Physics 111 Lecture 11

Similar documents
Physics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4

Physics 1: Mechanics

Dynamics of Rigid Bodies

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r

So far: simple (planar) geometries

One-dimensional kinematics

Physics 1501 Lecture 19

Physics 207 Lecture 16

24-2: Electric Potential Energy. 24-1: What is physics

a v2 r a' (4v) 2 16 v2 mg mg (2.4kg)(9.8m / s 2 ) 23.52N 23.52N N

Review. Physics 231 fall 2007

PHY126 Summer Session I, 2008

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position

Chapter 5 Circular Motion

Chapter 10 and elements of 11, 12 Rotation of Rigid Bodies

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Rigid Bodies: Equivalent Systems of Forces

Rotary motion

Capítulo. Three Dimensions

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

Chapter 8. Linear Momentum, Impulse, and Collisions

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

Physics 111: Mechanics Lecture 11

Scalars and Vectors Scalar

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Remember: When an object falls due to gravity its potential energy decreases.

Chapter 11: Angular Momentum

PHY121 Formula Sheet

Chapter 13 - Universal Gravitation

Study Guide For Exam Two

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Chapter 11 Angular Momentum

Lesson 8: Work, Energy, Power (Sections ) Chapter 6 Conservation of Energy

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Chapter 11 Torque and Angular Momentum

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

Chapter Fifiteen. Surfaces Revisited

Linear Momentum. Center of Mass.

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Physics 111 Lecture 10. SJ 8th Ed.: Chap Torque, Energy, Rolling. Copyright R. Janow Spring basics, energy methods, 2nd law problems)

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

s = rθ Chapter 10: Rotation 10.1: What is physics?

Physics 202, Lecture 2. Announcements

Physics 201 Lecture 4

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter 3 and Chapter 4

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

Review of Vector Algebra and Vector Calculus Operations

III. Electromechanical Energy Conversion

Physics 1114: Unit 5 Hand-out Homework (Answers)

Chapter 12 Equilibrium and Elasticity

Spring 2002 Lecture #13

Part V: Velocity and Acceleration Analysis of Mechanisms

Lecture 19 Angular momentum. Chapter

Objectives. Chapter 6. Learning Outcome. Newton's Laws in Action. Reflection: Reflection: 6.2 Gravitational Field

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

RE 6.d Electric and Rest Energy RE 6.e EP6, HW6: Ch 6 Pr s 58, 59, 91, 99(a-c), 105(a-c)

Dynamics of Rotational Motion

Momentum. Momentum. Impulse. Momentum and Collisions

Energy in Closed Systems

Conservation of Angular Momentum = "Spin"

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )

Physics 207: Lecture 27. Announcements

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics 231 Lecture 21

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

Physics 105: Mechanics Lecture 13

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

10/9/2003 PHY Lecture 11 1

Mechanics Physics 151

Physics 201 Lecture 18

10/23/2003 PHY Lecture 14R 1

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

PHYS 1443 Section 002

3.1 Electrostatic Potential Energy and Potential Difference

Physics Exam II Chapters 25-29

Chapter 4. Newton s Laws of Motion

The Forming Theory and the NC Machining for The Rotary Burs with the Spectral Edge Distribution

1. Physics for Scientists and Engineers by Serway and Jewett. V.1, 9 th ed. Chapter 11.5, pp

Week 9 Chapter 10 Section 1-5

Physics 101 Lecture 9 Linear Momentum and Collisions

PHYSICS NOTES GRAVITATION

Chapter 7-8 Rotational Motion

Transcription:

Physcs 111 ectue 11 Angula Momentum SJ 8th Ed.: Chap 11.1 11.4 Recap and Ovevew Coss Poduct Revsted Toque Revsted Angula Momentum Angula Fom o Newton s Second aw Angula Momentum o a System o Patcles Angula Momentum o a Rgd Body about a Fxed Axs Consevaton o Angula Momentum 11.1 The Vecto Poduct and Toque 11. Angula Momentum: The Non-Isolated System 11.3 Angula Momentum o a Rotatng Rgd Object 11.4 Consevaton o Angula Momentum: Isolated System 11.5 The Moton o Gyoscopes and Tops Copyght R. Janow Spng 01

So a: smple (plana) geometes Rotatonal quanttes θ,, ω, α, τ, etc epesented by scalas Rotaton axs smply CCW o CW dmensonal poblems, otaton axs pependcula to page Now: moe poweul tool o 3D Coss poduct epesents otatonal quanttes as vectos: Coss poducts pont along nstantaneous axes o otaton Dectons o otaton axes can be calculated and summed up lke othe vectos, e.g., τ F τ F sn( θ ) τ net τ Angula momentum - new conseved otatonal quantty. ke lnea momentum, t s conseved o solated systems l p p m v l p sn( θ ) Denton: tot l all all Second aw n tems o conseved quanttes: dp F ma F net p dt d net I α τ net dt nea: net s constant F net Rotatonal: s constant τ 0 τ net 0 Copyght R. Janow Spng 01

