Recent developments in DMRG. Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany

Similar documents
Time-dependent DMRG:

Time Evolving Block Decimation Algorithm

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

The density matrix renormalization group and tensor network methods

Dephasing, relaxation and thermalization in one-dimensional quantum systems

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Quantum dynamics in ultracold atoms

The adaptive time-dependent DMRG applied to transport and non-equilibrium phenomena

Quantum many-body systems and tensor networks: simulation methods and applications

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

Efficient time evolution of one-dimensional quantum systems

The Density Matrix Renormalization Group: Introduction and Overview

Lecture 3: Tensor Product Ansatz

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

arxiv:cond-mat/ v3 [cond-mat.str-el] 19 Sep 2007

Entanglement in Many-Body Fermion Systems

Dynamics of Entanglement in the Heisenberg Model

Typical quantum states at finite temperature

Density Matrix Renormalization: A Review of the Method and its Applications arxiv:cond-mat/ v1 26 Mar 2003

Excursion: MPS & DMRG

A quantum dynamical simulator Classical digital meets quantum analog

Frustration without competition: the SU(N) model of quantum permutations on a lattice

arxiv:cond-mat/ v2 [cond-mat.other] 15 Apr 2009

Fermionic tensor networks

Entanglement Entropy in Extended Quantum Systems

Advanced Computation for Complex Materials

Positive Tensor Network approach for simulating open quantum many-body systems

Classical Monte Carlo Simulations

High-Temperature Criticality in Strongly Constrained Quantum Systems

Time-dependent variational principle for quantum many-body systems

Numerical Methods in Many-body Physics

Quantum Field Theory and Condensed Matter Physics: making the vacuum concrete. Fabian Essler (Oxford)

arxiv: v2 [quant-ph] 12 Aug 2008

Entanglement in Quantum Field Theory

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Renormalization of Tensor- Network States Tao Xiang

Part III: Impurities in Luttinger liquids

Photoemission Studies of Strongly Correlated Systems

PHYSICAL REVIEW E 71, Received 7 October 2004; published 3 March 2005

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Fermionic tensor networks

Many-Body Localization. Geoffrey Ji

arxiv:cond-mat/ v2 [cond-mat.str-el] 24 Feb 2006

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Lecture 1: The Equilibrium Green Function Method

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Spinons in Spatially Anisotropic Frustrated Antiferromagnets

Entanglement, quantum critical phenomena and efficient simulation of quantum dynamics

Fabian Essler (Oxford)

Techniques for translationally invariant matrix product states

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

Entanglement spectrum as a tool for onedimensional

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

Time evolution of correlations in strongly interacting fermions after a quantum quench

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School

arxiv:quant-ph/ v2 24 Dec 2003

The Mott Metal-Insulator Transition

Section IExact diagonalisations and Lanczos methodscomparison with other methods p.1

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Simulation of Quantum Many-Body Systems

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

arxiv:cond-mat/ v1 [cond-mat.str-el] 4 Sep 2006

Spherical Deformation for One-dimensional Quantum Systems

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks.

Introduction to Tensor Networks: PEPS, Fermions, and More

INTRODUCTION TO NMR and NMR QIP

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

ICD - THE DECAY WIDTHS I

2D Bose and Non-Fermi Liquid Metals

Thermodynamics of quantum Heisenberg spin chains

Frustration and Area law

Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

O. Parcollet CEA-Saclay FRANCE

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

arxiv:quant-ph/ v1 15 Dec 2004

Spectra of a highly frustrated quantum spin ladder

An efficient impurity-solver for the dynamical mean field theory algorithm

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

Taming the non-equilibrium: Equilibration, thermalization and the predictions of quantum simulations

Applications of algebraic Bethe ansatz matrix elements to spin chains

arxiv: v4 [cond-mat.stat-mech] 13 Mar 2009

Ehud Altman. Weizmann Institute and Visiting Miller Prof. UC Berkeley

Holographic Branching and Entanglement Renormalization

4 Matrix product states

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Corner Transfer Matrix Renormalization Group Method

Many-Body physics meets Quantum Information

Introduction to DMFT

Machine Learning with Tensor Networks

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Quantum Many Body Systems and Tensor Networks

