Chapter 13 Photosynthesis in Higher Plants

Similar documents
CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT

Photosynthesis in Higher Plants

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-13 PHOTOSYNTHESIS IN HIGHER PLANTS

Points To Remember. . (Candle with belljar and mouse expt.) Jan Ingenhousz (1779) : Release of O 2

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Photosynthesis (chapter 12):

Lecture 9: Photosynthesis

1 Photosynthesis in Higher Plants

Lecture Series 13 Photosynthesis: Energy from the Sun

Photosynthesis. Excitation of chlorophyll in a chloroplast

Chapter 5: Photosynthesis: The Energy of Life pg : Alternative Mechanisms of Carbon Fixation pg

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata

NCERT. not to be published CHAPTER 13 PHOTOSYNTHESIS IN HIGHER PLANTS 13.1 WHAT DO WE KNOW? 206 BIOLOGY

Question Answer Mark Guidance 1 (a) (i) 2 max

THE BASICS OF PHOTOSYNTHESIS

AP Biology. Chloroplasts: sites of photosynthesis in plants

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

PHOTOSYNTHESIS. Botany Department B.N.D. College

Metabolism 2 Photosynthesis

Photosynthesis in Higher Plants

NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4)

Vital metabolism for survival of life in the earth. Prof Adinpunya Mitra Agricultural & Food Engineering Department

Photosynthesis. (in C 3 plants)

Just Like the Guy From Krypton Photosynthesis

Photosynthesis: Life from Light AP Biology

WJEC UNIT 3. ATP & Photosynthesis. Tyrone. R.L. John

Photosynthesis Definition and Superficial Overview

CHAPTER 8 PHOTOSYNTHESIS

Photosynthesis (Outline)

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to

Chapter 10 Photosynthesis

4.1. Photosynthesis Light-Dependent Reactions

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs

Name AP Biology Photosynthesis Notes Mrs. Laux Photosynthesis: Capturing Energy I. Chloroplasts A. Facts: 1. double membrane 2.

Photosynthesis is the main route by which that energy enters the biosphere of the Earth.

Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis

Photosynthesis. Chapter 8

Chapter 7: Photosynthesis

5/08/ :49 PM 28/02/13. Lecture 2: Photosynthesis:

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy.

8.1 Photosynthesis and Energy

Photosynthesis Overview

Chapter 7 Capturing Solar Energy: Photosynthesis. Chapter 7: Photosynthesis. What is Photosynthesis?

Chapter 10. Photosynthesis

Photosynthesis. Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis

Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

Bio 111 Study Guide Chapter 8 Photosynthesis

Photosynthesis (Outline)

Photosynthesis in Detail. 3/19/2014 Averett

pigments AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions Visible light is part of electromagnetic spectrum

Study questions Test 3. Plant Structure Cntd. Photosynthesis

AP Biology Day 22. Monday, October 10, 2016

The conversion of usable sunlight energy into chemical energy is associated with the action of the green pigment chlorophyll.

Photosynthesis: Life from Light and Air

Basic stoichiometric equation on photosynthesis and the production of sugar and oxygen via the consumption of CO2, water, and light

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll:

8 Photosynthesis CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

Bio 111 Study Guide Chapter 10 Photosynthesis

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules).

Endosymbiotic Theory. p

LECTURE PRESENTATIONS

Photosynthesis. I. Photosynthesis overview A. Purpose B. Location. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B.

1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy.

Chapter 6. Capturing Solar Energy: Photosynthesis. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Dr. Mahesha H B Associate Professor and Head Department of Sericulture Yuvaraja s College University of Mysore, Mysuru, India

Chapter 10: PHOTOSYNTHESIS

Photosynthesis. From Sunlight to Sugar

Photosyntheis; Summary of what you need to know. Photosynthesis is simply the process by which organisms convert solar energy to chemical energy

Photosynthesis and Life

Remember what plants need! Photosynthesis. Photosynthesis: Variations on the Theme " Leaf Structure. Controlling water loss from leaves

Energy can be transformed from one form to another

Photosynthesis Overview

Photosynthesis. Chapter 10. Photosynthesis and Energy. Photosynthesis and Energy. Photosynthesis. Making food from light energy.

