Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Similar documents
C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

Numerical Analysis Formulae Booklet

PROJECTION PROBLEM FOR REGULAR POLYGONS

18.413: Error Correcting Codes Lab March 2, Lecture 8

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

Chapter 5 Properties of a Random Sample

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

CS5620 Intro to Computer Graphics

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

Introduction to local (nonparametric) density estimation. methods

Lecture 07: Poles and Zeros

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Centroids & Moments of Inertia of Beam Sections

Fast Methods for Integral Equations. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler

Some Different Perspectives on Linear Least Squares

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

L5 Polynomial / Spline Curves

The Mathematical Appendix

QR Factorization and Singular Value Decomposition COS 323

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

6. Nonparametric techniques

An Introduction to. Support Vector Machine

4 Inner Product Spaces

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical

Beam Warming Second-Order Upwind Method

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

CS475 Parallel Programming

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Point Estimation: definition of estimators

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

Special Instructions / Useful Data

Chapter 8: Statistical Analysis of Simulated Data

Computer Graphics. Geometric Modeling. Geometric Modeling. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion

A Remark on the Uniform Convergence of Some Sequences of Functions

1 Onto functions and bijections Applications to Counting

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract

Lecture Note to Rice Chapter 8

15. Nanoparticle Optics in the Electrostatic Limit

X ε ) = 0, or equivalently, lim

Econometric Methods. Review of Estimation

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

ENGI 4421 Propagation of Error Page 8-01

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Centroids Method of Composite Areas

Generalization of the Dissimilarity Measure of Fuzzy Sets

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

EECE 301 Signals & Systems

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

Analysis of Lagrange Interpolation Formula

1 Convergence of the Arnoldi method for eigenvalue problems

Non-degenerate Perturbation Theory

Summary of the lecture in Biostatistics

TESTS BASED ON MAXIMUM LIKELIHOOD

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

A Collocation Method for Solving Abel s Integral Equations of First and Second Kinds

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

G S Power Flow Solution

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

ENGI 3423 Simple Linear Regression Page 12-01

Spreadsheet Problem Solving

Ideal multigrades with trigonometric coefficients

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Investigating Cellular Automata

Simple Linear Regression

Bayes (Naïve or not) Classifiers: Generative Approach

MOLECULAR VIBRATIONS

Parameter, Statistic and Random Samples

LINEAR REGRESSION ANALYSIS

MATH 247/Winter Notes on the adjoint and on normal operators.

Mu Sequences/Series Solutions National Convention 2014

Multiple Choice Test. Chapter Adequacy of Models for Regression

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

PTAS for Bin-Packing

1 Lyapunov Stability Theory

Chapter 9 Jordan Block Matrices

Given a table of data poins of an unknown or complicated function f : we want to find a (simpler) function p s.t. px (

x y exp λ'. x exp λ 2. x exp 1.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

Unit 9. The Tangent Bundle

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Lecture 3 Probability review (cont d)

ESS Line Fitting

The conformations of linear polymers

Lecture Notes Types of economic variables

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER 5 INTEGRATION

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

Chapter 5. Curve fitting

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department

Transcription:

Itroducto to Smulato - Lecture 22 Itegral Equato ethods Jacob Whte Thaks to Deepak Ramaswamy, chal Rewesk, X Wag ad Kare Veroy

Outle Itegral Equato ethods Exteror versus teror problems Start wth usg pot sources Stadard Soluto ethods 2-D Galerk ethod Collocato ethod Issues 3-D Pael Itegrato

Iteror Versus Exteror Problems Iteror Exteror 2 T = sde 2 T = 0 outsde 0 Temperature kow o surface Temperature a Tak What s the heat flow? T Heat Flow = Thermal coductvty Temperature kow o surface Ice Cube a Bath surface

Exteror Problem Electrostatcs potetal + v 2 Ψ=0 Outsde - Ψ s gve o Surface What s the capactace? Ψ Capactace = Delectrc Permtvty surface

Drag Force a croresoator Courtesy of Werer Hemmert, Ph.D. Used wth permsso. Resoator Dscretzed Structure Computed Forces Bottom Vew Computed Forces Top Vew

What s commo about these problems. Exteror Problems Drag Force ES devce - flud (ar) creates drag. Couplg a Package - Felds exteror create couplg Capactace of a Sgal Le - Felds exteror. Quattes of Iterest are o the surface ES devce - Just wat surface tracto force Package - Just wat couplg betwee coductors Sgal Le - Just wat surface charge. Exteror Problem s lear ad space-varat ES - Exteror Stokes Flow equato (lear). Package - axwell s equatos free space (lear). Sgal Le - Laplace s equato free space (lear). But problems are geometrcally very complex!

