508. Advanced Topics in Chemical Engineering. 3 Hours Advanced Topics in Chemical Engineering. CME 509. Introduction to Polymer Science - Thermoplastics. 3 Hours Broad technical overview of the nature of synthetic macromolecules, including the formation of polymers and their structure, structureproperty relationships, polymer characterization and processing, and applications of polymers. Fundamental topics such as viscoelasticity, the glassy state, time-temperature superposition, polymer transitions, and free volume will also be reviewed. The course focuses on thermoplastic polymers. Prerequisite(s): Organic chemistry; College Physics, Differential Equations. CME 510. High Performance Thermoset Polymers. 3 Hours Survey of high performance thermosetting resins, focusing on chemistry, processing and properties of six general resin families; vinyl ester, epoxy phenolic, cyanate ester, bismaleimide and polyimides. The course will include fundamental discussions of polymerization mechanisms, network structure development, rheology and time-temperature transformation, resin toughening, and structure processing property relationships. Characterization techniques will also be reviewed. Prerequisite(s): Organic Chemistry. CME 511. Principles of Corrosion. 3 Hours Theoretical and practical application of electrochemical principles to the field of corrosion covering thermodynamics, kinetics, forms of corrosion and methods for characterizing and controlling corrosion in areas of biomedical engineering, aerospace, automotive, and marine environments. Prerequisite(s): MAT 501. CME 512. Advanced Composites. 3 Hours Materials and processing.comprehensive introduction to advanced fiber reinforced polymeric matrix composites. Constituent materials and composite processing will be emphasized with special emphasis placed on structure-property relationships, the role of matrix in composite processing, mechanical behavior and laminate processing. Specific topics will include starting materials, material forms, processing, quality assurance, test methods, and mechanical behavior. Prerequisite(s): Permission of CME 515. Statistics in Thermodynamics. 3 Hours Statistics in Thermodynamics. CME 521. Advanced Transport Phenomena. 3 Hours Applications of the principles of momentum, heat and mass transfer to steady state and transient problems. Molecular concepts. Transport in turbulent flow. Boundary layer theory. Numerical applications. Prerequisite(s): CME 324, CME 381 or equivalent. CME 522. Advanced Topics in Transport Phenomena. 3 Hours The equations of change for multicomponent systems. Turbulent mass transport. Interphase transport in multicomponent systems. Combustion analysis. Macroscopic balances. Prerequisite(s): CME 325, CME 581, or equivalent. CME 523. Transport Phenomena in Biological Systems. 3 Hours An integrated interdisciplinary systems-based examination of biological transport phenomena (momentum, heat and mass) and hemodynamics through mathematical modeling and biological processes as applied to physiological systems, with a focus on the cardiovascular, respiratory, and renal systems. Prerequisite(s): (BIE 503 or BIE 505; BIO 151, BIO 152; MTH 218) or permission of CME 524. Electrochemical Power. 3 Hours The course will cover fundamental as well as engineering aspects of fuel cell technology. Specifically, the course will cover basic principles of electrochemistry, electrical conductivity (electronic and ionic) of solids, and development/design of major fuel cells (alkaline, polymer electrolyte, phosphoric acid, molten carbonate, and solid oxide). A major part of the course will focus on solid oxide fuel cells (SOFC), as it is emerging to be dominant among various fuel cell technologies. The SOFC can readily and safely use many common hydrocarbon fuels such as natural gas, diesel, gasoline, alcohol, and coal gas. Prerequisite(s): CME 311, CME 324, or permission of CME 527. Methods of Polymer Analysis. 3 Hours Modern laboratory techniques used in preparation and characterization of polymers; experimental investigations of polymer structure-property relations; measurement of molecular weight averages and distributions, thermal and mechanical properties, viscoelastic and rheological properties; transitions and crystallinity. Prerequisite(s): CME 509, CME 510 or consent of CME 528. Chemical Behavior of Materials. 3 Hours This course will address chemical behavior as a subject complementary to mechanical behavior of materials. A special emphasis will be given to structure-property relationships of the major classes of materials. Physical/chemical periodicity, bonding, processing chemistry, and chemical behavior in the application environment will be addressed. Each major class of materials will be discussed with specific case studies for each. Prerequisite(s): College chemistry or permission of the CME 529. Computational Chemistry. 