TUTORIAL SOLUTIONS. F.1 KCL, KVL, Power and Energy Q.1. i All units in VAΩ,,

Similar documents
2/20/2013. EE 101 Midterm 2 Review

CHAPTER II AC POWER CALCULATIONS

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

Chapter 6: AC Circuits

Chapter 5. Circuit Theorems

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

A capacitor consists of two conducting plates, separated by an insulator. Conduction plates: e.g., Aluminum foil Insulator: air, mica, ceramic, etc

First-order piecewise-linear dynamic circuits

Example: MOSFET Amplifier Distortion

Chapters 2 Kinematics. Position, Distance, Displacement

Motion in Two Dimensions

3/16/2012. EE101 Review. Reference Directions

Energy Storage Devices

Lesson 2 Transmission Lines Fundamentals

V R. Electronics and Microelectronics AE4B34EM. Electronics and Microelectronics AE4B34EM. Voltage. Basic concept. Voltage.

R th is the Thevenin equivalent at the capacitor terminals.

Chapter 7 AC Power and Three-Phase Circuits

Electrical Circuits II (ECE233b)

PHYS 1443 Section 001 Lecture #4

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors

3. Alternating Current

Revision: June 12, E Main Suite D Pullman, WA (509) Voice and Fax

Transient Response in Electric Circuits

Linear Response Theory: The connection between QFT and experiments

( ) () we define the interaction representation by the unitary transformation () = ()

Comb Filters. Comb Filters

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

Notes on the stability of dynamic systems and the use of Eigen Values.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

Solution in semi infinite diffusion couples (error function analysis)

Lecture 11 Inductance and Capacitance

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

2. Electric Circuit Theory

ES 250 Practice Final Exam

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California

CAPACITANCE AND INDUCTANCE

Diode rectifier with capacitive DC link

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Chapter Lagrangian Interpolation

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2)

Power Electronics 7. Diode and Diode Circuits

Response of MDOF systems

Variants of Pegasos. December 11, 2009

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

EG Low Voltage CMOS Fully Differential Current Feedback Amplifier with Controllable 3-dB Bandwidth

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

Scattering at an Interface: Oblique Incidence

ECE 2100 Circuit Analysis

Mechanics Physics 151

Graduate Macroeconomics 2 Problem set 5. - Solutions

CHAPTER 6: FIRST-ORDER CIRCUITS

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

Let s treat the problem of the response of a system to an applied external force. Again,

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

TSS = SST + SSE An orthogonal partition of the total SS

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

Battery-Operated Electronic Ballast of Fluorescent Lamps for Photovoltaic Applications

Chapter 3: Vectors and Two-Dimensional Motion

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley

Energy Storage Devices

Control Systems. Mathematical Modeling of Control Systems.

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

CHAPTER 12 DIRECT CURRENT CIRCUITS

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

A New Family of Full-Bridge ZVS Converters

ECE 2100 Circuit Analysis

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

Chapter 7 Response of First-order RL and RC Circuits

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Lecture -14: Chopper fed DC Drives

DYNAMICS ANALYSIS OF LFR MODEL FOR A SINGLE-STAGE HIGH POWER FACTOR CORRECTION DIAGONAL HALF-BRIDGE FLYBACK AC/DC CONVERTER

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

EE 101 Electrical Engineering. vrect

Lab 10: RC, RL, and RLC Circuits

CHAPTER 2 Quick Quizzes

Polymerization Technology Laboratory Course

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

On One Analytic Method of. Constructing Program Controls

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

Transcription: Messenger RNA, mrna, is produced and transported to Ribosomes

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

Mechanics Physics 151

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Mechanics Physics 151

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

FTCS Solution to the Heat Equation

Water Hammer in Pipes

Chapter 10 INDUCTANCE Recommended Problems:

WebAssign HW Due 11:59PM Tuesday Clicker Information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

II. Light is a Ray (Geometrical Optics)

Density Matrix Description of NMR BCMB/CHEM 8190

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

Chapter 10 Sinusoidal Steady-State Power Calculations

UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING. Objectives

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

Transcription:

F TUTOIAL SOLUTIONS F. KCL, KVL, Power and Energy Q. 8 9 6 All uns n VAΩ,,

Appendx F Tuoral Soluons Applyng KCL o he doed surface: + + Q. All uns n V, A, Ω Nework A Nework B Applyng KCL o he doed surface: + A regardless of he alue of. For Ω, For KΩ, V KV

Appendx F Tuoral Soluons Q. All uns n VAΩ,, 8 8+ V; ; olage across Ω ressor V

Appendx F Tuoral Soluons 6 Q. (a) Boh meers ge pose readngs A B + AM + VM Snce he arrows for and are n oppose drecons Power consumed Also, AM wll ge a pose readng f s pose, whle VM wll ge a pose readngs f s pose. Snce boh and are pose n hs case, s pose and power s consumed. (b) Boh meers ge negae readngs Boh and are negae, s pose and power s consumed. (c) One meer ges a pose readng and he oher ges a negae readng and hae oppose sgns, s negae and power s suppled by he dece. (d) One meer or boh meer ge zero readngs Power neher s consumed nor suppled by he dece.

Appendx F Tuoral Soluons 7 Q. Curren n crcu All uns n VAΩ,, Applyng KVL: + + Power consumed/suppled If he olage and curren arrows are n oppose drecons, Thus: or Power consumed ( )( ) olage curren Power consumed by Ω ressor ( ) 6W Power consumed by Ω ressor ( ) W Power consumed by V source ( ) W Power consumed by V source ( ) W Power suppled by V source W

Appendx F Tuoral Soluons 8 Q.6 All uns n VAΩ,, 6 9 6 9 6 The A curren source s supplyng a power of ( )( ) W.

