Experiment 2 - NMR Spectroscopy

Similar documents
4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra

IR, MS, UV, NMR SPECTROSCOPY

The Use of NMR Spectroscopy

Chapter 15 Lecture Outline

Structure Determination: Nuclear Magnetic Resonance Spectroscopy

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

11. Proton NMR (text , 12.11, 12.12)

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Module 13: Chemical Shift and Its Measurement

NMR = Nuclear Magnetic Resonance

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Spectroscopy in Organic Chemistry. Types of Spectroscopy in Organic

3.15 Nuclear Magnetic Resonance Spectroscopy, NMR

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (I) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

William H. Brown & Christopher S. Foote

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

16.1 Introduction to NMR. Spectroscopy

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #5: NMR Spectroscopy

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Paper 12: Organic Spectroscopy

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination

Chapter 13: Molecular Spectroscopy

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

1. neopentyl benzene. 4 of 6

ORGANIC - EGE 5E CH NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Proton NMR. Four Questions

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field:

NMR Spectroscopy. Chapter 19

ORGANIC - BROWN 8E CH NUCLEAR MAGNETIC RESONANCE.

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction:

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Structure Determination

CHEM311 FALL 2005 Practice Exam #3

CHEM311 FALL 2005 Practice Exam #3

Instrumental Chemical Analysis

January 30, 2018 Chemistry 328N

1. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = 116

- 1/2. = kb o = hνν + 1/2. B o increasing magnetic field strength. degenerate at B o = 0

Lecture Notes Chem 51A S. King

Basic Concepts of NMR: Identification of the Isomers of C 4 O 2. by 1 H NMR Spectroscopy

22 and Applications of 13 C NMR

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

NMR Nuclear Magnetic Resonance Spectroscopy p. 83. a hydrogen nucleus (a proton) has a charge, spread over the surface

Q1. Intensity of M+1 peak x Intensity of M peak 2.57% x 46.60% Number of carbon atoms = Number of carbon atoms =

12-June-2016 Chemsheets A Page 1

Chapter 14 Spectroscopy

Analysis of NMR Spectra Part 2

Nuclear spin and the splitting of energy levels in a magnetic field

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2)

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

CH Exam #4 (Take Home) Date Due: 11/25,26/2013

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy

Chapter 20: Identification of Compounds

C NMR Spectroscopy

Tuesday, January 13, NMR Spectroscopy

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules

Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD

Background: In this chapter we will discuss the interaction of molecules with a magnetic field.

Nuclear Magnetic Resonance Spectroscopy (NMR)

The rest of topic 11 INTRODUCTION TO ORGANIC SPECTROSCOPY

Chapter 13 Spectroscopy

In a solution, there are thousands of atoms generating magnetic fields, all in random directions.

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

Nuclear Magnetic Resonance Spectroscopy

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I

Nuclear Magnetic Resonance (NMR)

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

HWeb27 ( ; )

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #4 - December 7, 1998*

Nuclear Magnetic Resonance Spectroscopy: Purpose: Connectivity, Map of C-H framework

C h a p t e r S i x t e e n: Nuclear Magnetic Resonance Spectroscopy. An 1 H NMR FID of ethanol

Nuclear Magnetic Resonance Spectroscopy

Nuclear Spin States. NMR Phenomenon. NMR Instrumentation. NMR Active Nuclei. Nuclear Magnetic Resonance

Name: 1. Ignoring C-H absorptions, what characteristic IR absorption(s) would be expected for the functional group shown below?

PAPER No. 12: ORGANIC SPECTROSCOPY. Module 19: NMR Spectroscopy of N, P and F-atoms

Other problems to work: 3-Chloropentane (diastereotopic H s), 1- chloropentane.

NMR Spectroscopy. This handout is intended to give you a practical understanding of NMR Spectroscopy.

Lecture 2 nmr Spectroscopy

Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results.

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

In a solution, there are thousands of atoms generating magnetic fields, all in random directions.

Chapter 18: NMR Spectroscopy

Transcription:

Experiment 2 - NMR Spectroscopy OBJECTIVE to understand the important role of nuclear magnetic resonance spectroscopy in the study of the structures of organic compounds to develop an understanding of the significance of the number, positions, intensities, and splitting of signals in nuclear magnetic resonance spectra to be able to assign structures to simple molecules on the basis of nuclear magnetic resonance spectra INTRODUCTION Spectroscopic methods are one of the more useful ways of structure determination in Organic Chemistry. Usually, one will do a combination of several methods in order to elucidate the structure. Three types that one commonly encounters in organic chemistry are Nuclear Magnetic Resonance (NMR), Infrared (IR), and Mass Spectral (MS) analysis. Infrared spectroscopy was introduced in the first semester organic lab. As the name implies Nuclear Magnetic Resonance Spectroscopy involves applying an external magnetic field to bring the nucleus of certain atoms ( 1 H or 13 C) into resonance (equilibrium between a ground and an excited state). In each case, all the nuclei being either hydrogen or carbon will resonate at the same effective field strength, but depending on the environment, the applied field strength may differ. For example, in a video game, it may take one hit to liquidate the villain (effective); however, depending on the environment (buildings, woods, etc.), one may have to apply more shots to produce this one effective hit. In the plot produced by the spectrometer, the applied field (or a percentage of it) is plotted against the absorption (the intensity). There are four important outcomes that we shall consider for 1 HNMR. The Number of Signals Present The number of signals will give an indication of the number of different types of hydrogens that are present. Protons in the same environment are chemically equivalent and will resonate at the same applied strength. Those in a different environment will require a different applied field and therefore will appear at a different position in the spectrum. Examples: CH - 1 signal, all H s are in the same environment. CH 3 CH 3-1 signal, all H s are in the same environment. CH 3 CH 2 CH 3-2 signals, the two sets of CH 3 hydrogens are in the same environment, but are different from the CH 2 hydrogens. CH 3 -C=O OCH 3-2 signals, the two CH 3 groups are in different environments. One is attached to the C=O, and the other is attached to oxygen. c 2011 Advanced Instructional Systems, Inc. and George Wahl and Maria Gallardo-Williams 1

