Anderson Localization from Classical Trajectories

Similar documents
Quantum coherent transport in Meso- and Nanoscopic Systems

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Spin Currents in Mesoscopic Systems

Constructing a sigma model from semiclassics

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble)

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor)

Interaction Matrix Element Fluctuations

LEVEL REPULSION IN INTEGRABLE SYSTEMS

Semiclassical formulation

Interpolating between Wishart and inverse-wishart distributions

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations

What is Quantum Transport?

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Electron transport and quantum criticality in disordered graphene. Alexander D. Mirlin

WAVE INTERFERENCES IN RANDOM LASERS

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin

Various Facets of Chalker- Coddington network model

Decreasing excitation gap in Andreev billiards by disorder scattering

Quantum chaotic scattering

Is Quantum Mechanics Chaotic? Steven Anlage

Effect of a voltage probe on the phase-coherent conductance of a ballistic chaotic cavity

Numerical study of localization in antidot lattices

Random Matrix Theory and Quantum Transport

Thermal transport in the disordered electron liquid

Anderson localization, topology, and interaction

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

String-like theory of many-particle Quantum Chaos

arxiv: v1 [cond-mat.mes-hall] 4 Nov 2009

Charges and Spins in Quantum Dots

Phys. Rev. Lett. 101, (2008) Quantum Transport in Chaotic Cavities and Painlevé Transcendents

Thermal conductivity of the disordered Fermi and electron liquids

Introduction to Theory of Mesoscopic Systems

Semiklassik von Andreev-Billards

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA

PART 2 : BALANCED HOMODYNE DETECTION

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

arxiv:cond-mat/ v1 7 Jun 1994

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

arxiv: v2 [nlin.cd] 30 May 2013

Why Hyperbolic Symmetry?

DISTRIBUTION OF SCATTERING MATRIX ELEMENTS IN QUANTUM CHAOTIC SCATTERING

Numerical Analysis of the Anderson Localization

Ballistic quantum transport through nanostructures

disordered topological matter time line

Failure of the Wiedemann-Franz law in mesoscopic conductors

Eigenvectors under a generic perturbation: non-perturbative results from the random matrix approach

Non-traditional methods of material properties and defect parameters measurement

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

The Role of Spin in Ballistic-Mesoscopic Transport

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

Quantum transport of 2D Dirac fermions: the case for a topological metal

Random-matrix theory of quantum transport

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 23 Jun 2003

Nonlinear σ model for disordered systems: an introduction

Handout 7 Reciprocal Space

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion

Introduction to Theory of Mesoscopic Systems

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Collaborations: Tsampikos Kottos (Gottingen) Antonio Mendez Bermudez (Gottingen) Holger Schanz (Gottingen)

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin

arxiv:cond-mat/ Dec 1996

Quantum Transport in Disordered Topological Insulators

Andreev conductance of chaotic and integrable quantum dots

Universal spectral statistics of Andreev billiards: semiclassical approach

Title. examples of interplay of interactions and interference. Coulomb Blockade as a Probe of Interactions in Nanostructures

Supplementary Figures

Hyperbolic Hubbard-Stratonovich transformations

arxiv: v1 [quant-ph] 31 Jul 2009

Tunable excitons in ordered arrays! of ultracold polar molecules!

Aditi Mitra New York University

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

arxiv: v1 [cond-mat.mes-hall] 19 Jun 2015

Negative Magneto-Resistance Beyond Weak Localization in Three-Dimensional Billiards: Effect of Arnold Diffusion

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

Lecture 4. Diffusing photons and superradiance in cold gases

Ergodicity of quantum eigenfunctions in classically chaotic systems

Ginzburg-Landau Theory of Type II Superconductors

Quantum scattering in the strip: From ballistic to localized regimes

Ashvin Vishwanath UC Berkeley

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2013

Density of States in Superconductor -Normal. Metal-Superconductor Junctions arxiv:cond-mat/ v2 [cond-mat.mes-hall] 7 Nov 1998.

