Denmark Group Meeting. & Electrophilic rearrangement of amides

Similar documents
Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

Highlights of Schmidt Reaction in the Last Ten Years

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014

Short Literature Presentation 10/4/2010 Erika A. Crane

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

Palladium-Catalyzed Asymmetric Benzylic Alkylation Reactions

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

[3,3]-sigmatropic Processes. [2,3]-sigmatropic Processes. Ene Reactions. Generalized Sigmatropic Processes X,Y=C, N, O, S X,Y=C, N, O, S

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Homogeneous Catalysis - B. List

Journal Club Presentation by Remond Moningka 04/17/2006

Total Syntheses of Minfiensine

Electrophilic Carbenes

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Asymmetric Nucleophilic Catalysis

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Additions to Metal-Alkene and -Alkyne Complexes

Total synthesis of Spongistatin

Asymmetric Catalysis by Lewis Acids and Amines

Carbonyl Ylide Cycloadditions

C H Activated Trifluoromethylation

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Asymmetric Alklylation of Enolates

"-Amino Acids: Function and Synthesis

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Zr-Catalyzed Carbometallation

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions

Total Synthesis of Oxazolomycin A

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Use of Cp 2 TiCl in Synthesis

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Suggested solutions for Chapter 40

Literature Report. Catalytic Enantioselective Synthesis of Isoindolinones through a Biomimetic Approach. : Zhong Yan : Ji Zhou :

Three Type Of Carbene Complexes

VI. Metal alkyls from oxidative addition / insertion

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Answers To Chapter 7 Problems.

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Chiral Brønsted Acid Catalysis

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Organic Electron Donors

Transannular Rearrangement of Activated Lactams: Stereoselective Synthesis of Substituted Pyrrolidine-2,4-diones from Diketopiperazines

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Microwave-promoted synthesis in water

Recent Advancement in Ag Mediated C-F Bond Formation. Chem 535 Literature Seminar Jiabao Zhang 02/21/2017

CEM 852 Final Exam. May 6, 2010

Rhodium Catalyzed Alkyl C-H Insertion Reactions

PhD research with Prof. Lutz H. Gade at the Univ. of Strasbourg. Postdoc in 2003 with Andreas Pfaltz (Basel Switzerland)

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Career Review of Dean Toste I. 2015/9/9 Zhi Ren

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)-

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

Corey-Bakshi. Bakshi-Shibata Reduction. Name Reaction Nilanjana Majumdar

Self-stable Electrophilic Reagents for Trifluoromethylthiolation. Reporter: Linrui Zhang Supervisor: Prof. Yong Huang Date:

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines

Organocatalysis Enabled by N-Heterocyclic Carbenes

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Rhodium-Catalyzed Enantioselective

Stereoselective Organic Synthesis

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

Prof. Ang Li. Literature Seminar Kosuke Minagawa (D2)

Chapter 1 1. (R COOH) or its derivatives (R COY) generates a reactive intermediate (formally a

Synthesis of the Stenine Ring System from Pyrrole

π-alkyne metal complex and vinylidene metal complex in organic synthesis

Palladium-Catalyzed Alkylation of sp2 and sp3 C-H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C-H Activation Pathways

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

2.2.7 Research Area Electrophilic Activation of Amides / Pericyclic Reactions of Keteniminium Derivatives (N. Maulide)

Recent Development in. Tandem Radical Reactions (TRR)

Synthesis of Polyfluorinated and Polychlorinated Hydrocarbons

Reduction. Boron based reagents. NaBH 4 / NiCl 2. Uses: Zn(BH 4 ) 2. Preparation: Good for base sensitive groups Chelation control model.

Enantioselective Protonations

CuI CuI eage lic R tal ome rgan gbr ommon

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Denmark s Base Catalyzed Aldol/Allylation

Transcription:

Denmark Group Meeting Palladium catalyzed Dearomatizationeaction & Electrophilic rearrangement of amides 11 th Bo Peng th Feb. 2014 1

https://maps.google.com 2

Palladium catalyzed Dearomatization eaction & Electrophilic rearrangement of amides 3

Palladium catalyzed Dearomatization eaction: background Dearomatization eaction Starting material Aromatic compounds product Alicyclic compounds atural products a) oche, S. P.; Porco, J. A., Jr. Angew. Chem.,Int. Ed. 2011, 50, 4068 4093; b). Pouysegu, L.; Deffieux, D.; Quideau, S. Tetrahedron 2010, 66, 2235 2261. 4

Palladium catalyzed Dearomatization eaction: background 1. oxidative dearomatization 4. nucleophilic additive dearomatization 2. reductive dearomatization 5. σ rearrangement dearomatization 3. photocatalyzed dearomatization 6. transitionmetals promoted dearomatization 1 1 1 2 Li 2 3 3 X 2 Cr(C) 3 Cr(C) 3 + 3 5

Palladium catalyzed Dearomatization eaction: background Application of [(η 6 Arene) Mn(C) 3 ] + Ph (i) LDA (ii) (C) 3 Mn Ph (C) 3 Mn C 2 Me (+)juvabione Miles, W..; Brinkman,.. Tetrahedron Lett. 1992, 33, 589 6

Palladium catalyzed Dearomatization eaction: background Palladium catalyzed dearomatization reactions a). Bao, M.; akamura,.; Yamamoto, Y. J. Am. Chem. Soc., 2001, 123, 759; b). Fortanet, J. G.; 7 Kessler, F.; Buchwald, S. L. J. Am. Chem. Soc., 2009, 131, 6676

Palladium catalyzed Dearomatization eaction: background Tsuji Trost reaction Palladium catalyzed ucleophilic Dearomatization?? 8

Palladium catalyzed Dearomatization eaction: background egional Selectivity? 9

Palladium catalyzed Dearomatization eaction: background Possible solutions Pd Cl u A: introducing group B: reducing aromacity C: intramolecular nucleophile Pd Cl u Pd Cl u n 10

Palladium catalyzed Dearomatization eaction: exploration Cl CEt CEt 4 a -20 - rt >99 11

Palladium catalyzed Dearomatization eaction: exploration 12

Palladium catalyzed Dearomatization eaction: scope study Cl 1 2 2 1 CEt Pd(PPh 3 ) 4 (5 mol%) CEt 1.0 eq a, TF 3 rt, 5-12 h 3 1 2 CEt CEt Me F Br Ph CEt CEt CEt CEt CEt CEt CEt CEt 2a, 93% Me 2b, 86% 2c, 92% 2d, 71% Me CEt CEt Ph Ph CEt CEt Ph Me CEt CEt Ph Br CEt CEt 2e, 63% 2e, 75% 2f, 90% 2g, 72% Ph CEt EtC CEt Ph CEt Me 2h, 30% 3h, 64% Me 13

Palladium catalyzed Dearomatization eaction: application Application to Tetracyclic Compounds 14

Palladium catalyzed Dearomatization eaction: u scope 15

Palladium catalyzed Dearomatization eaction: intramolecular Intramolecular palladiumcatalyzed dearomatization 7a Cl CEt CEt Pd(PPh 3 ) 4 ( 5 mol%) a (1.0 equiv), TF -20 Ctort,12h rearomatization CEt CEt 7A EtC CEt CEt CEt 8a (52%) EtC CEt 9 (25%) Cl CEt CEt Pd(PPh 3 ) 4 ( 5 mol%) CEt CEt a (1.0 equiv), TF -20 Ctort,5h 7b 8b (95%) 16

Palladium catalyzed Dearomatization eaction: mechanism Possible mechanism Cl Ph Pd(0) 17

Palladium catalyzed Dearomatization eaction summary recent progress a) Peng, B.; Zhang, S.; Yu, X.; