Rotation: All around us: wheels, skaters, ballet, gymnasts, helicopter, rotors, mobile engines, CD disks, Atomic world: electrons spin, orbit.

Similar documents
2015 Sectional Physics Exam Solution Set

β A Constant-G m Biasing

Physics 201 Lecture 15

Physics 1501 Lecture 19

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

s = rθ Chapter 10: Rotation 10.1: What is physics?

dm dt = 1 V The number of moles in any volume is M = CV, where C = concentration in M/L V = liters. dcv v

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

A L A BA M A L A W R E V IE W

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work

Physics 20 Lesson 9H Rotational Kinematics

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

Field due to a collection of N discrete point charges: r is in the direction from

2010 Sectional Physics Solution Set

Sharif University of Technology - CEDRA By: Professor Ali Meghdari

Chapter 3: Vectors and Two-Dimensional Motion

Physics 207 Lecture 16

R th is the Thevenin equivalent at the capacitor terminals.

Rotations.

Note: Please use the actual date you accessed this material in your citation.

Physics 207 Lecture 13

Electrostatic/magnetostatic forces

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

Mass Linear Momentum Moment of Momentum Energy Putting it all together!

2 shear strain / L for small angle

ESS 265 Spring Quarter 2005 Kinetic Simulations

Chapter 13 - Universal Gravitation

PHY2053 Summer 2012 Exam 2 Solutions N F o f k

2/4/2012. τ = Reasoning Strategy 1. Select the object to which the equations for equilibrium are to be applied. Ch 9. Rotational Dynamics

Chapter 2 Linear Mo on

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

CHAPTER 10 ROTATIONAL MOTION

Torque, Angular Momentum and Rotational Kinetic Energy

o Alphabet Recitation

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

P a g e 5 1 of R e p o r t P B 4 / 0 9

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

Rotational Motion: Statics and Dynamics

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

Use 10 m/s 2 for the acceleration due to gravity.

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

PHY121 Formula Sheet

T h e C S E T I P r o j e c t

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

Parts Manual. EPIC II Critical Care Bed REF 2031

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

P a g e 3 6 of R e p o r t P B 4 / 0 9

Chapter 8. Linear Momentum, Impulse, and Collisions

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

CHAPTER 5: Circular Motion; Gravitation

Phys101 Second Major-061 Zero Version Coordinator: AbdelMonem Saturday, December 09, 2006 Page: 1

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

Work, Energy, and Power. AP Physics C

Dynamics of Rigid Bodies

THE EQUIVALENCE OF GRAM-SCHMIDT AND QR FACTORIZATION (page 227) Gram-Schmidt provides another way to compute a QR decomposition: n

Part V: Velocity and Acceleration Analysis of Mechanisms

PHYS PRACTICE EXAM 2

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9

H STO RY OF TH E SA NT

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

PROBLEM-Chapter 1-5 (Heat Transfer, Yanus A. Cengel)

Let s treat the problem of the response of a system to an applied external force. Again,

Physics 1114: Unit 5 Hand-out Homework (Answers)

Relative and Circular Motion

CHAPTER 13 LAGRANGIAN MECHANICS

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Why CEHCH? Completion of this program provides participants direct access to sit for the NAB HCBS exam.

Physics Courseware Physics I Constant Acceleration

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11)

SAFE HANDS & IIT-ian's PACE EDT-04 (JEE) Solutions

Chapter Fifiteen. Surfaces Revisited

Physics 3 (PHYF144) Chap 3: The Kinetic Theory of Gases - 1

PHYS 1410, 11 Nov 2015, 12:30pm.

- Double consonant - Wordsearch 3

Physics 201 Lecture 9

Physic 231 Lecture 14

SAVE THESE INSTRUCTIONS

THIS PAGE DECLASSIFIED IAW E

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

Integrated Optical Waveguides

Lecture 23: Central Force Motion

24-2: Electric Potential Energy. 24-1: What is physics

Fundamental Vehicle Loads & Their Estimation

Exam 3: Equation Summary

PHY2053 Summer C 2013 Exam 1 Solutions

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

Water Hammer in Pipes

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Electric Fields and Electric Forces

CHAPTER 6: UNIFORM CIRCULAR MOTION AND GRAVITATION

Transcription:

Chape 0 Spn an bal n Ran: All aun us: wheels, skaes, balle, gynass, helcpe, s, ble engnes, CD sks, Ac wl: elecns spn, b. Unese: planes spn an bng he sun, galaxes spn, Chape 4 kneacs Chape 0 ynacs

0. Se cnceps abu an. Spn escbe anal n f a syse abu an axs hugh s cene f ass.. Rg by a syse cpse f any pnlke pacles ha anan fxe sances f each he a all e. each pacle f he spnnng g by syse execues ccula n abu he axs hugh he cene f ass. 3. Obal n he cene f he ass f he syse s ng n space f a pespece f a pacula efeence fae. 0. Se cnceps abu an The n f he cene f ass us n be ccula.

0. Se cnceps abu an 4. The bal angula enu f a pacle Defne: p Magnue: snθ p Decn: epencula he plane cnanng he an p p x z θ p p y 0. Se cnceps abu an Nce: s easue wh espec he gn a O; un: kg /s; 3 whaee he pah ajecy f a pacle s saghlne, cue pah, clse bal pah,. 5. The angula enu f he ccula bal n f a pacle (a Angula enu 3

4 p p hen (b Men f nea f a pacle 0. Se cnceps abu an hen efne 0. The e ae f change f angula enu an que. The e ae f change f angula enu f a sngle pacle p p p ( p 0 F p p p Q F θ

0. The e ae f change f angula enu an que. que Defne: τ Magnue: F F τ F snθ F Decn: epencula he plane cnanng he an F Un f he que: N s he psn ec f he pn f applcan f he fce wh espec he chsen gn. F F θ f 0. The e ae f change f angula enu an que Dscussn: θ 0 π, F 0, τ 0 F css he O, F F θ 5

6 3. Dynacs f ccula bal n f a sngle pacle Q τ F p Exaple : 433 0.5 Exaple : 433 0.6 α τ ( Can n be use n nnccula bal n. 0. The e ae f change f angula enu an que 0.3 The angula enu f a syse f pacles an en f nea f g by. The angula enu f a syse f pacles p Q θ p C ( (

0.3 The angula enu f a syse f pacles an en f nea f g by Fs e: Secn e: Th e: M M The psn ec f cene f ass wh espec he cene f ass s he ec su f angula enu f all pacles wh espec he cene f ass. 0 0.3 The angula enu f a syse f pacles an en f nea f g by hen M bal spn. Spn angula enu f a g by abu a axs hugh he cene f ass Q spn // spn ( // ( // z 7

0.3 The angula enu f a syse f pacles an en f nea f g by spn // ( ( // The ec s an nle ec suan. The an f an ly shape bjec abu any axs f an s beyn he scpe f hs cuse. // z 0.3 The angula enu f a syse f pacles an en f nea f g by 3. The en f nea anal nea f a g by abu a fxe axs hugh cene f ass // ( f he g by s syey abu he axs; he axs s fxe. Ths e has n effec. Then spn ( // z 8

0.3 The angula enu f a syse f pacles an en f nea f g by Defne: z Ths s he en f nea anal nea f a g by abu a fxe axs hugh cene f ass The spn angula enu f a g by ( spn // 0.3 The angula enu f a syse f pacles an en f nea f g by 4. The en f nea f aus g bes (a n pacle a sance f he axs f an (b Cllecn f pn pacles --he pepencula sance f each ass f he axs f an (c Rg by f sbue ass 9

0.3 The angula enu f a syse f pacles an en f nea f g by --he pepencula sance f each ass f he axs f an The eleen f ass: λ l lnea ensy:λ σ S suface ensy:σ ρ V lu ensy:ρ 0.3 The angula enu f a syse f pacles an en f nea f g by Exaple: 5 pacles ae cnnece by 4 lgh saffs as shwn n fgue. Fn he en f he syse wh espec he axs hugh pn A, an pepencula he pape plane. Slun: l 3(l (4 5( 3l l A l l l 4 3 5 l 0