Anomalous wave transport in one-dimensional systems with. Lévy disorder

Basics of topological insulator

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 May 2000

Aditi Mitra New York University

Tunable crystals of ultracold polar molecules!

Conductance fluctuations at the integer quantum Hall plateau transition

Anderson Localization Looking Forward

Theory of Quantum Transport in Mesoscopic Systems Antidot Lattices

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003

Structure of quantum disordered wave functions: weak localization, far tails, and mesoscopic transport

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2018

Topological Insulators

Non-Fixed Point Renormalization Group Flow

Mesoscopic quantum measurements

Roman Krems University of British Columbia

Donoghue, Golowich, Holstein Chapter 4, 6

Electronic and Level Statistics Properties of Si/SiO 2 Quantum Dots

Transcription:

Anderson Localization from Classical Trajectories Piet Brouwer Laboratory of Atomic and Solid State Physics Cornell University Support: NSF, Packard Foundation With: Alexander Altland (Cologne)

Quantum Transport Manifestations of the wave nature of electrons in electrical transport shot noise weak localization conductance fluctuations Anderson localization Originally discovered for disordered conductors. This talk: no scattering off point-like impurities cavity I antidot lattice sample 1 μm

Weak localization disordered metals Nonzero (negative) ensemble average δ G at zero magnetic field G = μ A μ 2 + μ ν A μ A ν G [e 2 /h] δg Hikami box B [10-4 T] Mailly and Sanquer (1991) in Hik out Hik = + + Cooperon

Weak localization disordered metals Nonzero (negative) ensemble average δ G at zero magnetic field G = μ μ A μ 2 + μ ν A μ A ν ν Hik δg G [e 2 /h] Hik = + B [10-4 T] + permutations Hikami box Cooperon

Weak localization Theory based on diffractive scattering off point-like impurities not possible; Hik = + disordered ballistic

Weak localization Theory based on diffractive scattering off point-like impurities not possible; Instead: Semiclassics g = A A e i(s S )/,, and have equal angles upon entrance/exit S, : classical action A, : stability amplitudes Needed: Careful summation over classical trajectories,. Jalabert, Baranger, Stone (1990) Argaman (1995) Aleiner, Larkin (1996) Richter, Sieber (2001,2002) Heusler, Müller, Braun, Haake (2006)

Weak localization g, A A e i(s S )/, in out Weak localization: Trajectory pairs with small-angle self encounter Sieber, Richter (2001) also: Aleiner, Larkin (1996) t enc = 1 λ ln S cl ΔS Encounter duration t enc = τ E = 1 λ ln S cl If τ E << dwell time: Recover weak localization correction of disordered metal Aleiner, Larkin (1996) Richter, Sieber (2002) Heusler et al. (2006) Brouwer (2007) ballistic Hikami box

Beyond weak localization g, A A e i(s S )/, One or more small-angle self encounters shot noise conductance fluctuations quantum pump full counting statistics time delay Braun et al. (2006) Whitney and Jacquod (2006) Brouwer and Rahav (2006) Rahav and Brouwer (2006) Berkolaiko et al. (2007) Kuipers and Sieber (2007) If τ E << dwell time: Recover quantum corrections of disordered metals Braun et al. (2006)

Beyond weak localization g, A A e i(s S )/, One or more small-angle self encounter shot noise conductance fluctuations quantum pump full counting statistics time delay Braun et al. (2006) Whitney and Jacquod (2006) Brouwer and Rahav (2006) Rahav and Brouwer (2006) Berkolaiko et al. (2007) Kuipers and Sieber (2007) Braun et al. (2006) If τ E << dwell time: Recover quantum corrections of disordered metals But all of these are perturbative effects!