Angula momentum concepts & denton How much lnea o otatonal stayng powe does a movng object have? - Poduct o an neta measue wth a speed measue. - nea momentum: p mv (lnea). - I object s otatng only: angula momentum - moment o neta x angula velocty Iω - lnea momentum x moment am about some axs o smple cases lnea momentum neta speed lnea otatonal m v I ω pmv Iω the angula momentum o a gd body elatve to a selected axs about whch I and ω ae measued: unts: [kg.m /s] I ω gd body angula momentum ω Why bothe wth angula momentum? It s conseved o solated systems. Copyght R. Janow Spng 01

Angula momentum concepts & denng examples Example: Angula momentum o a pont mass movng n a staght lne choose pont P as a otaton axs P v lnea momentum X moment am Note: 0 moment am 0 s the same o object at any pont along lne o v I ω m ω mv p v ω Example: Same as above, but wth velocty not pependcula to ; v ad does not aect P I ω m ω mv mv sn( φ ) p ω v v v φ lnea momentum X moment am Note: 0 v s paallel to (adally n o out) Example: Angula momentum o a otatng hoop about symmety axs though P P v Iω I t s a hoop: I m v ω m ω mv p same as a pont patcle, o hoop lnea momentum X moment am 1 I t s a dsc: I m m ω 1 Copyght R. Janow Spng 01 /

Example: Calculatng Angula Momentum o a Rgd Body Calculate the angula momentum o a 10 kg dsc when: ω 30 ad / s, 9 cm 0.09 m, m Rotaton axs s nomal to dsc though ts CM 10 kg Soluton: I ω I m o a dsk 1 1 1 m ω 10 9 10 3. 4 10 + 1.96 13 Kg m / s What angula speed would a 10 kg SOID SPHERE (same dmensons) have t s angula momentum s the same as above? Soluton: 1.96 Kg m /s, 9 cm 0.09 m, m 10 kg ω ω ω / I I 1.96 400 5 5 ad / s m 10 9 o a sphee 10 4 Copyght R. Janow Spng 01

Denton: Angula momentum o a sngle patcle Extenson o lnea momentum s mv Depends on chosen otaton axs (hee along z) Moment o momentum Same pctue as o toques Use moment am sn(θ).o... tangental momentum component p p sn(θ) Only the tangental momentum component contbutes and p tal-to-tal always om a plane s pependcula to that plane p p p sn( θ moment p am x m( lnea v) p ) momentum z y P 90 o p θ moment am o p p θ θ 90 o x p ad lne o acton o momentum p Conventon: vecto up out o pape vecto down nto pape (tal) Copyght R. Janow Spng 01

Example: Angula momentum o a patcle n unom ccula moton The angula momentum vecto ponts out o the dagam The magntude s mv sn (90 o) mv sn (90 o) s used snce v s pependcula to A patcle n unom ccula moton has a constant angula momentum about an axs though the cente o ts path Examples: satelltes n ccula obts O Supeposton: Angula Momentum o a System v net 1 + +... + n o ths case: all all p net + 1 p 1 - p Copyght R. Janow Spng 01

Example: calculatng angula momentum o patcles PP1060-3*: Two objects ae movng as shown n the gue. What s the total angula momentum about pont O? No need to use omal coodnate system o such a smple poblem m Fo each patcle: l p mv Whee s the moment am Momenta and dsplacements om O all le n the plane o the slde, so angula momenta ae pependcula to the slde (n o out) l 1 + l.8 x 3.1 x 3.6-1.5 x 6.5 x. 31.5-1.45 (along z) m 1 9.8 kg.m /s CCW Copyght R. Janow Spng 01

Angula momentum o a ca 11.1. A ca o mass 1000 kg moves wth a speed o 50 m/s on a ccula tack o adus 100 m. What s the magntude o ts angula momentum (n kg m /s) elatve to the cente o the ace tack (pont P )? A) 0 B) 5.0 10 6 C).5 10 4 A D).5 10 6 B E) 5.0 10 3 P 11.. What would the angula momentum about pont P be the ca leaves the tack at A and ends up at pont B wth the same velocty? ) p p p sn( θ Copyght R. Janow Spng 01

The Rotatonal Second aw and Angula Momentum nea moton: Apply oce to a patcle. The oce causes the lnea momentum to change. The net oce actng on a body s the tme ate o change o t s lnea momentum F net dp dt The momentum s constant the net oce zeo. Rotatonal moton: Apply toque to a gd body. The toque causes the angula momentum to change. The net toque actng on a body s the tme ate o change o t s angula momentum. τ The angula momentum s constant the net toque zeo. net d dt τ and to be measued about the same ogn The ogn should not be acceleatng (should be an netal ame) Copyght R. Janow Spng 01

Rotatonal Second aw apples to sngle patcles, systems, and gd bodes: Fo BUT ntenal toques n the sum cancel n 3d law pas. Only Extenal Toques contbute to sys a sngle sys dt d body : d sys d dt dt τ τ,ext v τ Total angula momentum o a system o bodes: τ d dt net sys all about same ogn τ net toque on patcle Intenal toque pas ae ncluded net extenal toque on the system Same eeence axs o s and τ s Holds about any otaton axs, and I s changng Must use mass cente as ogn t (cm) s acceleatng (othewse non-netal eects show up) System s called ISOATED net toque on t s zeo then angula momentum o system s constant Copyght R. Janow Spng 01

Foce nea Momentum Tanslaton F v p COMPARISON mv Toque Angula Momentum Rotaton τ v l F p Knetc Enegy K 1 mv Knetc Enegy K 1 Ι ω nea Momentum P Systems and Rgd Bodes p M v cm Angula Momentum Ι ω Second dp F aw net dt o gd bodes about common xed axs Second v d sys aw τ net dt Momentum consevaton - o closed, solated systems P sys constant sys constant Apply sepaately to x, y, z axes Copyght R. Janow Spng 01

Example: A non-solated system Masses connected by a lght cod Fnd the lnea acceleaton a. Use angula momentum appoach No cton between m and table Mechancal enegy s constant (no nonconsevatve oces), but we gnoe that Block, pulley and sphee ae non- solated system n that net toque s not zeo. Constants: Equal Fo Fo v' s pulley masses and v a' s ω R a α R o block α d ω /dt dv/dt and sphee Ignoe ntenal oces, consde extenal oces only Net extenal toque on system: Angula momentum o system: (not constant) Use Second aw (deentate): d sys dt α a sys 1 m vr + m vr + I m 1 ar + m ar + I α (I + m 1 R + m R ) α τ net (I + m R 1 m gr 1 + τ m R net m 1 gr ) I about cente o ω wheel a m gr same esult ollowed om eale method usng 3 FBD s & nd law Copyght R. Janow Spng 01 1

Angula Momentum Consevaton o systems and gd bodes When the net extenal toque on a system s zeo: system s solated d dt τ net 0 constant When some event changes the state o an solated system: whee " " s nal, "" s ntal state s conseved sepaately o x, y, z dectons Angula momentum consevaton s as mpotant as enegy and lnea momentum consevaton Typcal poblems may nvolve... Isolated systems, so 0 Rgd bodes otatng aound a common otaton axs Some event changes moment o neta, shape, collson ntal Ι 0 ω 0 nal Ι ω ntal nal Copyght R. Janow Spng 01

Example: A patcle on a stng otatng aound a peg Stng waps aound peg as mass spals nwad.what you see: Radus deceases Angula speed ω nceases Tangental speed v changes Intal condtons: At t 0: m 0. kg, v 0 1 m/s, 0 0.5 m, ω 0 v 0 / 0 ad/s Fnd: ω, v when adus 0. m Method: System s solated (Why?) Centpetal oce on m exets zeo toque about peg, snce X F 0, so Repesent angula momentum: p p ( p mv, v ω snce p) m ω I ω Angula momentum s constant (conseved) as cod waps up: v 0 m 0 I 0 ω 0 I ω I m.5 ω 0 ω 0 ω 0 I m. (moment o neta changes) ( ) x 1.5 ad/s ( much > ) 0 ω v ω.5 m/s ( much > v 0 ) 0 Theme: s constant whle moment o neta changes, Copyght R. Janow Spng 01

Restcton: I ω Fo otaton o a gd body aound a SYMMETRY AXIS, o otaton o a lat body n the x-y plane about z-axs Examples: Iω vesus xp o dmensonal moton z Sngle pont mass v ω x v y Ccula path n x-y plane Fnd about cente o path v v o,ω p m v mv sn(90 ) kˆ Sht Ogn: z m ω kˆ I ω I scale vecto kˆ Same moton: ccula path paallel to x-y plane p s n plane paallel to x - y plane, ω I ω ω kˆ & ω both along Z-axs p ω v v Angula momentum has components along and nomal to ω z kˆ + xy xy p + m z kˆ p x xy Fo Iω To wok: y so... I ω z xy Need anothe equal mass symmetcally acoss om m, same moton Adds to z, but cancels component o nomal to z p along z n x-y plane Copyght R. Janow Spng 01