Metal - Insulator transitions: overview, classification, descriptions

Quantum transport in nanoscale solids

On solving many-body Lindblad equation and quantum phase transition far from equilibrium

Magnets, 1D quantum system, and quantum Phase transitions

Experimental Determination of Crystal Structure

Transcription:

Recent developments in DMRG Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany

Outline 1. Introduction 2. Dynamical DMRG 3. DMRG and quantum information theory 4. Time-evolution 5. Finite-temperature dynamics 6. Conclusion

DMRG is a variational method System energy E(ψ) = ψ H ψ ψ ψ Minimization w.r.t. ψ ground state ψ 0 + O(ɛ) and E 0 + O(ɛ 2 ) DMRG wave function: Matrix-Product State ψ = {s 1,s 2,...,s N } (M 1 [s 1 ] M 2 [s 2 ]... M N [s N ]) s 1 s 2... s N with M i [s i ] = m m matrix and s i, s i = 1,..., n i = basis states of site i Exact wave function for m D = n 1 n 2... n N [S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995); PRB 55, 2164 (1997)]

Photoemission ARPES spectrum = spectral functions A σ (k, ω 0) = lim η 0 Im G σ (k, hω iη) = n n ĉ k,σ ψ 0 2 δ(e n E 0 + hω) G σ (k, hω iη) = 1 π ψ 0 ĉ k,σ 1 Ĥ E 0 + hω iη ĉk,σ ψ 0

Dynamical correlation functions with DMRG χâ(ω + iη) = 1 π ψ 1 0 Â E 0 + ω + iη Ĥ Â ψ 0 Lanczos vector method [K. Hallberg, PRB 52, 9827 (1995)] Correction vector method [S. Ramasesha et al., Synth. Met. 85, 1019 (1997), T.D. Kühner and S.R. White, PRB 60, 335 (1999)] φ 0 = Â ψ 0 φ 1 = Ĥ φ 0 a 0 φ 0 φ n+1 = Ĥ φ n a n φ n b 2 n φ n 1 CV = 1 E 0 + ω + iη Ĥ Â ψ 0 χâ(ω + iη) = 1 π ψ 0 Â CV ρ L = ψ 0 ψ 0+ Lanczos vectors ρ CV = ψ 0 ψ 0+ correction vectors

Variational principle for dynamical correlation functions [ E. Jeckelmann, PRB 66, 045114 (2002) ] Functional W ˆ A,η (ω, ψ) = ψ ( Ĥ ω E 0 ) 2 + η 2 ψ + η ψ Â ψ 0 + η ψ 0 Â ψ Minimization with respect to ψ ψ min = η (E 0 + ω Ĥ)2 + η 2 Â ψ 0 +O(ɛ) WÂ,η (ω, ψ min ) = πη Im χâ(ω + iη) +O(ɛ 2 ) Re χâ(ω + iη) = 1 πη ψ 0 Â (Ĥ E 0 ω) ψ min

Note ψ min π ψ n  ψ 0 δ(ω E n + E 0 ) ψ n (η 0) CV = Ĥ E 0 ω + iη η ψ min

Dynamical DMRG (DDMRG) [E. Jeckelmann, PRB 66, 045114 (2002)] For the spectral function (Â = ĉ k,σ ) W k,σ,η (ω, ψ) = ψ ( Ĥ + ω E 0 ) 2 + η 2 ψ + η ψ ĉ k,σ ψ 0 + η ψ 0 ĉ k,σ ψ Minimization of W k,σ,η (ω, ψ) with a regular DMRG algorithm and ρ CV = (ψ 0 ψ0 + ψ min ψmin + first Lanczos vector) yields A η σ(k, ω) = Im G σ ( hω iη) = 1 πη W k,η(ω, ψ min ) = 1 π dω A σ (ω ) η (ω ω ) 2 + η 2

