ECEN 326 Electronic Circuits

Similar documents
ECEN 325 Electronics

ECEN 325 Electronics

ECEN 326 Electronic Circuits

ESE319 Introduction to Microelectronics. Feedback Basics

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

ESE319 Introduction to Microelectronics. Feedback Basics

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

Lecture 120 Compensation of Op Amps-I (1/30/02) Page ECE Analog Integrated Circuit Design - II P.E. Allen

Chapter 10 Feedback. PART C: Stability and Compensation

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design

OPERATIONAL AMPLIFIER APPLICATIONS

Lectures on STABILITY

Lecture 17 Date:

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

Stability of Operational amplifiers

Integrated Circuit Operational Amplifiers

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Electronic Circuits Summary

EE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits

Homework Assignment 11

University of Toronto. Final Exam

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

H(s) = 2(s+10)(s+100) (s+1)(s+1000)

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Stability & Compensation

EE 435. Lecture 23. Common Mode Feedback Data Converters

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Sample-and-Holds David Johns and Ken Martin University of Toronto

Stability and Frequency Compensation

FEL3210 Multivariable Feedback Control

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

6.2 INTRODUCTION TO OP AMPS

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration

Advanced Current Mirrors and Opamps

Analysis and Design of Analog Integrated Circuits Lecture 12. Feedback

Input and Output Impedances with Feedback

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

EE 230 Lecture 25. Waveform Generators. - Sinusoidal Oscillators The Wein-Bridge Structure

Electronics II. Final Examination

ECE 486 Control Systems

Topic # Feedback Control

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.

EE 230 Lecture 24. Waveform Generators. - Sinusoidal Oscillators

Homework 7 - Solutions

The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location.

Boise State University Department of Electrical Engineering ECE461 Control Systems. Control System Design in the Frequency Domain

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

Chapter 6 Frequency response of circuits. Stability

Frequency Response Techniques

EE105 Fall 2014 Microelectronic Devices and Circuits

FEEDBACK, STABILITY and OSCILLATORS

Electronic Circuits EE359A

CHAPTER 6 CMOS OPERATIONAL AMPLIFIERS

Robust Control 3 The Closed Loop

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

Homework Assignment 09

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

MAS107 Control Theory Exam Solutions 2008

OPAMPs I: The Ideal Case

Lecture 37: Frequency response. Context

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

EECS 105: FALL 06 FINAL

ECEN 610 Mixed-Signal Interfaces

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Control System Design

Filters and Tuned Amplifiers

Lecture 20a. Circuit Topologies and Techniques: Opamps

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C

The Nyquist Stability Test

EE 435. Lecture 15. Compensation of Cascaded Amplifier Structures

CE/CS Amplifier Response at High Frequencies

Feedback design for the Buck Converter

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

I. Frequency Response of Voltage Amplifiers

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Switched Capacitor: Sampled Data Systems

Loop shaping exercise

MEM 355 Performance Enhancement of Dynamical Systems

Systems Analysis and Control

Chapter 9: Controller design

Lecture 15 Nyquist Criterion and Diagram

Conventional Paper-I Part A. 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

EE 435. Lecture 16. Compensation of Feedback Amplifiers

FEEDBACK AND STABILITY

Systems Analysis and Control

Multistage Amplifier Frequency Response

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods

Application Report. Mixed Signal Products SLOA021

Definition of Stability

Transcription:

ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering

Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s) = a o 1 s p 1 A(s) = V o V i (s) = a(s) 1 + a(s)f = 1 a o 1 + a o f s (1 + a o f)p 1 ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 1

Gain-Bandwidth 1-pole amplifier Gain magnitude, db 20 log a o a(j ω) 20 log a o 1+a o f A(j ω) 20 db/dec 0 p 1 (1+a o f) p 1 ω t ω log scale ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 2

Instability and the Nyquist Criterion Transfer function of a 3-pole amplifier: a(s) = 1 s p 1 a o 1 s p 2 1 s p 3 Nyquist criterion for stability of the amplifier: Consider a feedback amplifier with a stable T(s). If the Nyquist plot of T(jω) encircles the point (-1,0), the feedback amplifier is unstable. ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 3