Exaple : Thee s a lgh hn saff f ass an lengh. Fn he en wh espec ffeen axs. x x x 3 3 3 8 8 3 3 x x x Slun: 0.3 The angula enu f a syse f pacles an en f nea f g by x x 3 0 3 0 3 x x x x 0.3 The angula enu f a syse f pacles an en f nea f g by

0.3 The angula enu f a syse f pacles an en f nea f g by Se anal neas Suay f he peus secns. The bal angula enu f a pacle z Defne: p F a ccula bal n f a pacle p Ranal nea x θ p p. The e ae f angula enu f a sngle pacle F p F τ θ Defne: τ F y

Suay f he peus secns F a ccula bal n f a pacle τ ( α 3. The angula enu f a syse f pacles M bal spn ( ( C p θ Suay f he peus secns 4. The angula enu f a g by spnnng abu a fxe axs hugh cene f ass spn ( spn z The anal nea spn spn epesens he nea f ang by. // 3

Suay f he peus secns Se anal neas 0.4 The ynacs f g by wh a fxe axs. The e ae f change f he angula enu f a syse f pacles A gup f pacles wh asses,,, n, an angula enus,,, n The angula enu f he syse s 3 Recall F τ, Then F τ 4

0.4 The ynacs f g by wh a fxe axs. The ques ue nenal an exenal fces A syse bune wh ange clu τ τ τ n F any w eleen ass f he syse an τ n ( F F ( F n 0 heefe τ n 0 τ ex 6 4 3 5 F F F F 0.4 The ynacs f g by wh a fxe axs F τ F ex τ ex The que ue he nenal fces n change he angula enu f a syse. 3. The ynacs f g by wh a fxe axs--the anal cunepa f Newn s secn law f a g by wh fxe axs τ τ ex p F ex a spn spn τ ex spn spn α z τ z z spn α z 5

0.4 The ynacs f g by wh a fxe axs Exaple : As shwn n fgue a unf sk, wh ass M.5 kg an aus R0 c, une n a fxe hznal axle. A blck wh ass. kg hangs f a assless c ha s wappe aun he f he sk. Fn he accelean f he fallng blck, he angula accelean f he sk, an he ensn n he c. The c es n slp, an hee s n fcn a he axle. 0.4 The ynacs f g by wh a fxe axs Slun: T g a ( RT MR α ( a Rα (3 a g 4.8/s M T Ma 6.0N a 4.8 α 4a/s R 0. N Mg g 6

0.4 The ynacs f g by wh a fxe axs Exaple : Fn he accelean f he fallng blck by ec applcan f τ. N Slun: z ( R ( g R ( R g R α Ra a MR Ra R g g a M 0.4 The e ae f change f he spn angula enu an ynacs f g by Exaple 3: As shwn n fgue, ne blck has ass M500 g, he he has ass 460 g, an he pulley, whch s une n hznal fcnless beangs, has a aus f 5.00 c. When elease f es, he heae blck falls h75.0 c n 5.00 s ( whu he c slppng. (a Wha s he agnue f he blcks? (b Wha ae he ensns f he c n bh ses? (c Wha s he agnue f he pulley s angula accelean? (e Wha s s anal nea? 7

0.4 The e ae f change f he spn angula enu an ynacs f g by Slun: T T g T T Mg Mg T Ma T g a ( T T R α a αr h a a 6.0 0 /s T 4.87N T 4.54N α.a/s.38 0 kg 0.5 The angula pulse-enu hee an he pcessn f a aply spnnng p. The angula pulse-enu hee Recall F τ τ The angula pulse-enu hee f f τ Cpae wh he pulse-enu hee p p f f F p p F p 8