Appendx F Tuoral Soluons 9 Q.7 Effcency Elecrcal power suppled ( )( ) W. h.p. 76W h.p. 86W Mechancal power delered ( )( ) 86 Effcency Torque 9. % Moor speed ( re mn) π 6 rad re smn 6 π rad s Mechancal power delered 86 Torque moor speed π 6 78.Nm Energy los Power los 86 W Energy los per mn ( )( 6) 8J Q.8 Generaor oupu power ( )( ) W Generaor npu power 9. Generaor shaf speed. Torque 8. Nm..W re mn π 6 rad re smn. rad s

Appendx F Tuoral Soluons Q.9 Volage, curren and power gans for sysem Volage gan g log( ) db db Curren gan g 8 Power gan g gg 8 6 log( 6) db 76dB p elaonshp beween hese gans g g g p ( g p ) db ( g db) + ( g db) [ ] ( )( 6) log ( )( 6) db + [ ( ) + ( )] 6 76 log log db db db gp g g f load ressance equals amplfer's npu ressance Audo amplfer Mos loudspeakers hae ressances n he order of a few Ω. Howeer, n order no o load he CD player or oher audo npu equpmen, he npu ressance of he amplfer wll hae o be large and s usually greaer han many kω.

Appendx F Tuoral Soluons F. KCL, KVL and Groundng Q. Currens 8 8 All uns n VAΩ,, 6 8 8 6 8 8 8 6 8 8 6 7 Value for 8 8 8 6 6 8 6 Applyng KVL o he loop wh he sources and : 6 8 6 +.

Appendx F Tuoral Soluons Q. (a) (open crcu or no load suaon) All uns n VAΩ,, 8 8 (b) 8Ω 8 8 + 8 A 8 8 8

Appendx F Tuoral Soluons 8 7. 7V (c) Ω + A 6V

Appendx F Tuoral Soluons (d) (shor crcu).a I may be slghly faser o dere wo general formulas for and and hen subsue he alues for.

Appendx F Tuoral Soluons Q. Equalence of crcus The wo crcus are equalen because he connecons (opology), elemens and currens beween he arous nodes are dencal: E D All uns n VAΩ,, A X C Ground B C B X A E D Ground

Appendx F Tuoral Soluons 6 Curren and olage s s X x Ground Applyng KCL o node X and hen KVL: s + ( ) 8 x s When, s A and x V When, s 7A and x V

Appendx F Tuoral Soluons 7 KCL for ground node Snce here may be oher componens conneced o ground, he applcaon of KCL mus nclude all he oher connecons no shown n he orgnal dagram. The mplcaon s ha all hese oher componens mus be delerng a combned curren of s o ground: Oher componens X s s Ground All hese are acually conneced ogeher Q. (a) Pon C grounded and Pon B conneced o Pon D A B C All uns n VAΩ,, D + VM Applyng KCL o node B: Applyng KVL o loop wh olage source, A, B and C: + A

Appendx F Tuoral Soluons 8 Applyng KVL o loop wh B, C and VM : 6 V (b) No connecon for Pon C and Pon B conneced o Pon D C A B All uns n VAΩ,, D + VM Applyng KCL o node C and hen o node B: A + A Applyng KVL o loop wh olage source, A, B and VM : + V (c) Pon B grounded and Pon C conneced o Pon D A All uns n VAΩ,, B C D + VM

Appendx F Tuoral Soluons 9 Applyng KVL o loop wh olage source, A and B: A Applyng KVL o loop wh B, C, D and VM : + V Q. Orgnal crcu All uns n VAΩ,, 6 X Applyng KCL o he doed surface: Thus: All uns n VAΩ,, 6 6 X Poenal of node X wr ground V

Appendx F Tuoral Soluons When he crcu s no grounded All uns n VAΩ,, 6 X 6 Undeermned The poenal of node X wr ground canno be deermned. In pracce, s alue wll depend on facors such as he exsence of sac charges and oher elecrcal and magnec effecs. When Pon X s grounded X 6 All uns n VAΩ,, The poenal of node X wr ground s now. Q.6 Frs crcu All uns n VAΩ,, Applyng KVL:

Appendx F Tuoral Soluons + Second crcu Applyng KCL: + + Thrd crcu + +

Appendx F Tuoral Soluons + + From KVL: + + + + + + + Equalence The hree crcus are dfferen n crcu opology and he componens used. Howeer, hey hae he same olage-curren relaonshp and are elecrcally equalen from a olage-curren pon of ew. I s mpossble for an exernal crcu conneced o he oupus of hese crcus o ell whch crcu has acually been used: Exernal crcu Crcu, or Only sees - relaonshp Impossble o ell wheher crcu, or has been used

Appendx F Tuoral Soluons F. DC Crcu Analyss I Q. Source curren 6 All uns n VAΩ,, 6 8 + 8 Value for + 6 Source curren A + 6 6 + 6 6 + 8 8 6 8 6 8 All uns n VAΩ,, 6

Appendx F Tuoral Soluons Q. Orgnal crcu A All uns n VAΩ,, B A B A B A + ( ) + ( ) B

Appendx F Tuoral Soluons 6 + ( ) + +. + Equalen ressance... 6. 889Ω. +. 6 When ouer wo ressors are shor-crcued A B A B Equalen ressance. 666Ω

Appendx F Tuoral Soluons 6 Q. Mesh analyss 7 All uns n VAΩ,, 6 A B C 8. 7 6 A B C 8 Applyng KVL for he hree loops shown: 8 ( ) 6+ ( ) + ( ) ( ) + ( ) + 6 ( ) 7

Appendx F Tuoral Soluons 7 Smplfyng: 8 + + In marx form: 8 Solng (acually no requred n hs queson): + () 8 + ( + ) 78 99 ( ) ( ) 8 + + 7 + 6 6( 78) + ( 7) 6( 78) + ( 7) 6( 99 ) + ( + 6) 6( 99) ( ) 9 ( 78) + 99( 7) ( 78) + 99( 7) ( 99 ) + 99( + 6) ( ) + 99( 6) ( ) 8 + 9 8 + Volages of nodes A, B and C wh respec o ground: 7 8 6 A B C A B C A 8 6