3 Hours Introduction to computational chemistry including a discussion of ab initio, semiempical, and DFT metods and an overview of molecular mechanics and molecular simulation methods. Lectures are supplemented by simulation exercises using commercial programs such as Gaussiari and Molecular Studio. Prerequisite(s): CHM124, or consent of CME 530. Biomaterials. 3 Hours The course introduces students with engineering materials used in dentistry, manufacture of surgical devices, prosthetics, and repair of tissues. Topics include bonding and atomic arrangement in materials, material selection, testing, and characterization, biocompatibility, tissue response to materials, and failutre analysis. A spectrum of materials including metals, polymers, ceramics, and composites used in biomedical applications will be considered. CME 532. Chemical Product Design. 3 Hours Application of the design process to products based on chemical technology. Coverage of the entire design process from initial identification of product ideas, and culminating in the manufacture of a new product. Prerequisite(s): CME 311 and CME 324 or consent of CME 533. Biofuel. 3 Hours The course will provide an overview of the range of fuels derived from biological materials and processes, with a focus on anaerobic digestion, bioethanol and biodiesel, and production of synthetic fuel from biological materials. The course will include an overview of the biochemistry of energy production in biological systems, discussions of the economics and environmental sustainability of biofuels, and a review of reactor and separation systems concepts relevant to biofuel production. Prerequisite(s) EGR 202, CHM 123, or consent of CME 541. Process Dynamics. 3 Hours Mathematical modeling and computer simulation of process dynamics and control for chemical engineering processes.

4 Chemical Engineering CME 542. Chemical Engineering Kinetics. 3 Hours Reaction kinetics. Heterogeneous catalytic reactions. Transport processes with fluid-solid heterogeneous reactions. Noncatalytic gas-solid reactions. Catalyst deactivation. Gas-liquid reactions. Prerequisite(s): CME 381, CME 306, or equivalent. CME 543. Chemical Reactor Analysis & Design. 3 Hours Design for optimum selectivity. Stability and transient behavior of the mixed flow reactor. Nonideal flow and balance models. Fixed and fluidized bed reactors. Multiphase flow reactors. Prerequisite(s): CME 381, CME 306, or equivalent. CME 550. Agitation. 3 Hours Agitator design and scaleup for blending and motion, solids suspension, gas dispersion, and viscous operations; experimental, computational, and design tools of agitation; static mixing; and mixing with chemical reaction. Prerequisite(s): CME 465 or permission of CME 560. Biological Processing of Wastewater. 3 Hours Measuring the characteristics of wastewater produced from domestic and industrail sources. Principles of designing and operating microbiological processes for the treatment of wastewater. Mechanisms and kinetics of biological reactions emphasized. Prerequisite(s): CHM 124. CME 562. Physical & Chemical Wastewater Treatment Processes. 3 Hours Designing of physical and chemical unit processes to treat wastewater originating primarily from industrial sources. Industry pretreatment technologies and the basis for their development. Prerequisite(s): CHM 123; CME 465, or permission of CME 563. Hazardous Waste Engineering. 3 Hours The fundamental principles of the design and operation of hazardous waste remediation processes. Characterizing contaminated sites and conducting treatability studies to select remediation strategies. Prerequisite(s): CHM 123; CME 465, or permission of CME 564. Solid Waste Engineering. 3 Hours Solid Waste Engineering. CME 565. Fundamentals of Combustion. 3 Hours Flames and combustion waves, detonation waves in gases, the chemistry of combustion, combustion of hydrocarbons, special aspects of gaseous combustion, combustion in mixed and condensed phases, explosions in closed vessels, and combustion and the environment. Prerequisite(s): CME 311, CME 306, or permission of CME 566. Advanced Separations. 3 Hours Azeotropic separations, complex column design, batch distillation, introduction to surface science, adsorptive separations, membrane separations, introduction to biological separations. CME 574. Fundamentals of Air Pollution I. 3 Hours Air pollution; combustion fundamentals; pollutant formation and control in combustion; pollutant formation and control methods in internal combustion engines; particle formation in combustion. Prerequisite(s): (CME 311 or MEE 301, MEE 302); (CME 324 or MEE 410), or permission of CME 575. Fundamentals of Air Pollution Engineering II. 3 Hours Review of the concepts of air pollution engineering; aerosols; removal of particles from gas streams; removal of gaseous pollutants from effluent streams; optimal air pollution control strategies. Prerequisite(s): CME 574 or permission of CME 576. Environmental Engineering Separation Processes. 3 Hours No description available. CME 579. Materials for Advanced Energy Applications. 3 Hours Successful long-term application of many advanced energy technologies is ultimately based on the utilization of materials in 'real world' environmental conditions. The physical/mechanical properties and application of various materials (i.e. superallyos, refractory metal alloys, ceramics) being employed in advanced energy applications are discussed. Several advanced energy technologies (i.e. fuel cells, nuclear energy, and others) are covered with emphasis on how the selection of advanced materials enhances their commercial application. Prerequisite(s): (MAT 501, MAT 502) or permission of CME 580. Polymer Decomposition, Degradation & Durability. 3 Hours An in-depth study of the mechanisms leading to polymer decomposition and degradation, as well as methods for analyzing and preventing or minimizing these processes and thereby improving polymer durability. Topics include thermal/pyrolytic, thermo-oxidative, hydrolysis, photo/ UV/weathering, flammability, mechanical, and degradation in earth orbit. Prerequisite(s): CME 509 / MAT 509 or CME 510 / MAT 510. CME 581. Advanced Chemical Engineering Calculations I. 3 Hours Applications of ordinary and partial differential equations to engineering problems. Classical methods of solution. Prerequisite(s): MTH 219 or permission of CME 582. Advanced Chemical Engineering Calculations II. 3 Hours Analyses and solutions of engineering problems described by differential equations. Numerical methods of solution. CME 583. Process Modeling. 3 Hours No description available. CME 586. Introduction to Petroleum Engineering. 3 Hours Introduction to the fundamental concepts in petroleum engineering. Petroleum topics include overviews of areas such as petroleum geology, petroleum fluids and thermodynamics, drilling and completion, and production and multiphase flow. In addition this course will cover refinery operations. Second term, each year. Prerequisite(s): Permission of CME 590. Introduction to Bioengineering. 3 Hours This class provides an introduction to bioengineering - a branch of engineering forcusing on biological systems, biomaterials, engineering applications in living systems, and many other areas. By the end of this course, students will be able to understand bioengineering applications and processes, and propery apply enginerring fundamentals, including transport phenomena and reaction kinetics, to these systems. Prerequisite(s): BIO 151, CME 324 or MEE 308 or permission of CME 591. Biomedical Engineering I. 3 Hours Introduction to the fundamental concepts in biomedical engineering with a special focus on chemical engineering applications. Biomedical topics include overviews of areas such as biomaterials, tissue engineering, biosensors and biomedical engineering technology. Second term, each year. Prerequisite(s): BIO 151 and CME 324, or BIE 501 or permission of CME 592. Chemical Sensors & Biosensors. 3 Hours Analysis performed with chemical sensors complement laboratory analysis and offer the potential of rmore rapid and on-line analysis in complex sample matrices. The demand for new chemical sensors, biosensors and sensing concepts is rapidly increasing and associated with the growing need to understand and/or control complex chemical and biochemical processes or detect the presense of toxic chemical or biological agents. Prerequisite(s): Permission of

Chemical Engineering 5 CME 595. Special Problems in Chemical Engineering. 1-6 Hours Special assignments in Chemical Engineering to be arranged and approved by the advisor and the program director. CME 597. Research Methods. 3 Hours This course will provide students the ability to apply research methods and problem solving skills to identify and define a research problem, develop hypotheses and research plans to test those hypotheses. Students will write and present an original research proposal. CME 599. Thesis. 3-6 Hours Chemical Engineering Thesis.