0.5 The angula pulse-enu hee an The pcessn f a aply spnnng p Exaple 4:Tw cylne hang a R an R an anal neas an especely, ae suppe by axes pepencula he plane f he sceen. The w cylnes ae nally ang wh angula spees an 0 0, especely. The sall cylne s e he gh unl uches he lage ne an he w cylnes ae a cnsan aes n ppse ecns. Fn he fnal angula spees f he w cylnes n es f,, R, R, an 0 0. 0 0 O R O R 0.5 The angula pulse-enu hee an The pcessn f a aply spnnng p Slun: f f Fee by aga: O O R R τ fr f τ fr Accng he angula pulse-enu hee We can ge R R 0 f R R R R 0 f R R R 0 0 ( ( (3 R R 0 R 0 R R 9

0.5 The angula pulse-enu hee an The pcessn f a aply spnnng p. The pcessn f a aply spnnng p f he spnnng angula enu s ze,.e. 0 spn The que f he gay wh espec he pn O τ Mg c Mg snφˆj wll ake he p fall wn. 0.5 The angula pulse-enu hee an The pcessn f a aply spnnng p f he spnnng angula enu s n ze,.e. 0 spn z Accng he angula pulse-enu hee spn τ, τ C The change f he angula M g enu s x τ τ 0

0.5 The angula pulse-enu hee an The pcessn f a aply spnnng p because τ Mg c C φ The angula enu φ C φ θ φ The esul s ha he p es n he ecn pepencula he plane f syey axs an he lcal ecal ecn. 0.5 The angula pulse-enu hee an The pcessn f a aply spnnng p 3. The angula spee f he pcessn θ spn spn snφθ snφ θ φ pcs θ / spn snφ Mg snφ Mg snφ spn spn φ

0.5 The angula pulse-enu hee an The pcessn f a aply spnnng p Thnk! why es he bcycle wheel behae as shwn n he fllwng e fl? 4. The applcan f he pcessn f p f c g 0.6 Sulaneus spn an bal n. The knec enegy f a spnnng syse KE ( f spnnng n KE. Ranal knec enegy f a syse f bal n f he cene f ass KE M

0.6 Sulaneus spn an bal n Tal knec enegy KE spn M 0.6 Sulaneus spn an bal n Exaple 4: A unf sphecal shell f ass M an aus R aes abu a ecal axs n fcnless beangs. A assless c passes aun he equa f he shell, e a pulley f anal neal an aus, an s aache a sall bjec f ass. Thee s n fcn n pulley s axle; he c es n slp n he pulley. Wha s he spee f he bjec afe falls a sance h f es? 3

0.6 Sulaneus spn an bal n Slun: KE ( 3 sph R pull E gh MR sph pull Accng he cnsean law f echancal enegy EKE gh M 3 gh / M / 3 0.6 Sulaneus spn an bal n 3. The angula enu (a Spnnng n b spn spn (b Obal n f cene f ass p M M b (c Tal angula enu f he syse M bal spn Exaple : 450 0.0 spn b 4

0.6 Sulaneus spn an bal n 4. Synchnus an f he spn angula elcy an he bal angula elcy ae paallel, an hae he sae agnue, hen, he n s calle synchnus an. spn b 5. aallel axs hee The angula enu f a synchnus an spn M b M 0.6 Sulaneus spn an bal n The paallel axs hee: The en f nea f he syse abu an axs paallel he syey axs f he syse an sepaae f by a pepencula sance s. M 6. Rllng n whu slppng (a The spn an bal axes ae paallel an sepaae by he aus f he cculaly shape syse unegng llng n. whu slppng ABS syse? 5

0.6 Sulaneus spn an bal n (b Rllng cnsans: s Rθ s θ R cene a acene (c Velcy cene cene cene R R Rα cene 0.6 Sulaneus spn an bal n T T R T C C C B R B B ( Tal knec enegy KEans an KE R R KE 6

0.6 Sulaneus spn an bal n Exaple : 459 0., fn he accelean an he ensn n he c. Slun: eh : chse he cene f ass f he by as he efeence pn. a g T a TR α a Rα R g T R R g T R R g 0.6 Sulaneus spn an bal n eh : chse he pn n he f he by as he efeence pn. gr α R a α R The sae esuls can be bane a R g T R R g T R R g 7