Non-perturbative effects Level correlations: Form factor K(t) for t > τ H Heusler, Müller, Altland, Braun, Haake (2007) inspired by field theoretical formulation of RMT correlation functions Heusler et al. (2007)

Non-perturbative effects Level correlations: Form factor K(t) for t > τ H Heusler, Müller, Altland, Braun, Haake (2007) inspired by field theoretical formulation of RMT correlation functions Today: Anderson localization Heusler et al. (2007) inspired by theory of Anderson localization in disordered metals one-dimensional nonlinear sigma model scaling approach Efetov and Larkin (1983) Dorokhov (1982) Mello, Pereyra, Kumar (1988)

Anderson localization disordered metals Model system: array of quantum dots Dots are connected via ballistic contacts with conductance g c >> 1. Take limit g c while keeping ratio g c /n fixed. Disordered quantum dots: random matrix theory Localization in quantum dot array: Mirlin, Müller-Groeling, Zirnbauer (1994) Brouwer, Frahm (1996)

S(n) = Anderson localization ( ) S11 (n) S 12 (n) S 21 (n) S 22 (n) disordered metals T (n) =S 12 (n)s 12 (n) interdot conductance: g c T m (n) =trt (n) m g(n) =T 1 (n) random matrix theory: recursion relation for moments of the T i : δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) Replace difference equation by differential equation: L T 1 = 2 ξ T 2 1 L/ξ = n/2g c : conductance of array of n dots ξ: localization length (no time-reversal symmetry, =2)

S(n) = Anderson localization disordered metals ( ) S11 (n) S 12 (n) S 21 (n) S 22 (n) T (n) =S 12 (n)s 12 (n) T T m (n) =trt (n) m interdot conductance: g c general recursion relation: n δ T im ( n = 1 g c k=1 + 1 n g c k=1 i k ) i k 1 j=1 T 1 n T im i k (T j (T ik j T ik j+1)) + 2 n k 1 i k i l (T ik +i g l T ik +i l +1) c k=1 l=1 n T im m k n m k,l T im + O(gc 2 )

S(n) = ( ) S11 (n) S 12 (n) S 21 (n) S 22 (n) Anderson localization disordered metals T (n) =S 12 (n)s 12 (n) T T m (n) =trt (n) m n ( n ) δ T im = 1 n i k T 1 T im g c k=1 + 1 n ik 1 n i k (T j (T ik j T ik j+1)) T im g c Transform into differential equation for generating function: F 2 (θ 1,θ 3 ) = L F 2 k=1 j=1 = 2 ξ J(θ 1,θ 3 )= + 2 n k 1 i k i l (T g T ik+il ik+il+1) c k=1 l=1 det j=1,3 m k n T im + O(g 2 c ) ( 2+(cos(θ3 ) 1)T 2+(cosh(θ 1 ) 1)T ) 1 J(θ 1,θ 3 ) F 2, J(θ 1,θ 3 ) θ j θ j sin(θ 3 )sinh(θ 1 ) (cosh(θ 1 ) cos(θ 3 )) 2. interdot conductance: g c Description equivalent to existing theory of localization in quantum wires Efetov and Larkin (1983) Dorokhov (1982) Mello, Pereyra, Kumar (1988)

S(n) = ( ) S11 (n) S 12 (n) S 21 (n) S 22 (n) Anderson localization disordered metals T (n) =S 12 (n)s 12 (n) T T m (n) =trt (n) m n ( n ) δ T im = 1 n i k T 1 T im g c k=1 + 1 n ik 1 n i k (T j (T ik j T ik j+1)) T im g c k=1 j=1 + 2 n k 1 i k i l (T g T ik+il ik+il+1) c k=1 l=1 m k n T im + O(g 2 c ) interdot conductance: g c Can one derive the same set of recursion relations from semiclassics?