Spectrum in the thermodynamic limit [E. Jeckelmann, PRB 66, 045114 (2002)] Lehmann spectral representation I(ω) = ImχÂ(ω) = lim η 0 lim N n η π ψ n  ψ 0 2 (ω E n + E 0 ) 2 + η 2 Using η(n) > η 0 (N) with η(n ) 0 I(ω) = lim N n η(n) π ψ n  ψ 0 2 (ω E n + E 0 ) 2 + η(n) 2 Dense spectrum: η 0 (N) > E n+1 (N) E n (N) Discrete spectrum: η 0 (N) = 0

Methods convolution of an infinite-system spectrum for comparison extrapolation or scaling analysis for N, η(n) 0 deconvolution of finite-system spectrum (fit to a smooth infinite-system spectrum) One-dimensional systems η(n) = cn 1 with c > effective band width W η 1 measurement time t One-dimensional electron gas (Fermi velocity v F W a 2 ) v F t < Na 2 7 v F Na

Examples: Optical conductivity of one-dimensional insulators Peierls insulator Half-filled 1D extended Hubbard model σ 1 (ω) 10 5 N=32 N=64 N=128 N=256 Exact =0.6t η(n)=7.68t/n σ 1 (ω) 1.0 0.8 0.6 0.4 U=8t, V 1 =2t η/t=0.4 (N=32) η/t=0.2 (N=64) η/t=0.1 (N=128) 0.2 0 0.4 0.8 1.2 1.6 2.0 ω/t 0.0 0 2 4 6 8 10 12 14 ω/t

Optical conductivity of the 1D Hubbard model (Half filling, U = 3t) Broadening η = 0.1t No broadening/deconvolved 1.0 1.5 σ 1 (ω) 0.8 0.6 0.4 Field Theory DDMRG σ 1 (ω) 1.0 0.5 DDMRG Field theory 0.2 0.0 0 1 2 3 4 5 6 ω/e g 0.0 0 1 2 3 4 5 6 ω/e g Jeckelmann, Gebhard and Essler, PRL 85, 3910 (2000) Jeckelmann and Fehske, cond-mat/0510637

Quasi-momentum for open boundary conditions [H. Benthien, F. Gebhard, and E. Jeckelmann, Phys. Rev. Lett. 92, 256401 (2004)] Periodic boundary conditions Bloch wavefunctions for momenta (wavevectors) ĉ kσ = 1 N n e ikn ĉ nσ k = 2π N z with z = 0, ±1, ±2,..., N 2 Open boundary conditions particle-in-the-box wavefunctions for quasi-momenta ĉ kσ = 2 N+1 n sin(kn) ĉ nσ, k = π N + 1 j with j = 1, 2,..., N

ARPES spectrum of TTF-TCNQ [R. Claessen et al., PRL 88, 096402 (2002); M. Sing et al., PRB 68, 125111 (2003) ] [Benthien, Gebhard, and Jeckelmann, PRL 92, 256401 (2004)] Experiment Hubbard model 0 ω -0.5-1 -1.5-2 -2.5 0-0.5-1 -1.5-2 log(a(k,w)) -3-3.5-4 0 0.5 1 1.5 κ/π

DDMRG vs Bethe Ansatz (ρ = 0.6, U = 4.9t) ω/t 0-0.5-1 -1.5-2 -2.5-3 -3.5-4 -4.5-5 -1-3k F -2k F -k F 0 k F 2k F 3k F 1 k/π

Spectral properties of SrCuO 2 [H. Benthien and E. Jeckelmann, e-print cond-mat/0606748] Quantitative description of optical absorption, angle-resolved photoemission spectrum, resonant inelastic X-ray scattering (RIXS), and neutron scattering with the one-dimensional half-filled extended Hubbard model RIXS spectrum [Y.-J. Kim et al., Phys. Rev. Lett. 92, 137402 (2004)] 6 20 4 Energy Loss (ev) 5.5 5 4.5 4 3.5 3 2.5 18 16 14 12 10 8 Intensity (per sec) ω (ev) 3.5 3 2.5 2 1.5 2 1.5 1 0.5 1 0.8 0.6 0.4 0.2 0 0.2 q/2π 6 4 2 1-1 -0.8-0.6-0.4-0.2 0 0.2 q/2π ɛ c (k) 2t cos(q) ɛ s (k) πj sin(q) 2