Exteror Problems Why ot use Fte-Dfferece or FE methods Surface 2-D Heat Flow Example T = 0 at But, must trucate the mesh T Oly eed o the surface, but T s computed everywhere ust trucate the mesh, T( ) = 0 becomes T( R) = 0

Laplace s Equato Gree s Fucto If 2 2 u u the + = 0 for all xy, x, y 2 2 x y If u = 2 2 2 u u u the + + = 0 for all xyz,, x, y, z 2 2 2 x y z I 2-D ( ( ) 2 ) ( ) 2 0 0 u = log x x + y y I 3-D ( x x ) + ( y y ) + ( z z ) 2 2 2 0 0 0 ( ) ( ) 0 0 ( ) ( ) Proof: Just dfferetate ad see! 0 0 0

Laplace s Equato 2-D Smple Idea u s gve o surface x Surface, y ( ) 0 0 u x u + = 0 outsde y 2 2 2 2 Let ( ( ) 2 ) ( ) 2 0 0 u = log x x + y y 2 2 u u + = 0 outsde 2 2 x y Problem Solved Does ot match boudary codtos!

Laplace s Equato 2-D u s gve o surface ( x, y ) 2 2 ( x, y ) ( x, y ) u x Smple Idea ore Pots u + = 0 outsde y 2 2 2 2 ( ( ) 2 ( ) 2 ) ω ( ) = + = Let u ω log x x y y G x x, y y = = Pck the ω ' s to match the boudary codtos!

Laplace s Equato 2-D ( x, ) t yt ( x, y ) 2 2 ( x, y ) ( x, y ) Smple Idea ore Pots Equatos Source Stregths selected to gve correct potetal at test pots. ( ) ( ) L L ( ) G xt x, y t y G x t x,, yt y ω Ψ xt y t O = O G( x ) ( ) ( ) t x, y,, t y G x t x yt y ω Ψ xt y L L t

Computatoal results usg pots approach Crcle wth Charges r=9.5 r Potetals o the Crcle R=0 =20 =40

Laplace s Equato 2-D Itegral Formulato Lmtg Argumet Wat to smear pot charges oto surface Results a Itegral Equato Ψ ( x) = G( x, x ) σ ( x ) ds How do we solve the tegral equato? surface

Laplace s Equato 2-D Bass Fucto Approach Basc Idea Represet σ ( x) = ω ( ) ϕ x { = Bass Fuctos Example Bass Represet crcle wth straght les Assume σ s costat alog each le The bass fuctos are o the surface Ca be used to approxmate the desty ay also approxmate the geometry

Laplace s Equato 2-D Bass Fucto Approach Geometrc Approxmato s ot ew. Pecewse Straght surface bass Fuctos approxmate the crcle ( ) ( ) ( ) Tragles for 2-D FE approxmate the crcle too! x G x, x ωϕ x ds Ψ = approx surface =

Laplace s Equato 2-D x Bass Fucto Approach Pecewse Costat Straght Sectos Example. x l l l 2 x 2 ) Pck a set of Pots o the surface 2) Defe a ew surface by coectg pots wth les. 3) Defe ϕ ( ) x = f x s o le l otherwse, ϕ x = 0 ( ) approx surface Ψ ( x) = G( xx, ) ωϕ ( x ) ds = ω G( xx, ) ds = = le l How do we determe the ω ' s?

Laplace s Equato 2-D Bass Fucto Approach Resdual Defto ad mmzato R x x G x, x ωϕ x ds Ψ ( ) ( ) ( ) ( ) We wll pck the approx surface = ω ' s to make R( x) small. Geeral Approach: Pck a set of test fuctos φ K φ R x,,, ad force ( ) to be orthogoal to the set φ ( ) ( ) xr x ds = 0 for all.

Laplace s Equato 2-D Bass Fucto Approach Resdual mmzato usg test fuctos ( ) ( ) ( ) ( ) ( ) ( ) ( ) φ x R x ds= φ x Ψ x ds φ x G x, x ω ϕ x dsds = 0 approx = surface We wll geerate dfferet methods by chosg the,,, φ K φ C ollocato: φ (pot-matchg) ( x) = δ ( x x ) t Galerk ethod: φ ( x) = ϕ ( x) (bass = test)

Laplace s Equato 2-D Bass Fucto Approach Collocato δ Collocat o: φ ( ) ( ) x = δ x (pot-matchg) ( ) ( ) ( ) ( ) ( ) t t t t ω ϕ ( ) x x R x ds= R x =Ψ x G x, x x ds = 0 approx surface ( ) ( ) t ω t, ϕ ( ) Ψ = x G x x x ds = approx surface 4444244443 A, = ( x ) t A, L L A, ω Ψ O = O A ( ), L L A, ω Ψ x t