Appendx F Tuoral Soluons 8 + B + C Nodal analyss + C A 7 6 + B A 6 + C B A B C D + 8 A B B E C 8 A C D E D E Applyng KCL o nodes A, B, C, D and E: D + 8 A 6 B A C A + + + 7 B A B 6 + + + C B E C A C + B C + + 7 D + 8 A D + E C E + In marx form: + + 7 7 7 A 8 + 6 7 + + + B 7 7 + + 7 C + 7 ` 8 D E

Appendx F Tuoral Soluons 9 Q. All uns n VAΩ,, 8 A B B A A B 8 A B Applyng KCL: A + + 8 B + + 8 A A A B + + 7 A A A B A B B B A B + + B + B A + B A + B Elmnang A and B : ( ) ( ) ( ) ( ) 7 7 6 A B + A + B B B 6 7 A B + A + B A A A B + + + + 7 8 8 8 6 The equalen ressance whou he Ω ressor s herefore 7 8. Ω and he equalen ressance wh he Ω seres ressor s

Appendx F Tuoral Soluons Equalen ressance. 8Ω Q. Equalen ressance n Snce he ressors are n parallel, he equalen ressance s + + n Shor crcu curren n n n sc n Applyng KCL: sc + + n n Noron's equalen crcu sc + + n

Appendx F Tuoral Soluons sc + + n n Theenn's equalen crcu oc + + n oc sc n + + n + + n

Appendx F Tuoral Soluons Q.6 e-drawng orgnal crcu AM All uns n VAΩ,, 6 Equalen ressance whou Ω ressor 6 Equalen ressance ( ) Usng Noron's equalen crcu + 6 + + 6Ω + 6 AM sc 6 Snce AM reads A sc A Thus, when he swch s open

Appendx F Tuoral Soluons AM 6 6 6+ A Q.7 + +

Appendx F Tuoral Soluons F. DC Crcu Analyss II Q. Load curren due o Baery... All uns n VAΩ,, 6 6 6 6 Curren from source 7.. +... +.. + + +... + 7 7 7 87 + +..... A... + Load curren due o Baery... Curren from source 7.. +... +.. + + +... + 7 7 7 + +..... A... +

Appendx F Tuoral Soluons Load curren due o Baery... Curren from source. 8. +... +. 66. + + +... + 67 8 8 8 9 + 7 +..... A... + Acual load curren + +. 87 +. +. 9. 6 A Q. Curren due o V olage source All uns n VAΩ,, 6 Curren from source 9. + ( 6 + ) + 8. + + 8 9. 9. A + 8

Appendx F Tuoral Soluons 6 Curren due o V olage source 6 Curren from source 8. + ( 6 + ) + 8. + + 8 8.. 9A + 8 Curren due o curren source 6 6 + ( ) + 86 6+ +. +.. A ( ) 8 +. +. Acual curren + +. 9 +. 9. 86. 88A

Appendx F Tuoral Soluons 7 Q. Open crcu olage All uns n VAΩ,, 6. 6 + V Equalen ressance. essance across ermnals. 667Ω + Theenn's equalen crcu and maxmum power.667 Maxmum power ransferable (wh a. 667Ω load). 667 7. W. 667

Appendx F Tuoral Soluons 8 Q. All uns n VAΩ,, Combned curren of curren sources Equalen parallel ressance + 7 essor ha draws A 7 Ω essor ha absorbs he maxmum power Ω 7 Maxmum power ha can be ransferred 96 W

Appendx F Tuoral Soluons 9 Q. Theenn's equalen crcu All uns n V, A, Ω.6 d.6 d D D d Dece curren gen 6. A Applyng KVL: 6. + 6. d d d and d can be found from solng hs (whch ges rse o he load lne) and he relaonshp f ( ) d gen by he characersc cure. Specfcally, when d, d 6.. Also, when d, d. d Dece characersc d f ( d ) All uns n V A Ω,, d. Load lne from crcu.6.6 d + d d The pon of nersecon ges d 6. A Source curren for power dsspaed n D o be 6. W.6 d All uns n VA,, Ω D d Power dsspaed n D d d 6.

Appendx F Tuoral Soluons 6 The dece olage and curren can be found from solng hs and he relaonshp f ( ) d gen by he characersc cure: d d. Dece characersc d f ( d ) Power requremen.6 d d All uns n V, A, Ω d The pon of nersecon ges d 8. V d 7. A From KVL: 6. + 6. ( 7. ) + 8. A d d Q.6 Volage gan Applyng KCL o he second half of he crcu: ( ) Applyng KVL o he frs half of he crcu: + Elmnang : 8 +. 8. The olage gan s 8. The gan n olage magnudes s

Appendx F Tuoral Soluons 6 8 log db db..8 Equalen ressance To deermne he equalen ressance as seen from he oupu ermnals, all ndependen sources hae o be replaced by her nernal ressances and a olage source has o be appled o hese wo ermnals: All uns n VmA,,kΩ Transsor amplfer 9 + + Equalen ressance 9 kω Noe ha n calculang hs ressance or n usng superposon, dependen sources mus no be replaced by her nernal ressances. Theenn's equalen crcu 9 All uns n VmA,,kΩ.8

Appendx F Tuoral Soluons 6 F. AC Crcu Analyss I Q. (a) AC waeform sn( ω ) π cos ω e jπ [( jω e )( e )] (b) cos ω e ( ) j [( jω e )( e )] Peak alue Frequency ω ω ωrad s Hz ωrad s Hz π π MS alue π Phase 9 Phasor e jπ/ 9 o e j o (c) AC waeform sn( + ) ( ) cos 6 e jπ j [( e )( e )] (d) ( ) cos e jπ j [( e )( e )] Peak alue Frequency rad s. 8Hz rad s Hz MS alue π Phase 6 π Phasor e jπ/ 6 o e jπ/ o

Appendx F Tuoral Soluons 6 AC waeform (e) π sn π π. cos + π jπ [( 6 j e )( e ) ] e. (f) ( + ). cos ( ) 77. cos + 7. e. j7. j [( 77e )( e )] Peak alue. Frequency rad s. 67Hz rad s. 8Hz MS alue.. 77 Phase Phasor π. 7 6. e jπ/ 6. o.77 e j.7.77 o Q. (a) (b) (c) (d) e j V jπ 6 jπ π e e ( e ) cos e jπ V ( j e )( j ) [ ] + V 6 e e cos + V π π π [ ] [( )( )]. e jπ A e (. jπ jπ )( ) e jπ. jπ jπ e e e e e. cos + π A jπ jπ jπ jπ jπ [ ] [( )( )].69 6 o A e ( 69. e )( e ) e e 69. e e. 69 cos +. 69 cos π π A

Appendx F Tuoral Soluons 6 Q. From ( ) cos( ) V Frequency ω rad s Impedance of capacor j Ω jω. j. Impedance of nducor jω j Ω V j e I All uns n VAΩ,, V L j V I j V C I V ( ) cos( ) A π ji 6j L 6 cos + V V L ( ) V ( ) V V + V + 6 j C L VC + 6 j I I + j j +. j. 8. +. j Imag. I Arg [ I ] an ( ).8 eal I 8. +. j 8. +..

Appendx F Tuoral Soluons 6 Arg [ I] Arg[ 8 j]. +. an j... 8. ( ) I 8. +. j. e. cos +. A Q. Impedances and phasors ( ) ( ) cos + V V e j V. Impedance of nducor j( )(. ) jω Impedance of capacor j( )(. ) I V All uns n VAΩ,, jω V e j o j V L j V C j an 6. 9 Toal mpedance + j j j + e e j V e I e j 6. 9 + j j e j ( )( ) V I e e 66. 9 j66. 9 ( )( ) V ji e e e L j66. 9 V j9 j66. 9 j6. 9 ( )( ) V ji e e 8e C A V j9 j66. 9 j. V Ω

Appendx F Tuoral Soluons 66 Phasor dagram Imag All uns n VAΩ,, V V L V V + + V V L C eal V C V n phase wh I V L ( I lags V L by 9 o ) I VC ( I leads V by 9 o ) C Q. Componens The mpedances of seres L, C and LC crcus are ZL + j ω L + j π L Z j C j C + ω πc Z j L j C j LC + L ω π ω π C + j mus correspond o a seres L crcu wh componens:

Appendx F Tuoral Soluons 67 + jπ L + j Ω and L π. 9 H j mus correspond o a seres C crcu wh componens: j j C C Ω and π π( ). μ F Crcu admance Crcu mpedance Z ( j) ( j) + + + j j j + j Crcu admance + + Z + j j + + ( ). j. +. 8+ j. 6. 6 + j. Ω Power facor Power facor alue cos[ Arg( I) Arg( V) ] leadng, Arg( I) Arg( V) > leadng / laggng laggng, Arg( I) Arg( V) < I Arg( I) Arg( V) Arg Arg Arg( Z) V Z Arg( + j ) an -.. 6.. 6. 6 Power facor alue cos(.6).89 leadng,.6 > leadng / laggng laggng,.6 <. 89 leadng. Imag Z Value of p.f. cos θ leadng p.f. as I lags V I θ θ V.6 eal

Appendx F Tuoral Soluons 68 F.6 AC Crcu Analyss II Q. Crcu dagram I jπl All uns n VAΩ,, Hz Equalen crcu for col Man equaons 9 Volage across Ω I 9 I ( π ) Volage across col I + j L + jl ( L) I 6. + 8. 7 9 ( π ) Supply I + + j L + + j L 8 889 ( ) ( ) 79 9. I + + L. Componen alues [( ) ( L) ] [ ( L) ] + + + 79. 8. 7. 9 6 8+ 6 9.. Ω 8 9. 8 + ( L) 8. 7 ( L) 8. 7. 9. 8 L. 7H

Appendx F Tuoral Soluons 69 Power and power facor Power absorbed by col ( ) I 9.. W [ Arg( ) Arg( )] alue cos curren olage Power facor leadng, Arg leadng / laggng laggng, Arg curren Arg( curren) Arg( olage) Arg olage alue cos Arg Arg Impedance [ Arg( mpedance) ] Power facor leadng, Arg leadng / laggng laggng, Arg ( curren) Arg( olage) ( curren) Arg( olage) ( mpedance) ( mpedance) > < ( Impedance) < > ( mpedance ) ( + + jl) (. + + j. 7) Arg Arg Arg Arg( + ) an -. 7. j.. 67 7. Power facor alue cos (. 67). 79 leadng,. 67 < leadng / laggng laggng,. 67 > 79. laggng

Appendx F Tuoral Soluons 7 Q. Load curren I Z All uns n VAΩ,, V Hz Z Load acual power Load power facor. IZ A apparen power I Z V All uns n VAΩ,, I Z Laggng power facor lagsv I Z [ ( I ) ( ) Z V ] ( I ) Arg( V) <. laggng cos Arg Arg. load p.f. Arg Z Arg Arg ( I ) ( ) Z ( I ) < Z ± cos. ±. ( I ) Arg. Arg I I e [ Z ] e Z Z Z j I j. A Power facor mproemen I I Z Hz I C j C Z Load I ( j C)( ) C j68 C (. ) I I + I e + j68c + j 68C 8 66 Z C j.