Angula momentum o a bowlng ball 11.3. A bowlng ball s otatng as shown about ts mass cente axs. Fnd t s angula momentum about that axs, n kg.m /s A) 4 B) ½ C) 7 D) E) ¼ 11.4. Suppose the otaton axs s shted to be tangent to the sphee and paallel to the z axs n the pctue. Fnd the angula momentum about that axs, n kg.m /s ω 4 ad/s M 5 kg ½ m I /5 MR I ω Copyght R. Janow Spng 01

Demonstaton: Spnnng Poesso Isolated System τ net about z - axs 0 I 0 ω 0 I ntal nal ω constant Moment o neta changes Copyght R. Janow Spng 01

How ast should the poesso spn? The poesso s otatng (no cton) wth angula speed 1. ev/s. Ams ae outstetched wth a bck n each hand. The moment o neta o the system consstng o the poesso, the bcks, and the platom about the cental axs s 6.0 kg m. By loweng the bcks the moment o neta o the system deceases to.0 kg m. (a) what s the esultng angula speed o the platom? (b) what s the ato o the system s new knetc enegy to the ognal knetc enegy? (c) In pat (b), what accounts o the deence (added KE)? s constant whle moment o neta changes, Copyght R. Janow Spng 01

How ast should the poesso spn? I 0 6 kg-m I kg-m ω 0 1. ev/s ω? ev/s s constant whle moment o neta changes, Zeo extenal toque nal ntal... about a xed axs I 0 ω 0 I ω I 6 Soluton (a): ω 0 ω x 1. ad/s 3.6 ev/s I 0 I 0 1 I ω 0 Soluton (b): K I ω I I 0 3 K 1 0 I 0 0 I 0 ω 0 I ω Soluton (c): KE has nceased!! The exta KE came om wok done when pullng the weghts n and/o educng potental enegy by loweng the ams. Copyght R. Janow Spng 01

Contollng spn (ω) by changng I (moment o neta) In the a, τ net 0 s constant I 0 ω 0 I ω Change I by culng up o stetchng out - spn ate ω must adjust Moment o neta changes Copyght R. Janow Spng 01

Intenal toques do not change total angula momentum...... t s edstbuted wthn the solated system τ net 0 about z - axs sys Demonstaton Intenal toques not 0 they evese wh constant Spacecat maneuves by spnnng the lywheel the cat counte-otates po, nal wheel tot 0 cat + lywheel Copyght R. Janow Spng 01

Tetheed Astonauts 11.5. Two astonauts each wth mass M ae connected by a massless ope o length d. They ae solated n space, obtng the cente o mass at dentcal speeds v. One o them pulls on the ope, shotenng the dstance between them to d/. What ae the new total angula momentum and speeds v? A) mvd/, v v/ B) mvd, v v C) mvd, v v D) mv d, v v/ E) mvd, v v/ I ω mv T Copyght R. Janow Spng 01

Consevaton o Angula Momentum: Mey-Go-Round Poblems The moment o neta o the system the moment o neta o the platom plus the moment o neta o the peson (a patcle). As the peson moves towad the cente o the otatng platom the moment o neta deceases. The angula speed must ncease snce the angula momentum s constant. o A peson uns tangent to the edge o the platom and then jumps on. The total angula momentum o the system (peson + platom) s constant. The angula velocty o the platom changes. Copyght R. Janow Spng 01

Example: A mey-go-ound poblem A 40-kg chld unnng at 4.0 m/s jumps tangentally onto a statonay ccula mey-go-ound platom whose adus s.0 m and whose moment o neta s 0 kg-m. Thee s no cton. a) Fnd the angula velocty o the platom ate the chld jumps on. b) Fnd the change n the total knetc enegy o the system. c) Fnd the change n the knetc enegy o the chld alone. Moment o neta changes Total s constant tot I 0 ω 0 I ω System chld + mey-go ound, beoe and ate collson System s solated (zeo net extenal toque). Inelastc collson Copyght R. Janow Spng 01

Example: A mey-go-ound poblem- Soluton I 0 kg.m v T 4.0 m/s m c 40 kg.0 m ω 0 0 ω tot I 0 ω 0 I 0 + m v I ω tot c T tot I I m tot + c ω I m + c v T m c a) ω 1.78 ad/s 40 x 4 x 0 + 40 x 4 1 1 K K T K 0 I tot ω m c v 84. 4 b) K 35. 6 Joules 1 1 K chld K c K 0 mc ω m c v T 30. 0 nelastc collson KE deceases c) K 66. 5 chld Joules Copyght R. Janow Spng 01