DMRG and quantum information theory: A new perspective The Hilbert space truncation in DMRG is optimal because ψ exact ψ DMRG is maximal [Noack and White in I. Peschel et al., Density Matrix Renormalization, Springer, 1999] the maximal entanglement between system and environment is preserved [G. Vidal et al., PRL 90, 227902 (2003)] Examples Measure of entanglement: Von Neumann entropy S = T rρ ln 2 (ρ) = µ λ µ ln 2 (λ µ ) λ 1 = 1, λ µ>1 = 0 S = 0, i.e. no entanglement λ µ = 1/m S = ln 2 (m), i.e. maximal entanglement

Entanglement entropy S L of a L-site cluster in an infinite chain S L diverges for L at criticality S L saturates for L in the non-critical regime Isotropic XX chain in a magnetic field Ising chain in a transverse field S L 3.5 3 2.5 2 1.5 1 0.5 0 0 50 100 150 200 L S L 1.8 1.6 1.4 1.2 1 0.8 0 50 100 150 200 L S L vanishes for H = H c S L = 0 for H = 0 S L diverges at criticality H = H c [Latorre, Rico, and Vidal, arxiv:quant-ph/0304098] Geometric arguments S L L d 1 for a hypercubic cluster in dimension d > 1

Number of density matrix eigenstates m(l) for a fixed accuracy in the thermodynamic limit L In d = 1 away from criticality, m(l) finite value In d = 1 at criticality, lim L m(l) = For d > 1, m(l) n Ld 1

Optimization using entanglement entropy (for non-local systems) DMRG procedure = successive density-matrix truncations Fixed number m of density-matrix eigenstates is not optimal Dynamical block state selection is better: P m const. [Legeza et al., PRB 67, 125114 (2003)] Even better: quantum information loss χ(s) const. [Legeza and Sólyom, PRB 70, 205118 (2004)] Site ordering in non-local systems Optimal ordering using quantum information entropy [Legeza and Sólyom, PRB 68, 195116 (2003)]

Entropy and quantum phase transitions Quantum phase transition singularity in the ground state entanglement [Wu, Sarandy, and Lidar, PRL 93, 250404 (2004)] Problem: measure of entanglement? Cluster entropy S L for L [G. Vidal et al., PRL 90, 227902 (2003)] Concurrence (only for spin systems) [A. Osterloh, Nature 416, 608 (2005)] One-site entropy (often insensitive) [Gu et al., PRL 93, 086402 (2004)] Two-site entropy [Legeza and Sólyom, PRL 96, 116401 (2006)] Ionic Hubbard model ( = t) Dimer order Site entropy 0.1 0.05 1.3 1.25 1.2 1.15 40 80 200 400 0 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 U/ 40 80 200 400 1.1 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 U/ Two site entropy 1.9 1.85 1.8 1.75 1.7 1.65 1.6 1.55 40 1.5 80 200 1.45 400 1.4 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 U/

Variational matrix-product states Reformulation of DMRG as a variational optimization of matrix-product states [F. Verstraete, D. Porras, and J.I. Cirac, PRL 93, 227205 (2004)] As good as DMRG for open chains In theory, improvement for periodic systems In theory, extension to higher dimensions with projected entangled pair states (PEPS) [F. Verstraete and J. I. Cirac, cond-mat/0407066]

Time-dependent DMRG i h ψ(t) t = H(t)ψ(t) First approach: integration in a static superblock (Runge-Kutta) ρ = ψ 0 ψ 0 (incorrect) [Cazalilla and Marston, PRL 88, 256403 (2002)] ρ = i ψ ( t i )ψ (t i ) (not practical) [Luo, Xiang, and Wang, PRL 91, 049701 (2003)] Second approach: Taylor-expansion of exp( iht) ρ = n ψ n ψ n with ψ n = H n ψ(t = 0) (not practical) [Schmitteckert, PRB 70, 121302 (2004)]