Magnitude & Phase 3-pole amplifier a(jω), db 20 log a o 20 log a 180 20 db/dec 40 db/dec 0 45 90 135 180 225 270 a(jω) p 1 p 2 ω 180 p 3 60 db/dec ω log scale ω ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 4

Magnitude & Phase T(s) = a(s)f 1 T(jω), db 20 log a o f 1 20 log a 180 f 0 1 45 90 135 180 225 270 20 db/dec 40 db/dec ω p1 p 2 ω180 p 3 60 db/dec log scale ω T(jω) ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 5

Nyquist Plot T(s) = a(s)f 1 Im ω negative ( 1,0) a 180 f 1 0 ω= a o f 1 ω=0 Re ω=ω 180 ω positive ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 6

Magnitude & Phase T(s) = a(s)f 2 T(jω), db 20 log a o f 2 0 20 log a 180 f 2 20 db/dec ω180 3 p p1 p 2 40 db/dec ω log scale 60 db/dec 45 90 135 180 225 270 log scale ω T(jω) ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 7

Nyquist Plot T(s) = a(s)f 2 Im ω negative ω=ω 180 a 180 f 2 ( 1,0) 0 ω= a o f 2 ω=0 Re ω positive ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 8

Gain & Phase Margin 20 log a 20 log a a(jω), db o 180 T(j ω) =0 db ω axis for T(j ω) 20 log 1 f Gain margin 0 45 90 135 180 225 270 a(jω), T(j ω) p 1 ω o p 2 ω 180 p 3 Phase margin ω log scale ω ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 9

Stability Criteria Nyquist: T(jω 180 ) = a 180 f < 1 Stable Gain Margin (GM): GM = 20 log 1 T(jω 180 ) = 20 log T(jω 180) GM > 0 Stable Phase Margin (PM): PM = 180 + T(jω o ) PM > 0 Stable ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 10

Phase Margin T(jω o ) = 1 a(jω o ) f = 1 a(jω o ) = 1 f PM = 45 T(jω o ) = 135, A(jω o ) = a(jω o) A(jω o ) = a(jω o) 1 + e j135 = A(jω o ) = 1 + T(jω o ) a(jω o ) 1 0.7 0.7j a(jω o) 0.3 0.7j = 1 0.76f = 1.3 f PM = 30 T(jω o ) = 150, A(jω o ) = 1.92/f PM = 60 T(jω o ) = 120, A(jω o ) = 1/f PM = 90 T(jω o ) = 90, A(jω o ) = 0.7/f ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 11

Closed-Loop Frequency Response 10 5 PM=30 PM=45 PM=60 PM=90 0 Relative Gain, db -5-10 -15-20 -25-30 0.01 0.1 1 10 Relative Frequency ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 12

Closed-Loop Step Response PM = 30 PM = 45 PM = 60 PM = 90 ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 13

Compensation Dominant pole (p D ) added, f = 1 ω a(j ), db 20 log a o Original After compensation p D Original p 1 p 2 p 3 ω log scale 45 90 135 180 225 270 After compensation ω a(j ) p D p 1 /a o ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 14

Compensation Dominant pole (p D ) added, f < 1 ω a(j ), db 20 log a o Original After compensation 20 log 1 f p D Original p 1 p 2 p 3 ω log scale 45 90 135 180 225 270 After compensation ω a(j ) p D p 1 /(a o f) ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 15

Compensation p 1 shifted to p 1, f = 1 ω a(j ), db 20 log a o Original After compensation p 1 Original p 1 p 2 p 3 ω log scale 45 90 135 180 225 270 After compensation ω a(j ) p 1 p 2 /a o ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 16

Compensation p 1 shifted to p 1, f < 1 ω a(j ), db 20 log a o Original After compensation 20 log 1 f 45 90 135 180 225 270 p 1 p 1 p 2 p 3 Original After compensation ω log scale ω a(j ) p 1 p 2 /(a o f) ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 17

2-Stage Amplifier Dominant-pole compensation V CC R L1 R L1 R L2 R L2 V i1 Vo1 Vo2 Q C 1 Q2 Q 3 Q 4 V i2 V EE C : Compensation capacitor ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 18