8 6. A geneal scussn abu he angula enu an he que( 0.7 (a Angula enu abu a pn (When bh spn an bal n exs ( ( 0.6 Sulaneus spn an bal n a a p ( ( ( ( ( ( ( ] ( [ ( ( ] ( [ τ (b The e ae f change f he angula enu abu pn 0.6 Sulaneus spn an bal n

0.6 Sulaneus spn an bal n f s n an neal efeence fae; s he cene f ass f he syse; 3 has an accelean paallel anpaallel he ec lcang he cene f ass. hen τ F a g by ang abu he axs hugh he cene f ass τ τ α 0.7 Cnsean f angula enu. The angula enu f a syse f pacles. The e ae f change f he angula enu τ ex 3. Cnsean f angula enu f τ 0 hen cnsan ec ex 9

0.7 Cnsean f angula enu Exaples: The suen eceasng hs nea ncease hs angula spee. The angula enu s cnsan. The e s angula enu s cnsan 0.7 Cnsean f angula enu 0 An ealze spacecaf cnanng a flywheel. f he flywheel s ae ae clckwse as shwn, he spacecaf self wll ae cuneclckwse. When he flywheel s bake a sp, he spacecaf wll als sp ang bu wll be eene by he angle θ sc. 30

0.7 Cnsean f angula enu 0.7 Cnsean f angula enu Execse : As shwn n fgue, he bcycle wheel whse anal nea abu s cenal axs s wh, he wheel s ang a an angula spee wh cuneclckwse. When he wheel s nee, he suen, he sl an he wheel s cene ae gehe as a cpse by abu he sl s an axs, wh anal nea b. Wh wha angula spee an n wha ecn es he cpse by ae afe he nesn f he wheel. 3

0.7 Cnsean f angula enu Slun: The angula enu f he syse s cnsee bf whf b wh bf wh whk ˆ 0 wh whk ˆ bf wh whk ˆ bb wh wh b b 0.7 Cnsean f angula enu Execse : n he ehea ew f he fgue, fu hn, unf s, each f ass M an lengh 0.50, ae gly cnnece a ecal axle f a unsle. The unsle aes clckwse abu he axle, whch s aache a fl, wh nal angula elcy.0 a/s. A u ball f ass M/3 an nal spee /s s hwn alng he pah shwn an scks he en f ne. Wha s he fnal angula elcy f f he ball -unsle syse? 3

0.7 Cnsean f angula enu Slun: Mechancal enegy, lnea enu an angula enu, whch s cnsee? s, f ball, f s, ball, s, s s,f s f s 4[ M M( ] 4 s M 3 sn(80 60 ball, cs60 ball, f ball f f 0.7 Cnsean f angula enu 4 f M 3 s, f f 5 ball, f 4 M f M 3 (4 s, ball, cs60 cs60 0.80a/s 33

0.7 Cnsean f angula enu Exaple 3:The pacle f ass n fgue sles wn he fcnless suface hugh hegh h an clles wh he unf ecal f ass M an lengh, sckng. The ps abu pn O hugh he angle θ befe enaly sppng. Fn θ. 0.7 Cnsean f angula enu Slun: gh ( M M( ( g( csθ Mg( csθ gh 6 h θ cs [ ] M ( M (3 M 3 34

0.7 Cnsean f angula enu Execse 4:ung a jup hs pane, an aeals s ake a quauple sesaul lasng a e.87 s. F he fs an las quae elun, he s n he exene enan shwn n fgue, wh anal nea 9.9 kg aun hs cene f ass. Dung he es f he flgh he s n a gh uck, wh anal nea 3.93kg. Wha us be hs angula spee aun hs cene f ass ung he uck. 0.7 Cnsean f angula enu Slun: Thee s n ne exenal que abu hs cene f ass, hs angula enu abu hs cene f ass s cnsee. Fs an las quae -elun θ The es f e θ 0.5e 3.5e 35

36 (.87s θ θ θ θ θ θ Then we hae 0.4a/s 3.3e/s 0.7 Cnsean f angula enu