LIGHT DEPENDENT & INDEPENDENT REACTIONS

LEAF Describe the structure of A dicotyledonous leaf A Palisade cell Chloroplast 2

Photosynthesis. Dr. Bertolotti

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions

Photosynthesis. The Sun powers life. capture about 5% of the Sun s energy and, through the process of, provide energy to.

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised:

PHOTOSYNTHESIS CHAPTER 7. Where It Starts - Photosynthesis

PHOTOSYNTHESIS. blshpbsu

light-dependent reactions (i.e., light reactions)

Light form the sun is composed of a range of wavelengths (colors). The visible spectrum to the left illustrates the wavelengths and associated color

1. What is the source of the oxygen released into the air as a product of photosynthesis? D. Both water and carbon dioxide (Total 1 mark)

Biology: Life on Earth

Complete the notes on photosynthesis in the spaces below.

Photosynthesis. Chapter 10. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece

PHOTOSYNTHESIS. The nature of the light energy

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis

Photosynthesis. Chapter 10. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work)

PHOTOSYNTHESIS: converts light energy to the chemical energy of food 6CO 2 + 6H 2 O + light energy C 6 H 12 O 6 + 6O 2

Ch. 10- Photosynthesis: Life from Light and Air

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

PHOTOSYNTHESIS. Chapter 10

Transcription:

Question 1: By looking at a plant externally can you tell whether a plant is C 3 or C 4? Why and how? One cannot distinguish whether a plant is C 3 or C 4 by observing its leaves and other morphological features externally. Unlike C 3 plants, the leaves of C 4 plants have a special anatomy called Kranz anatomy and this difference can only be observed at the cellular level. For example, although wheat and maize are grasses, wheat is a C 3 plant, while maize is a C 4 plant. Question 2: By looking at which internal structure of a plant can you tell whether a plant is C 3 or C 4? Explain. The leaves of C 4 plants have a special anatomy called Kranz anatomy. This makes them different from C 3 plants. Special cells, known as bundle-sheath cells, surround the vascular bundles. These cells have a large number of chloroplasts. They are thick-walled and have no intercellular spaces. They are also impervious to gaseous exchange. All these anatomical features help prevent photorespiration in C 4 plants, thereby increasing their ability to photosynthesise. Question 3: Even though a very few cells in a C 4 plant carry out the biosynthetic Calvin pathway, yet they are highly productive. Can you discuss why? The productivity of a plant is measured by the rate at which it photosynthesises. The amount of carbon dioxide present in a plant is directly proportional to the rate of photosynthesis. C 4 plants have a mechanism for increasing the concentration of carbon dioxide. In C 4 plants, the Calvin cycle occurs in the bundle-sheath cells. The C 4 compound (malic acid) from the mesophyll cells is broken down in the bundle- Page 1 of 6

sheath cells. As a result, CO 2 is released. The increase in CO 2 ensures that the enzyme RuBisCo does not act as an oxygenase, but as a carboxylase. This prevents photorespiration and increases the rate of photosynthesis. Thus, C 4 plants are highly productive. Question 4: RuBisCo is an enzyme that acts both as a carboxylase and oxygenase. Why do you think RuBisCo carries out more carboxylation in C 4 plants? The enzyme RuBisCo is absent from the mesophyll cells of C 4 plants. It is present in the bundle-sheath cells surrounding the vascular bundles. In C 4 plants, the Calvin cycle occurs in the bundle-sheath cells. The primary CO 2 acceptor in the mesophyll cells is phosphoenol pyruvate a three-carbon compound. It is converted into the four-carbon compound oxaloacetic acid (OAA). OAA is further converted into malic acid. Malic acid is transported to the bundle-sheath cells, where it undergoes decarboxylation and CO 2 fixation occurs by the Calvin cycle. This prevents the enzyme RuBisCo from acting as an oxygenase. Question 5: Suppose there were plants that had a high concentration of Chlorophyll-b, but lacked chlorophyll-a, would it carry out photosynthesis? Then why do plants have chlorophyll-b and other accessory pigments? Chlorophyll-a molecules act as antenna molecules. They get excited by absorbing light and emit electrons during cyclic and non-cyclic photophosphorylations. They form the reaction centres for both photosystems I and II. Chlorophyll-b and other photosynthetic pigments such as carotenoids and xanthophylls act as accessory pigments. Their role is to absorb energy and transfer it to chlorophyll-a. Carotenoids and xanthophylls also protect the chlorophyll molecule from photo-oxidation. Therefore, chlorophyll-a is essential for photosynthesis. Page 2 of 6