2-Stage Amplifier DM half circuit R L1 v o v s R S Q 1 2C Q 3 R L2 p D = 1 2RC R = R L1 (r b3 + r π3 ) The value of C required is usually very large (typically > 1nF) ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 19

Compensation of Opamps Simplified BJT V DD Q 8 Q 5 Q 7 v i I bias Q 1 Q 2 C v o Q 3 Q 4 Q 6 V SS C : Compensation capacitor ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 20

Compensation of Opamps Simplified MOS V DD M 8 M 5 M 7 v i I bias M 1 M 2 C v o M 3 M 4 M 6 V SS C : Compensation capacitor ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 21

Compensation of Opamps Small-signal equivalent C v o C in R g m6 v 1 C 2 R 2 v i R in g m1 v i 1 v1 C 1 v o v i = g m1 R 1 R 2 (g m6 sc) 1+s[R 1 (C 1 +C)+R 2 (C 2 +C)+g m6 R 1 R 2 C]+s 2 [R 1 R 2 (C 1 C 2 +CC 1 +CC 2 ] If p 1 and p 2 are real, p 1 p 2, C is large, g m6 R 1, g m6 R 2 1 : 1 p 1 R 1 (C 1 +C) + R 2 (C 2 +C) + g m6 R 1 R 2 C 1 g m6 R 1 R 2 C g m6 C p 2 C 1 C 2 + C(C 1 +C 2 ) z = g m6 C ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 22

Compensation of Opamps Pole splitting C = 0 p 1 = 1 R 1 C 1, p 2 = 1 R 2 C 2 1 C C 1, C 2 p 1 g m6 R 1 R 2 C, p 2 g m6 C 1 + C 2 1 R 2 C 2 poles split 1 R 1 C 1 jω s plane σ As C increases, p 1 decreases and p 2 increases ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 23

Effect of RHP Zero z = g m6 /C v o v i (j ω), db a z 0 45 90 135 180 225 270 v o v i ω p1 z p 2 log scale ω (j ω) If a z > 0 db and z < p 2, PM becomes negative ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 24

Elimination of RHP Zero Effect Solution #1 C C 1 Buffer V DD M 8 M 5 M 7 v i M 1 M 2 C M 9 I bias v o I D M 3 M 4 M 6 V SS ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 25

Elimination of RHP Zero Effect Solution #1 Assuming g m6 R 1, g m6 R 2 1 and C is large, 1 p 1 g m6 R 1 R 2 C p 2 g m6c (C 1 + C)C 2 g m6 C 2 The zero has been eliminated p 1 is unchanged p 2 is approximately the same as before Extra devices and bias current are required Output swing is affected ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 26

Elimination of RHP Zero Effect Solution #2 V DD M 8 v i M 5 I D C M 7 M 1 M 2 VB M 9 I bias v o M 3 M 4 I D M 6 V SS ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 27

Elimination of RHP Zero Effect Solution #2 Assuming g m6 R 1, g m6 R 2 1 and C is large, 1 p 1 g m6 R 1 R 2 C g m6 p 2 C + C 2 C C 1 The zero has been eliminated p 1 is unchanged p 2 is at a higher frequency Extra devices and bias current are required Input offset voltage is affected if I D s mismatch ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 28

Elimination of RHP Zero Effect Solution #2 - alt. V DD M 8 M 5 M 7 v i I bias V B M 1 M 2 M 9 M 10 V B v o M 3 M 4 C M 6 V SS ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 29

Elimination of RHP Zero Effect Solution #3 V DD M 8 M 5 M 7 v i I bias M 1 M 2 C R Z v o M 3 M 4 M 6 V SS ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 30

Elimination of RHP Zero Effect Solution #3 Assuming g m6 R 1, g m6 R 2 1 and C is large, 1 p 1 g m6 R 1 R 2 C g m6 g m6 C p 2 C 1 C 2 + C(C 1 +C 2 ) C 1 +C 2 p 3 1 R Z C 1 z = 1 1 g m6 R Z C R Z = 1 g m6 z = R Z > 1 g m6 LHP zero (z < 0) ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Stability 31