Vidal s algorithm [G. Vidal, PRL 93, 040502 (2004)] Only one-dimensional nearest-neighbor Hamiltonians H = N 1 k=1 H k,k+1 exp( ihτ) = N/2 k=1 Trotter-Suzuki decomposition exp( iτh 2k 1,2k ) N/2 1 k=1 exp( iτh 2k,2k+1 ) + O(τ 2 ) (More accurate for higher order decomposition) Matrix-product representation exp( iτh k,k+1 )ψ(t) M k [s k ], M k+1 [s k+1 ] M k[s k ], M k+1[s k+1 ] Time step = sweep through the lattice k = 1,..., N 1 ψ(t + τ) = exp( iτh)ψ(t)

(Adaptive) time-dependent DMRG (t-dmrg) [A.J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, JSTAT (2004); S.R. White and A.E. Feiguin, PRL 93, 076401 (2004)] Efficient implementation of Vidal s algorithm within DMRG The DMRG superblock basis is adapted at every step ρ(t, k) = ψ(t, k)ψ (t, k) DMRG step: Adding one site to the left block or to the right block ψ(t, k+1) = exp( iτh k,k+1 )ψ(t, k) or ψ(t, k) = exp( iτh k,k+1 )ψ(t, k+1) Time step = one sweep from (L) left to right or (R) right to left (L) ψ(t + τ) = ψ(t, k = N) = exp( iτh)ψ(t, k = 1) = exp( iτh)ψ(t) (R) ψ(t + τ) = ψ(t, k = 1) = exp( iτh)ψ(t, k = N) = exp( iτh)ψ(t) For longer-range interactions or higher dimensions: Adaptive Runge-Kutta approach [Feiguin and White, PRB 72, 020404 (2005)]

t-dmrg code From De Chiara et al., e-print arxiv:cond-mat/0603842

Spin chain dynamics t=14 <S z (x)> 0.5 0 t=0 t=2 50 100 150 x Time evolution of the local magnetization S z (x) of a 200 site spin-1 Heisenberg chain after S + (100) is applied (τ = 0.1). From S.R. White and A.E. Feiguin, PRL 93, 076401 (2004)

Problem: runaway time 1 L=100, dt = 0.05 0.1 1e 02 S z deviation 1e 03 1e 04 1e 05 1e 06 1e 07 m=10 m=20 m=30 m=40 m=50 m=60 m=70 m=80 1e 08 0 10 20 30 time runaway time 30 20 10 B A m 20 30 40 50 Error in the local magnetization as a function of time in the XX model (τ = 0.05). From Gobert, Kollath, Schollwöck, Schütz, PRE 71, 036102 (2005)

Transport through nanostructures Interacting spinless fermion system coupled to non-interacting leads Left Lead Nano System Right Lead M L /2 sites M S sites M L /2 sites t C t C 1 2 n 1 n m 1 m M Finite-size effects are important no steady state Differential conductance vs bias voltage (M S = 7) (M = 144, m = 600 for weak coupling, M = 192, m = 800 for strong coupling) 1 0.8 V/ t S = 3 V/ t S = 1 g [ e 2 / h ] 0.6 0.4 0.2 0-0.4-0.2 0 0.2 0.4 µ SD [ t ] From Schneider and Schmitteckert, arxiv:cond-mat/0601389

ρ = Finite-temperature dynamics Density operator ρ in Hilbert space of dimension D wavefunction in space of dimension D 2 {s 1,...,s N } {t 1,...,t N } matrix-product representation of ρ (M 1 [s 1, t 1 ]... M N [s N, t N ]) s 1... s N t 1... t N with M i [s i, t i ] = m m matrix and s i, s i = 1,..., n i = basis states of site i dρ dt dρ dβ Imaginary and real time evolution = Hρ and ρ(β = 0) = Id ρ = exp( βh) = i[h, ρ] ρ(t + τ) = exp( ihτ)ρ(t) exp(ihτ) [Verstraete et al., PRL 93, 207204 (2004); Zwolak and Vidal, PRL 93, 207205 (2004); Feiguin and White, PRB 72, 220401 (2005)]

Summary DMRG is a variational method Connection to matrix-product states Relation to quantum information theory (entanglement) Optimization using entanglement entropy Criticality and entanglement Time-dependent DMRG Finite-temperature dynamics Bright prospects for the future

Thanks Holger Benthien (Marburg) Florian Gebhard (Marburg) Satoshi Nishimoto (Dresden) Fabian Eßler (Oxford)