The Position of the Signal: Chemical Shift The shift (chemical shift) is the exact place on the chart where the nucleus absorbs. Shifts are measured in parts per million (ppm), i.e., a percentage of the applied magnetic field. A typical 1 H NMR scale is from 0 to 14 ppm, and in most cases, an internal standard (tetramethylsilane, TMS) is added and is used as the zero reference point. The chemical shift is dependent on the environment (what neighboring nuclei are present) of the hydrogen(s) in question. The nucleus of the hydrogen atom is shielded by the electron that is present, and the neighboring nuclei can either reinforce this shielding or oppose this shielding (deshielding). If the shielding is reinforced (as in the case of a neighboring hydrocarbon residue), a higher applied magnetic field is needed and the resonance will appear at lower ppm (upfield). If an electronegative element (halogen, oxygen), or an electron withdrawing group (C=O, Ar, C=C) is adjacent, then the shielding is lessened (deshielding occurs) and the resonance will appear at higher ppm (downfield). See the table inside the back cover for positions. How many signals would one expect in ethanol? What would be the shift of each? CH 3 CH 2 OH has 3 signals: one for H s of CH 3 @ between 1 and 1.5 ppm one for H s of CH 2 (next to oxygen-deshielded) @ 3.5 ppm one for H of OH (attached directly to oxygen; slightly different influence) @ 1-4 ppm (actually 4 ppm in this case) Intensity of Signal: Integration of Peak Area The NMR gives us the ability to calculate the area under the signal. This area is proportional to the number of H s that are responsible for that signal. It will provide a relative ratio of each type of hydrogen that is present in the molecule. Let the smallest integral be 1 and measure all others relative to this. In the event of a 1/2 fraction, multiply all by 2, since ratio should be whole numbers, i.e., a 1:1.5 ratio is 2:3. In the case of the ethanol molecule, integration would show a ratio of 1:2:3. Splitting of the Signal into Several Peaks: Spin-Spin Splitting This is a powerful tool in deducing the 1 HNMR spectra. The neighboring hydrogen nuclei (on an atom adjacent to the one in question) will cause the signal to split. Two things one should consider when examining spin-spin splitting are: Chemically equivalent hydrogen nuclei do not cause splitting to occur, whether they are on the same carbon or a different one. Figure 1: All three H s are equilvalent; therefore, no splitting c 2011 Advanced Instructional Systems, Inc. and George Wahl and Maria Gallardo-Williams 2

Figure 2: All 6 H s are chemically equilvalent; therefore, no splitting The signal for a hydrogen nuclei that has n equivalent neighboring H s (on adjacent atoms) is split into n + 1 peaks. number of neighbors peaks 0 1 (singlet) 1 2 (doublet) 2 3 (triplet) 3 4 (quartet) n n + 1 (multiplet) PROCEDURE View the Proton NMR Interpretation 1 video that shows you how to interpret an NMR spectrum step by step. IN-LAB QUESTIONS Download and print the following worksheet. You will use this worksheet to record your answers to the In-Lab questions. Questions Question 1: Draw the structural formulas of the following compounds and indicate the number of NMR signals that would be expected for each compound. a b c d methyl iodide 2,4-dimethylpentane cyclopentane propylene (propene) Question 2: Draw the structural formula of the compounds that are indicated by the following data: a b an alkyl halide with a molecular formula of C 3 H 7 Cl whose NMR spectrum contains two signals: a doublet (6H), and a multiplet (1H). a compound with molecular formula C 7 H 14 Cl 2 whose NMR spectra contains three signals: a singlet (9H), a triplet (3H), and a quartet (2H). 1 https://www.youtube.com/watch?v= 0MtEH7V-MM c 2011 Advanced Instructional Systems, Inc. and George Wahl and Maria Gallardo-Williams 3

Question 3: Figures 3-7 are representative spectra of compounds. Based on the NMR spectra shown, please provide a reasonable structure for each compound. Figure 3 Figure 4 Figure 5 c 2011 Advanced Instructional Systems, Inc. and George Wahl and Maria Gallardo-Williams 4

Figure 6 Figure 7 c 2011 Advanced Instructional Systems, Inc. and George Wahl and Maria Gallardo-Williams 5