Appendx F Tuoral Soluons 7 I C V I I Z 9. laggng cos [ Arg( ) Arg( )] 9. Arg( ). oerall p.f. I V I ± Arg( I) Arg( V) < Arg( I ) < Arg( I ). an - 68C 8. 66. 866. an (. ) C 68. 76F 7.6μ F uny [ ( ) ( )] oerall p.f. cos Arg I Arg V Arg( I) Arg( V) Arg( I ) - 68C 8. 66 866. an C. 8 F.8μ F 68 8. leadng cos [ Arg( ) Arg( )] 8. Arg( ). 6 oerall p.f. I V I ± Arg( I) Arg( V) > Arg( I ) > Arg( I ). 6 an - 68C 8. 66. 6 8. 66 + an (. 6) C 68. 78F7.8μ F

Appendx F Tuoral Soluons 7 Q. Power a + jb I Z All uns n VAΩ,, V V Z Z + jx Elecrcal sysem V IZ + + + ( a jb) ( jx) ( a+ ) + j( b+ X) ( ) V I + jx Z Z V [ ] [ ] e ( ) Power absorbed p e I V I + jx Maxmum power ransfer [ ] I e + jx I Z Z Z Z Z V ( a+ ) + j( b+ X) ( a+ ) + ( b+ X) V For maxmum p, he denomnaor should be as small as possble. As he numeraor does no depend on X and he smalles alue for ( b+ X) s, maxmum power wll be absorbed f X so ha p b V ( a+ ) Dfferenang: dp d V a V a ( + ) ( a+ ) ( a + ) Thus, maxmum p occurs when a

Appendx F Tuoral Soluons 7 and he maxmum power ransferable s p V ( + ) V V a W In general, maxmum power ransfer occurs when he load mpedance s equal o he conjugae of he Theenn's or Noron's mpedance. When hs occurs, he oal mpedance s purely resse and he curren and olage n he crcu are n phase: a+ jb V Maxmum power ransfer Z a j b ( a + jb) * Q. Noron's and Theenn's equalen crcu j All uns n VAΩ,, o o j Z I + j o j Z I j e + j j e j86.. e 8. j. j6. 8e

Appendx F Tuoral Soluons 7 Z I Z Z I Z Z ( ) Z j + j. e j8.. 6 j. 6. 6e j + + + + j + j j + j8. j I. 9 j. e. 7 j8. 6 8. 7e j6 Maxmum power ransfer From he preous problem, hs occurs when Z I I Z Z Z * ( ) j 8. j8. Z Z. e. e [ ] Toal mpedance + j8. j8 Z Z Z + Z e.. +. e. cos ( 8. ) I IZ 6. 8 87. e. e 87. e [ ] cos ( 8. ) ( Z + Z ).cos( 8. ) j j j Thus, he maxmum power ransferable s e [ I ( IZ) ] I e[ Z ] j 87. e j8. e. e cos 8. ( ) [ ] cos ( 8. ) 87.. 97W cos 8. ( ) 87. ( ).cos 8.

Appendx F Tuoral Soluons 7 Q. Ω μh Col pf esonan frequency π 6 6 ( )( ) π 9. Q facor 6 ( )( ) 9. MHz Snce he Q facor s large, he crcu s bandpass n naure wh db cuoff frequences 9. ± MHz 9. Bandwdh 6. 9 khz Q.6 L Col C C pf resonan frequency π L 7. 6. khz L L For he lowes unable frequency o be 666 khz: ( ) π L( ) 7. 7 666. L. mh L 666 The hghes unable frequency s hen 6. 6. L.. MHz

Appendx F Tuoral Soluons 76 F.7 Perodc Sgnals Q. (a) Perod of olage and curren waeforms Snce he shores me needed for he waeforms o repea hemseles s 6s, he perod s 6s. (b) Aerage or mean alue of olage and curren waeforms The aerage alues of boh ( ) and ( ) are obously. (c) Tme when he dece s consumng power and when s supplyng power Snce he olage and curren arrows are n oppose drecons, he nsananeous power consumed by he dece s p ( ) ( ) ( ) Graphcally:

Appendx F Tuoral Soluons 77 () 6 ( ) p () () ( ) Consume power Supply power (d) Perod of nsananeous power cure From he aboe cure, he perod of ( ) p s s. (e) Aerage power consumed by dece In perod of s, he dece consumes W of power for s and supples W of power for s. Thus: Ne energy consumed n s ( )( ) ( )( ) J Aerage power consumed W

Appendx F Tuoral Soluons 78 Q. (a) Perod and mean alue of ( ) From he waeform self: Perod of ( ) T 6s Mean alue of ( ) V (b) MS alue () Mean alue Quadrac 6 (), < 9 Perod of ( ) T 6s Mean alue of ( ) mean alue of ( ) from o area under ( ) from o d 9 7 V MS alue of ( ) mean alue of ( ) (c) Aerage power rms ( ) Insananeous power consumed p ( ) ( ) mean alue of ( ) Aerage power consumed mean alue of [ mean alue of ( ) ] rms V

Appendx F Tuoral Soluons 79 Q. (a) ( ) cos( π + ) and ( ) cos( π + ) To an obserer wh a me orgn of : ( ) ( ) ( ) ( ) V e j cos π + and frequency V e j cos π + and frequency Phase dfference,v leadng To an obserer wh a me orgn of. : ( ) ( ) ( ) ( ) V e j 8 +. cos π + π + and frequency V e j +. cos π + π + and frequency Phase dfference 8,V leadng Snce he me orgn has changed, he olages obsered are me shfed and he phasors change n phase. Howeer, snce he frequences are he same, he relae phase dfference remans consan. (b) ( ) cos( π + ) and ( ) cos( π + ) To an obserer wh a me orgn of : ( ) ( ) V e j cos π + and frequency ( ) ( ) V e j cos π + and frequency To an obserer wh a me orgn of. : ( ) ( ) V e j 8 +. cos π + π + and frequency (. ) cos (. ) V e j + π + π + and frequency Snce he frequences are no he same, he phase dfference beween ( ) and ( ) s no consan and depends on he me orgn. In fac, s neher meanngful nor useful o compare he phases of ( ) and ( ), as hese sgnals hae dfferen frequences. Phasor analyss can only be used when all he sources are snusodal and hae he same frequences. In suaons where hs s no he case bu he sources are sll snusodal, superposon has o be used ogeher wh phasor analyss.

Appendx F Tuoral Soluons 8 Q. In general, for a sgnal ( ) wh perod T : ( ) a + a π π π π cos + b sn a b T T + cos + sn T T + T a d ( ) T Aerage alue of ( ) a, n n T ( ) nπ cos d T T Twce he aerage alue of n ( ) cos π T b, n n T ( ) nπ sn d T T Twce he aerage alue of n ( ) sn π T

Appendx F Tuoral Soluons 8 For he perodc waeform aboe: T s a mean of ( ) () a π mean of ( ) cos π π d 6 cos sn π π () cos(π /) () cos(π /) a π mean of ( ) cos () () cos(π /) cos(π /) a 6π mean of ( ) cos 6π π d 6 cos sn 6π π () cos(6π /) () cos(6π /) a 8π mean of ( ) cos () () cos(8π /) cos(π /)

Appendx F Tuoral Soluons 8 Mahemacally, for n > : a n nπ nπ nπ mean of () cos d d cos + cos 9 nπ nπ n n n + n π π sn sn sn sn 6 π π nπ 9 a, a, a, a, a, a6,,,,,,, π π π b n nπ nπ nπ mean of () sn d d sn + sn 9 nπ nπ n n n + n π π cos cos cos cos 6 π π nπ 9 b, b, b, b, b, b,,,,,,, 6 The Fourer seres represenaon for ( ) s hus: ( ) π 6π π + cos cos + cos π π π Q. Frequency response 9 All uns n VA,, Ω,H, F 9 () o() V Vo jπ f + Vo j π f + jπ f Frequency response H( f ) V + jπ f + j π f Magnude response ( ) Magnude response H f + jπ f + jπ f + π f + π f

Appendx F Tuoral Soluons 8 ( ) H + + ( ) H f π f f π H( f ) Lowpass. f The response s obously lowpass n naure. Ths can also be deduced from he low and hgh frequency characerscs of he capacors: Low frequency approxmaon 9 9 V Vo V V o V jπ f Hgh frequency approxmaon 9 9 V jπ f Vo V V V o

Appendx F Tuoral Soluons 8 Non-perodc excaon wh snusodal componens The oupu due o a general snusodal excaon can be found as follows: () cos( π θ) r f+ V re jθ ( ) ( ) ( ) ( ) [ ] ( ) o jarg H f j θ + Arg H( f ) V H f V H f e H f V V o { [ ]} () ( ) cos π θ Arg ( ) o r H f f+ + H f + jπ f + jπ f r cos π f + θ+ Arg + jπ f + jπ f + π f r cos an an + jπ f jθ re H f r e { [ ]} [ π f + θ+ ( π f ) ( π f )] π π s gen Thus, from superposon, he oupu due o () cos( ) + sn( ) by () cos( π ) () () sn( π ) () o o + jπ + jπ cos π + Arg + jπ + jπ + π cos an an + π [ π + ( π) ( π) ] ( π ). cos. + j π sn + j π [ π + ( π) ( π) ] ( π ). sn 99. + j π π + Arg + j π + π sn an an + π () cos( π ) + sn ( π ) (). cos ( π. ) +. sn ( π 99. ) Perodc square excaon () sn( π ) o o ( 6π) ( π) ( πn) sn sn sn + + + n,,, { [ ]} n H f n n H f n () ( ) sn π + Arg ( ) n,,, n n,,, + π n n + π n { πn + ( πn) ( πn) } sn an an

Appendx F Tuoral Soluons 8 F.8 Transens I Q. Volages across nducor L () d () d () H () (ma) 6 Graden Graden Graden (ms) () L (V) (ms) Volages across capacor C () d C () () C d C ( ) d ( ) C d C d Cd ( ) C ( ) C C C C d [ ] [ ( ) ( ) ] C

Appendx F Tuoral Soluons 86 ( ) ( ) ( ) C C + C d [ nal olage a ] + area under ( ) from o C For hs problem: ( ) ( ) C 6 area under from o [ ] [ ] () (ma) 6 (ms) () C. (V) Area 6 Inegral ncreases lnearly Area 8 6 Inegral ncreases quadracally Area 6 Inegral ncreases lnearly.. (ms)

Appendx F Tuoral Soluons 87 Q. (a) Volages and currens for < Wh he source beng a dc one and akng he swches o be n he posons shown sarng from, all he olages and currens wll hae seled down o consan alues for praccally all < : () 6 d () d d () d () () () 6 () () (b) Volages and currens a (jus afer he swches are hrown) Snce he olages across capacors mus be connuous, ( ) and ( ) mus hae he same alues before he swches are hrown:

Appendx F Tuoral Soluons 88 () 6 () () () 6 6 () () (c) Volages and curren for () 6 d () d d () d () () From KCL and KVL: d ( ) ( ) d ( ) d d ( ) 6( ) ( ) Elmnang ( ) and ( ) : d ( ) ( ) ( ) ( ) ( ) ( ) d d ( ) d 6 d d d d 6 + d d

Appendx F Tuoral Soluons 89 Solng hs homogeneous equaon: ( ) ke, Applyng nal condon: ( ) k ( ) e, 6 6 Solng for ( ) and ( ) : d ( ) () e ( ) k + e d 6 ( ) k k ( ) + + e, ( ) ( ) ( ) 6 + e e e, (d) Volages and curren waeforms 6 () () ()

Appendx F Tuoral Soluons 9 Q. (a) Volages and curren and energy sored for < Wh he source beng a dc one and akng he swches o be n he posons shown sarng from, all he olages and currens wll hae seled down o consan alues for praccally all < : L d () d L () () L L ( ) L Energy sored n nducor (b) Curren a (jus afer he swches s opened) Snce he curren n he nducor mus be connuous, ( ) mus hae he same alue before he swch s opened: L ()

Appendx F Tuoral Soluons 9 (c) Curren for L d () d () L () () ( ) L d d d( ) + + ( ) + ( ) + ( ) d L + ( ) L ke, + ( ) k ( ) e L, (d) Energy los for Insananeous power los n ressors ( ) ( ) Toal energy los ( + ) + + ( + ) ( + ) e L d e + L + L e + L, L From he conseraon of energy, hs mus also be equal o he decrease n energy sored by he nducor: L ( ) L ( ) L Decrease n energy sored by nducor

Appendx F Tuoral Soluons 9 Q. Tme < () () Tme jus afer he frs swch s acaed Snce he curren n he nducor mus be connuous, he nducor mus be carryng he same 6A of curren jus afer he frs swch s acaed: () () 6 Tme and < afer acang s swch bu before closng nd swch d () d () () () d( ) d( ) ( ) + ( ) + ( ) ke, < d d, ( ) k ( ) e < ( ) ( ) 6e, <

Appendx F Tuoral Soluons 9 Tme jus afer closng second swch Snce he curren n he nducor mus be connuous, ( ) mus be he same as e e A jus before closng hs swch: () e (). () Tme afer closng second swch d () d () (). () d( ) d( ) ( ) +. ( ) + ( ) he 6, d d 6 ( ) ( ) he 6 e h e ( ) e e 6, ( ) ( ). ( ) 8e e 6, Volage and curren waeforms

Appendx F Tuoral Soluons 9 () 6 ()

Appendx F Tuoral Soluons 9 F.9 Transens II Q. Volages and currens for < Takng he swches o be n he posons shown sarng from, all he olages and currens wll hae seled down o consan alues for praccally all <. () d C C () d () L () C () C L d L L () d () ( ) ( ) C L () () () L ( ) C () C L

Appendx F Tuoral Soluons 96 Volages and currens jus afer closng swch a Snce he olage across a capacor and he curren hrough an nducor mus be connuous, he nal condons are () L C () C L Volages and currens for () d C C () d () L () L C C () L d L L () d ( ) ( ) ( ) ( ) C d C dc C C + + d d C C ( ) ( ) ( ) L d L dl ( ) d d L L + + L L The general soluons are ( ) ( ) + ( ) C ss r ( ) ( ) + ( ) L ss r The seady sae responses are ( ) k, ss d ( ) ( ) ss ss k + k ( ) ss, d C C C ( ) k, ss

Appendx F Tuoral Soluons 97 d ( ) ss d ( ) ( ) L k + ss k ss, L L The ransen responses are gen by d ( ) ( ) r r C ( ) + r he d C, d ( ) r ( ) ( ) d L r r he + L, Combnng and applyng nal condons: C ( ) ( ) + ( ) + h e, C ss r C ( ) h h ( ) + e, C C ( ) ( ) ( ) L ss + r + he L, ( ) h h ( ) L L e + L, Source curren: for ( ) ( ) C d C ( ) d C e e e C C C e + L L + + + + + For hs o be me ndependen: C L L C L

Appendx F Tuoral Soluons 98 Q. Volages and currens for < before he swch s opened All uns n VA,, Ω, F () ( ) a jus afer he swch s opened Snce he olage across he capacor mus be connuous, ( ) mus be ( ) ( ) for afer he swch s opened d () d + () () d () d () d( ) ( ) ( ) + ( ) ( ) + d d + d The general soluon of hs s gen by ( ) ( ) + ( ) ss r ( ) ss s he seady sae response and can be found by ryng ( ) ss k,

Appendx F Tuoral Soluons 99 d ( ) ss + ( ) 7 ( ) ss + k k ss 7, d ( ) r s he ransen response and s equal o he general soluon of d ( ) r + ( ) ( ) he r r, d Combnng: ( ) ( ) + ( ) 7 + he, ss r ( ) 7 + h h ( ) 7+ e, Q. (a) Volage and curren before closng swch () C () C L (b) Volages and curren jus afer closng swch a Snce he olage across a capacor and he curren hrough an nducor mus be connuous, he nal condons are () C () C L (c) Goernng dfferenal equaon for curren for () d C () () C d C () C L L d () d

Appendx F Tuoral Soluons ( ) L d d d ( ) d( ) d ( ) C + ( ) + ( ) C + + d L d L d d ( ) d( ) ( ) + + d L d LC, wh nal condons ( ) ( ) ( ) ( ) L d d C d d L Subsung esonan frequency ω LC ω L L Q C he goernng dfferenal equaon s d ( ) ω d( ) ( ) + + ω, d Q d (d) Oerdamped suaon when Q < The roos of he polynomal are d ( ) ω d( ) ω ( ) z d Q d ( ) Q z + + ω + + ω z, z d d replaced by z ω ω ± ω Q Q ω ± Q ( Q ) When Q <, boh roos are real, negae and dsnc. Thus: z z ( ) ke + ke, z z ( Q ) ω < Q ( Q ) ω + < z Q Usng nal condons: ( ) k + k k k