If any plant were to lack chlorophyll-a and contain a high concentration of chlorophyll-b, then this plant would not undergo photosynthesis. Question 6: Why is the colour of a leaf kept in the dark frequently yellow, or pale green? Which pigment do you think is more stable? Since leaves require light to perform photosynthesis, the colour of a leaf kept in the dark changes from a darker to a lighter shade of green. Sometimes, it also turns yellow. The production of the chlorophyll pigment essential for photosynthesis is directly proportional to the amount of light available. In the absence of light, the production of chlorophyll-a molecules stops and they get broken slowly. This changes the colour of the leaf gradually to light green. During this process, the xanthophyll and carotenoid pigments become predominant, causing the leaf to become yellow. These pigments are more stable as light is not essential for their production. They are always present in plants. Question 7: Look at leaves of the same plant on the shady side and compare it with the leaves on the sunny side. Or, compare the potted plants kept in the sunlight with those in the shade. Which of them has leaves that are darker green? Why? Light is a limiting factor for photosynthesis. Leaves get lesser light for photosynthesis when they are in shade. Therefore, the leaves or plants in shade perform lesser photosynthesis as compared to the leaves or plants kept in sunlight. In order to increase the rate of photosynthesis, the leaves present in shade have more chlorophyll pigments. This increase in chlorophyll content increases the amount of light absorbed by the leaves, which in turn increases the rate of photosynthesis. Therefore, the leaves or plants in shade are greener than the leaves or plants kept in the sun. Page 3 of 6

Question 8: Figure 110 shows the effect of light on the rate of photosynthesis. Based on the graph, answer the following questions: (a) At which point/s (A, B or C) in the curve is light a limiting factor? (b) What could be the limiting factor/s in region A? (c) What do C and D represent on the curve? (a) Generally, light is not a limiting factor. It becomes a limiting factor for plants growing in shade or under tree canopies. In the given graph, light is a limiting factor at the point where photosynthesis is the minimum. The least value for photosynthesis is in region A. Hence, light is a limiting factor in this region. Page 4 of 6

(b) Light is a limiting factor in region A. Water, temperature, and the concentration of carbon dioxide could also be limiting factors in this region. (c) Point D represents the optimum point and gives the light intensity at which the maximum photosynthesis is recorded. The rate of photosynthesis remains constant after this point, even though the intensity of light Question 9: Give comparison between the following: (a) C 3 and C 4 pathways (b) Cyclic and non-cyclic photophosphorylation (c) Anatomy of leaf in C 3 and C 4 plants (a) C 3 and C 4 pathways C 3 pathways C 4 pathways 1. The primary acceptor of CO 2 is RUBP a six-carbon compound. 1. The primary acceptor of CO 2 is phosphoenol pyruvate a threecarbon compound. The first stable product is 3- phosphoglycerate. The first stable product is oxaloacetic acid. It occurs only in the mesophyll cells of the leaves. It occurs in the mesophyll and bundle-sheath cells of the leaves. It is a slower process of carbon It is a faster process of carbon fixation and photo-respiratory losses fixation and photo-respiratory are high. losses are low. Page 5 of 6

(b) Cyclic and non-cyclic photophosphorylations Cyclic photophosphorylation Non-cyclic photophosphorylation 1. It occurs only in photosystem I. 1. It occurs in photosystems I and II. It involves only the synthesis of ATP. It involves the synthesis of ATP and NADPH 2. In this process, photolysis of water In this process, photolysis of does not occur. Therefore, oxygen is water takes place and oxygen is not produced. liberated. In this process, electrons move in a closed circle. In this process, electrons do not move in a closed circle. (c) Anatomy of the leaves in C 3 and C 4 plants C 3 leaves C 4 leaves 1. Bundle-sheath cells are absent 1. Bundle-sheath cells are present RuBisCo is present in the mesophyll cells. RuBisCo is present in the bundlesheath cells. The first stable compound produced is The first stable compound produced 3-phosphoglycerate a three-carbon is oxaloacetic acid a four-carbon compound. compound. Photorespiration occurs Photorespiration does not occur Page 6 of 6