S(n) = Anderson localization ( S11 (n) S 12 (n) S 21 (n) S 22 (n) ) T (n) =S 12 (n)s 12 (n) interdot conductance: g c T m (n) =trt (n) m Can we show that δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) from semiclassical expression for T 1? T 1 =, A A e i(s S )/

Anderson localization T 1 =, A A e i(s S )/ and each have m segments in n th dot, 1,, m ; 1,, m. first n-1 dots n first n-1 dots n = = m=2 = m=3

Anderson localization T 1 =, A A e i(s S )/ and each have m segments in n th dot, 1,, m ; 1,, m. To leading order in g c : diagonal approximation in n th dot pair i with i, i=1,,m No restriction on number of small-angle self encounters in first n-1 dots first n-1 dots n first n-1 dots n = = = 1 = 1 1 = 1 2 = 2 2 = 2 1 = 1 2 = 2 2 = 2 1 = 1 3 = 3 1 = 3 = 3 1 1 = 1 m=2 m=3

Anderson localization 1 2 T 1(n 1) first n-1 dots n first n-1 dots n = 1 = 1 1 = 1 1 4g c T 1 (n 1)R 1 (n 1) = 1 = 1 1 = 1 m=2 reflection: R 1 = g c T 1 1 8g 2 c T 1 (n 1)R 1 (n 1) 2 = 2 = 2 2 = 2 2 = 2 2 = 2 1 = 1 3 = 3 3 = 3 m=3 1 = 1

Anderson localization 1 2 T 1(n 1) = reflection: R 1 = g c T 1 1 4g c T 1 (n 1)R 1 (n 1) 1 T 8g 2 1 (n 1)R 1 (n 1) 2 c 1 T 1 (n) = T1 (n 1)R 2 m g m 1 1 (n 1) m 1 c gc T 1 (n 1) = 2g c R 1 (n 1) + = = m=2 m=3 = T 1 (n 1) 1 g c T 1 (n 1) 2 + O(g 2 c )

Anderson localization Beyond diagonal approximation in n th dot: contribution of order g c -2 first n-1 dots n m=2 1 tr S 8gc 2 12 S 22 S 22 S 12 = 1 T 8gc 2 2 (n 1) T 1 (n 1) Pairing i with j, i = j: contribution of order g c -2 1 8g 2 c tr S 12 (S 22S 22 ) 2 S 12 = = 1 T 8gc 2 1 (n 1) 2T 2 (n 1) + T 3 (n 1) 2 = 1 3 = 3 1 = 2 m=3

Summarizing Anderson localization δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) interdot conductance: g c Extension to higher moments or =1 (time-reversal symmetry): Need to consider up to one encounter in n th dot; Need to go (slightly) beyond pairing i with i, i=1,,m.

Anderson localization Summarizing δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) interdot conductance: g c Extension to higher moments or =1 (time-reversal symmetry): Need to consider up to one encounter in n th dot; Need to go (slightly) beyond pairing i with i, i=1,,m.

Summarizing Anderson localization δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) interdot conductance: g c Extension to higher moments and =1 (time-reversal symmetry): Need to consider up to one encounter in n th dot; Need to go (slightly) beyond pairing i with i, i=1,,m. full set of recursion relations n ( = 1 n n n ) δ T δ,1 i k T ik +1 T im 1 im i k g c g k=1 c k=1 m k + 1 n i k 1 n i k (T j (T ik j T ik j+1)) T im g c + 4 g c k=1 j=1 n k 1 i k i l (T ik +i l T ik +i l +1) k=1 l=1 m k n m k,l T 1 n T im T im + O(gc 2 ),

Summarizing Anderson localization δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) interdot conductance: g c Extension to higher moments or =1 (time-reversal symmetry): Theory of Anderson localization in array of Need to consider up to one encounter in n th dot; ballistic Need to go chaotic (slightly) beyond cavities, pairing formulated i with i, i=1,,m. in terms of classical trajectories only. full set of recursion relations from Brouwer classical and trajectories Altland, only arxiv:0802.0976 n ( = 1 n n n ) δ T δ,1 i k T ik +1 T im 1 im i k g c g k=1 c k=1 m k + 1 n i k 1 n i k (T j (T ik j T ik j+1)) T im g c + 4 g c k=1 j=1 n k 1 i k i l (T ik +i l T ik +i l +1) k=1 l=1 m k n m k,l T 1 n T im T im + O(gc 2 ),