Appendx F Tuoral Soluons d( ) d kω kz + kz k( z z) Q L Q L ( ) ( z z ) ( z z ) k e e Q L Q e e, ω Q L ω Q e z () Q L ω Q e z (e) Underdamped suaon when Q > When Q >, he wo roos form a complex par: z z ( j Q ) Q Q j ω ω + ω Q ( j Q ) Q Q j ω ω + ω z Q z z ( ) he + he, Usng nal condons: ( ) h + h h h d( ) d hz + hz h( z z) jhω L Q L j ( ) h ( e e ) Lω Q e ω z z Q j Q ω Q + j ω ω Q e ω Q j e Lω Q e Q e e j Q Q ω Lω Q jω ω Q sn ω,

Appendx F Tuoral Soluons () (e) Undamped suaon when When, he Q facor and curren s Q ω L ( ) ω ( ω) ω Q e Lω Q () Q sn sn, Lω

Appendx F Tuoral Soluons Q. Volages and curren for < before he swch s closed () sn (ω ) C L Volages and curren a jus afer he swch s closed As he olage across he capacor and he curren hrough he nducor mus be connuous: () sn (ω) C L Curren for afer he swch s closed () sn (ω ) C L d () L d C () d ( ) L d d + + C jω ( ) d ( ) sn( ω) e[ je ] ( ) ( ) L d d + + e ωej ω d d C wh nal condons ( ) ( ) [ ]

Appendx F Tuoral Soluons ( ) Inal olage across nducor L d d Seady sae curren The seady sae response ( ) ss s gen by jω ( ) [ ] e I e, ss L d e d ss [ I e jω] [ I e jω e ] ss d ss + + e ss d C jω jω [ I e ] e[ ωe ] e L d e jω de jω jω e e e[ ] d d C I ss j L j C I ss e jω e jω + + ω ω ω + + j ω L+ jω+ I I C ss ω ss j jωl+ + jc ss ( ) ( ) ( ) jz e jω jω e e e Z j Z sn ω Arg Arg jze Z jz [ ] + ω L ωc ω L C ω sn ω an,

Appendx F Tuoral Soluons F. Magnec Crcus Q. Toal flux.8 mwb.mm N Area mm Lengh mm elae permeably 6 elucance of ron core core 7 6 ( 6 π )( ). 66 A Wb. elucance of ar gap gap 7 6 ( π )( ) 99. ( 8. )( core gap ) MMF N + 6 6 A Wb 6 6 ( 8. )(. 66 99. ) 776A ( Amp.urns) + Q. Force of aracon MMF for ar gaps ( )( ) 8A ( ) elucance of ar gaps. gap 7 ( π )(. ) 8 Flux n crcu Φ 77.. 68Wb 77. A Wb

Appendx F Tuoral Soluons 6 To deermne he force, suppose he gap lengh s decreased by δx and he curren s changed by δ whle he flux remans he same. Snce here s no back emf nduced and no power s suppled by he elecrcal crcu: ( ) 8 δ x δ x Decrease n relucance δgap 7 ( π )(. ) π δgapφ 8. 68 δ x Decrease n energy sored 9. δ x π Work done by moemen of armaure ( aracon force) δ x From energy conseraon: 9. δx Aracon force δx 9. N Doublng of curren If he curren s doubled, he flux Φ wll be doubled. Snce he energy sored and he force are proporonal o Φ, hey wll ncrease by mes o (. 9) 8kN heorecally. Howeer, n a praccal dece, he ron may ge sauraed as he curren s ncreased. The flux may herefore no ncrease by a facor of and he acual force wll be smaller. Q. I : I : n I/n Ω V V.V.nV Ω For maxmum power ransfer, he source mus be seeng a load ressance of Ω: I Ω V V Ω V V

Appendx F Tuoral Soluons 7 I ( + ). A. nv nv n 9 n In I Q. I : n I n 66 Z n 66 8. raed curren 66 I 8. laggng p.f. 78. A cos [ Arg( I )] 8. Arg( I ) ± 6. 9 Arg( I ) < Arg( I ) < Arg( I ) 6. 9 Z e In j 7 8e 8 6. 6. 9.. j6. 9 Ω Load mpedance referred o prmary load mpedance seen by source 66 66 87. 7e I j6. 9 78. e j6. 9 Ω Q. Hz () () () V N N () V Prmary wndng Flux Φ() Secondary wndng

Appendx F Tuoral Soluons 8 N N V N 66 V Snce he currens are snusodal a Hz, he flux ( ) Φ wll also be snusodal: Φ ( ) Φ ( + θ ) max cos π Thus, he prmary olage wll be ( ) ( ) N d Φ π NΦ max sn ( π + θ ) d The rms alue of hs s π NΦ max Φmax. Wb π ( ) Φmax Φmax Cross seconal area of core cm maxmum flux densy 6. Q.6 Effcences under dfferen operang condons Full load, uny pf full load, uny pf Apparen power delered ( VA ). 7 7 Acual power delered ( W ) 7 7 Copper loss ( W ) 6 6. 7 Iron loss ( ) W Toal loss ( W ) 6 + 98 + 7 Power suppled ( W ) + 98 98 7 + 7 8 Effcency 98. % 98 7 98. % 8

Appendx F Tuoral Soluons 9 Full load, 8. pf full load, 8. pf Apparen power delered ( VA ). 7 7 Acual power delered ( W ). 8 7. 8 Copper loss ( W ) 6 6. 7 Iron loss ( ) W Toal loss ( W ) 6 + 98 + 7 Power suppled ( W ) + 98 98 + 7 7 Effcency 97. 6% 98 97. 7 % 7 All-day effcency Energy loss ( kw hr ) Energy delered ( kw hr) 6 hr no load 6 (. ). 6 hr full load, uny pf hr 6 (. +. 6) 88. 6 full load, uny pf (. +. 6. 7 ). 8 hr full load,. 8pf 8 hr full load, 8. 7 7 (. +. 6) 9.. 8 6 (. +. 6. 7 ). pf 8. hr no load (. ) 7. Toal 6. 8 6. 7. 8 6 All-day effcency 97. % 6 + 6. 8