Laplace s Equato 2-D x l l l 2 x 2 x t Bass Fucto Approach Cetrod Collocato for Pecewse Costat Bases ( ) ( ) t ω t, ϕ ( ) Ψ = x G x x x ds = approx surface Collocato pot le ceter ( x ) t A, L L A, ω Ψ O = O A ( ), L L A, ω Ψ x t ( ) (, ) t ω t Ψ = x G x x ds = le 442443 A,

Laplace s Equato 2-D Bass Fucto Approach Cetrod Collocato Geerates a osymmetrc A ( ) (, ) t ω t Ψ = x G x x ds = le 442443 A, x t l 2 l x t2 (, ) (, ) t t A G x x ds G x x ds A = = 2,2 2, le2 le

Laplace s Equato 2-D Bass Fucto Approach Galerk Galerk: φ ( x) = ϕ ( x) (test=bass) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ϕ x R x ds= ϕ x Ψ x ds ϕ x G x, x ω ϕ x dsds = 0 approx = surface approx surface If Gxx (, ) Gx (, x) the A = A = A s symmetrc,, ( ) ( ) (, ) ( ) ( ) Ψ = ϕ x x ds ω G x x ϕ x ϕ x dsds = approx approx surface surface 44424443 444444244444443 b A, A, L L A, ω b O = O A, L L A, ω b

Laplace s Equato 2-D Bass Fucto Approach Galerk for Pecewse Costat Bases l l x x 2 l 2 ( ) ω (, ) = le le le 4243 44424443 b x ds G x x ds ds Ψ = A, A, L L A, ω b O = O A, L L A, ω b

3-D Laplace s Equato Itegral Equato: Ψ x = Bass Fucto Approach Pecewse Costat Bass ( ) ( ) surface x x σ x ds Dscretze Surface to Paels Represet σ ( x) ω ( ) ϕ x { = Bass Fuctos Pael ϕ x = x ϕ = ( ) f s o pael ( x) 0 otherwse

3-D Laplace s Equato Bass Fucto Approach Cetrod Collocato Put collocato pots at pael cetrods ( ) (, ) c ω c Ψ = c x Collocato pot x G x x ds = pael 44424443 A, ( x ) c A, L L A, ω Ψ O = O A ( ), L L A, ω Ψ x c

3-D Laplace s Equato Bass Fucto Approach Calculatg atrx Elemets z y x x Collocato c pot Pael A, = pael x x c ds Oe pot quadrature Approxmato A, Pael Area x c x cetrod Four pot quadrature Approxmato A, 4 0.25* Area x = c x pot

3-D Laplace s Equato Bass Fucto Approach Calculatg Self-Term z y x x Collocato c pot Pael A, = pael x x c ds Oe pot quadrature Approxmato A, Pael Area x c 4243 A, = ds s a tegrable sgularty x x pael c 0 x c

3-D Laplace s Equato z y Itegrate two peces x Pael Bass Fucto Approach x Collocato c pot Dsk of radus R surroudg collocato pot Calculatg Self-Term Trcks of the trade A, = pael x x c ds A, = ds + ds x x x x dsk c rest of pael c Dsk Itegral has sgularty but has aalytc formula dsk x c x R 2π ds = rdrdθ = 2π R r 0 0

3-D Laplace s Equato z y x Pael Bass Fucto Approach x Collocato c pot Calculatg Self-Term Other Trcks of the trade A, = pael x c x 4243 Itegrad s sgular ds ) If pael s a flat polygo, aalytcal formulas exst 2) Curve paels ca be hadled wth proecto

3-D Laplace s Equato Bass Fucto Approach Galerk (test=bass) ( ) ( ) ( ) (, ) ( ) ϕ x Ψ x ds = ω ϕ x G x x ϕ x dsds 442443 = 444442444443 b A For pecewse costat Bass Ψ ( x) ds = ω dsds 4243 pael pael = x x b 4444244443 A,, A, L L A, ω b O = O A, L L A, ω b

3-D Laplace s Equato Bass Fucto Approach Problem wth dese matrx Itegral Equato ethod Geerate Huge Dese atrces ( x ) c A, L L A, ω Ψ O = O A ( ), L L A, ω Ψ x c Gaussa Elmato uch Too Slow!

Summary Itegral Equato ethods Exteror versus teror problems Start wth usg pot sources Stadard Soluto ethods Collocato ethod Galerk ethod Next Tme Fast Solvers Use a Krylov-Subspace Iteratve ethod Compute V products Approxmately