APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

Similar documents
Single Particle Motion

14. Energy transport.

12. MHD Approximation.

Preliminary Examination - Day 1 Thursday, August 10, 2017

Chapter 3. Coulomb collisions

ρ c (2.1) = 0 (2.3) B = 0. (2.4) E + B

Preliminary Examination - Day 1 Thursday, May 10, 2018

[variable] = units (or dimension) of variable.

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Waves in plasma. Denis Gialis

Plasma Descriptions I: Kinetic, Two-Fluid

Lectures on basic plasma physics: Introduction

Fundamental Constants

Plasmas as fluids. S.M.Lea. January 2007

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion

Part VIII. Interaction with Solids

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Fluid equations, magnetohydrodynamics

Equilibrium and transport in Tokamaks

xkcd.com It IS about physics. It ALL is.

Study of Coulomb collisions and magneto-ionic propagation effects on ISR measurements at Jicamarca

Kinetic, Fluid & MHD Theories

Fluid Equations for Rarefied Gases

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Preliminary Examination - Day 1 Thursday, August 9, 2018

Introduction to Electromagnetic Theory

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

Transport coefficients in plasmas spanning weak to strong correlation

EUF. Joint Entrance Examination for Postgraduate Courses in Physics

Chapter 10. Past exam papers

(a) What is the direction of the magnetic field at point P (i.e., into or out of the page), and why?

PHYSICS OF HOT DENSE PLASMAS

Mathematical Notes for E&M Gradient, Divergence, and Curl

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Fokker-Planck collision operator

ELE3310: Basic ElectroMagnetic Theory

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS

Multiple Integrals and Vector Calculus: Synopsis

Solutions to PS 2 Physics 201

Rate of change of velocity. a=dv/dt. Acceleration is a vector quantity.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

Ch 1. Review of classical physics

Mathematical Concepts & Notation

Lecture notes for ELECTRODYNAMICS.

2nd Year Electromagnetism 2012:.Exam Practice

Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr.

MCQs E M WAVES. Physics Without Fear.

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

Graduate Written Examination Fall 2014 Part I

Candidacy Exam Department of Physics February 6, 2010 Part I

Kinetic theory of ions in the magnetic presheath

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL

Motion of Charged Particles in Fields

MAGNETOHYDRODYNAMICS

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Graduate Written Examination Spring 2014 Part I Thursday, January 16th, :00am to 1:00pm

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c.

Ideal Magnetohydrodynamics (MHD)

Physics 208, Spring 2016 Exam #3


Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Resistive MHD, reconnection and resistive tearing modes

Basic concepts in Magnetism; Units

Heating and current drive: Radio Frequency

Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 2014 Part I

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance.

Relativistic magnetohydrodynamics. Abstract

Electrostatics. Chapter Maxwell s Equations

Solution Set Eight. 1 Problem #1: Toroidal Electromagnet with Gap Problem #4: Self-Inductance of a Long Solenoid. 9

MATHEMATICAL PRELIMINARIES

Preliminary Examination - Day 2 May 16, 2014

Relevant Electrostatics and Magnetostatics (Old and New)

Chapter 27 Sources of Magnetic Field

Where k = 1. The electric field produced by a point charge is given by

lim = F F = F x x + F y y + F z

COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969

MHD Linear Stability Analysis Using a Full Wave Code

Charged particle motion in external fields

Preliminary Examination - Day 2 August 15, 2014

8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the

Advanced Placement. Chemistry. Integrated Rates

Appendix 1: List of symbols

Simple examples of MHD equilibria

FLUID MODELS OF MAGNETIZED PLASMAS or BEYOND MHD or PLASMA PHYSICS IN 100 MINUTES!

Macroscopic plasma description

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main

Physics Will Farmer. May 5, Physics 1120 Contents 2

Figure 1.1: Ionization and Recombination

Magnetic Materials. 1. Magnetization 2. Potential and field of a magnetized object

FOUNDATION STUDIES EXAMINATIONS September 2009

Transcription:

APPENDIX Z. USEFUL FORMULAS 1 Appendix Z Useful Formulas

APPENDIX Z. USEFUL FORMULAS 2 Key Vector Relations A B = B A, A B = B A, A A = 0, A B C) = A B) C A B C) = B A C) C A B), bac-cab rule A B) C D) = A C)B D) A D)B C) A B) C D) = C A B D) D A B C) A = A ˆb + A with ˆb B/B A B A/B = ˆb A A B B A)/B 2 = ˆb ˆb A) A =B )A /B)+A /B) B)+ A A = A [ ln B +ˆb )ˆb ]+1/B) ˆb B A ) For A = B f/b 2, ˆb B A )= ˆb f)ˆb ˆb) fg) = g f + f g f 2 f fa) = f A + f A f = 0 fa) = f A + f A A 2 A ft) = f T + f T = A) A) ft) = f T + f T A = 0 B )A C) = C B ) A + A B ) C A B) = A B)+B A)+A ) B +B ) A AB) = B A)+A ) B A B) = B A A B A B) = A B) B A)+B ) A A ) B For the general coordinate x xê x + yê y + zê z and x x 2 + y 2 + z 2, x =3, x = 0, x = I, I = 0, I = 0, A I = A, x = x/ x, 1/ x ) = x/ x 3, 2 1/ x ) = 4πδx), I A = A. For a volume V enclosed by a closed, continuous surface S, V d3 x A = ds A, divergence, Gauss theorem. S For an open surface S bounded by a closed, continuous contour C, S ds A = dl A, Stokes theorem. C

APPENDIX Z. USEFUL FORMULAS 3 Explicit Forms Of Vector Differentiation Operators for orthogonal curvilinear coordinates u i, ê i u i / u i, A i ê i A) Cartesian coordinates: u i =x, y, z), d 3 x = dx dy dz, f f = ê x x + ê f y y + ê f z A = A x x + A y y + A z [ Az A = ê x y A y 2 f = 2 f x 2 + 2 f y 2 + 2 f 2 ] [ Ax + ê y A z x ] [ Ay + ê z x A ] x y Cylindrical coordinates: u i =r, θ, z), d 3 x = rdr 2π dθ 0 0 dz, with r x 2 + y 2, θ arctan y/x), z z, and inverse relations x = r sin θ, y = r cos θ, z = z, f f = ê r r + ê 1 f θ r θ + ê f z A = 1 r r ra r)+ 1 A θ r θ + A z [ 1 A z A = ê r r θ A ] [ θ Ar + ê θ A ] z r [ 1 +ê z r r ra θ) A ] r θ 2 f = 1 r f ) + 1 2 f r r r r 2 θ 2 + 2 f 2 Spherical coordinates: u i =r, ϑ, ϕ), d 3 x = r 2 dr π 0 0 dϑ sin ϑ 2π dϕ, 0 with r x 2 + y 2 + z 2, ϑ arctan x 2 + y 2 /r), ϕ arctan y/x), and inverse relations x = r sin ϑ cos ϕ, y = r sin ϑ sin ϕ, z = r cos ϑ, f f = ê r r + ê 1 f ϑ r ϑ + ê 1 f ϕ r sin ϑ ϕ A = 1 r 2 r r2 A r )+ 1 1 A = ê r r sin ϑ [ +ê ϑ 2 f = 1 r 2 r r sin ϑ ϑ sin ϑa ϑ)+ 1 r sin ϑ ] [ ϑ sin ϑa ϕ) A ϑ ϕ 1 A r r sin ϑ ϕ 1 ] [ r r ra 1 ϕ) + ê ϕ r r 2 f ) 1 + r r 2 sin ϑ f ) + sin ϑ ϑ ϑ A ϕ ϕ r ra ϑ) A r ϑ 1 2 f r 2 sin 2 ϑ ϕ 2 ]

APPENDIX Z. USEFUL FORMULAS 4 Physical Constants m e electron mass 9.11 10 31 kg, 511 kev m p proton mass 1.67 10 27 kg, 938 MeV m p /m e mass ratio 1836 = 42.85) 2 e elementary charge 1.602 10 19 C = J/eV) c speed of light in vacuum 3 10 8 m/s = 1/ µ 0 ɛ 0 µ 0 permeability of vacuum 4π 10 7 N/A 2 ɛ 0 permittivity of vacuum 8.85 10 12 F/m, 4πɛ 0 10 10 h Planck constant 6.626 10 34 J s N A Avogadro constant 6.022 10 23 #/mol e/k B Boltzmann constant 11 604 K/eV Key Plasma Formulas Quantities are in SI mks) units except temperature and energy which are expressed in ev; Z i is the ion charge state; A i m i /m p is the atomic mass number. Frequencies electron plasma ω pe ion gyrofrequency ω ci q i B m i electron collision ν e Lengths electron Debye λ De ion gyroradius ϱ i v Ti ω ci n e e 2 m e ɛ 0 56 n e rad/s, f pe 9 n e Hz 0.96 10 8 Z i B A i rad/s 4 3 π νv Te) 5 10 11 n e Z i [T e ev)] 3/2 ɛ0 T e Te ev) 7.4 103 n e e2 n e Ti ev) A i 1.4 10 4 Z i B electron collision λ e = v Te 1.2 10 16 [T eev)] 2 ν e n e Z i m 17 ln Λ ) ln Λ 17 m ) m Speeds, Velocities electron thermal v Te 2 T e /m e 5.9 10 5 T e ev) m/s ion thermal v Ti 2 T i /m i 1.4 10 4 T i ev)/a i m/s ion acoustic T e >> T i ) c S Z i T e /m i 10 4 Z i T e ev)/a i m/s Alfvén c A B/ µ 0 ρ m 2.2 10 16 B/ n i A i m/s electron diamagnetic ) T e 1 dn e flow dt e /dx =0) V e ê y = T eev) ê y q e B n e dx BL n m/s electron drift in Bx) average, low β) v de = 2T ) e 1 db ê y = 2 T eev) ê y q e B B dx BL B m/s s 1

APPENDIX Z. USEFUL FORMULAS 5 Drift, flow velocities for ϱ << 1, ω<<ω c ) perpendicular to B : particle drift velocities plasma species flow velocities v F = F B/qB 2 general force V F = F B/qB 2 v E = E B/B 2 E B V E = E B/B 2 v µ = B µ B/qB 2 µ grad-b µ mv 2/2B v κ = B mv 2 κ/qb2 curvature κ ˆb )ˆb = R C /RC 2 diamagnetic V = B p/nqb 2 v p = B mdv d /dt)/qb 2 polarization V p = B mdv/dt)/qb 2 friction V η = R B/nqB 2 viscosity V π = B π)/nqb 2 v d = v E + v µ + v κ + v p total V = V E + V + V p + V η + V π Diffusivities no magnetic field ν e λ 2 e vte/ν 2 e 7 10 21 [T 5/2 ) eev)] 17 m 2 /s n e Z i ln Λ magnetic field η/µ 0 m e ν e /n e e 2 )/µ 0 = ν e c/ω pe ) ) 2 ) 1.4 10 3 Z i ln Λ m 2 /s [T e ev)] 3/2 17 classical ν e ϱ 2 e = β e η/µ 0 ) 5.6 10 22 n e Z i B 2 [T e ev)] 1/2 Dimensionless ) ln Λ m 2 /s 17 number of electrons in Debye cube n e λ 3 De 4.1 10 11 [T e ev)] 3/2 / n e ) λ D Coulomb logarithm ln Λ ln max { b cl min,bqm min } b cl min = Z i/12πn e λ 2 De ) 5 10 10 Z i /T e ev) m b qm min = h/4πm ev) 1.1 10 10 /[T e ev)] 1/2 m plasma to magnetic pressure β Lundquist number S a2 /η/µ 0 ) L /c A P B 2 /2µ 0 = n e T e + n i T i B 2 /2µ 0 4.0 10 25 ne B 2 )[ T e ev) + n i n e T i ev) 1.6 10 13 a2 B [T e ev)] 3/2 L Z i ni A i ) 17 ln Λ ]

APPENDIX Z. USEFUL FORMULAS 6 Fundamental Equations of Physics Mechanics m a mdv/dt = F, v dx/dt Newton s second law F = q E + v B) Lorentz force H = p qa 2 /2m + qφ, p = mv + qa Hamiltonian, energy dp/dt = H/ q, dq/dt = H/ p Hamilton s equations Electrodynamics E = ρ q /ɛ 0 Gauss s law E = B/ t Faraday s law B = 0 no magnetic monopoles B = µ 0 J + ɛ 0 E/ t) Ampere s law, µ 0 ɛ 0 =1/c 2 0 = ρ q / t + J charge continuity equation E = φ A/ t, B = A potential representations Plasma Physics Plasma kinetic equation PKE) for distribution function f f s x, v,t): f/ t + v f/ x +q/m)e + v B) f/ v = C{f}. Density, flow moments and charge, current densities: n s d 3 vf s, V s d 3 v v f s /n s, ρ q s n sq s, J s n sq s V s. Gibb s A: adiabatic) distribution of plasma species with temperature T: ) 3/2 f A = n m 0 2πT e H/T ; n A x,t)=n 0 e qφ/t, Boltzmann relation. Maxwellian M: collisional equilibrium) distribution v T 2T/m): ) 3/2 f M = n m 2πT exp m v 2 ) /v 2 2T = ne v 2 T π 3/2 vt 3, v v V. Species fluid moment equations density, momentum, energy): n/ t + nv =0, nt d 3 v mv 2 /3) f, mn dv/dt) =nq E + V B) p π + R, d/dt / t + V, 3/2)n dt/dt)+p V = q π : V + Q, p nt. Magnetohydrodynamics plasma fluid description, isotropic pressure and isentropic responses for plasma species, ρ m s n sm s, V s n sm s V s /ρ m ): ρ m / t + ρ m V =0, E + V B = ηj, P s p s, ρ m dv/dt) =J B P, d ln P/ρm) Γ /dt =Γ 1) ηj 2 /P 0.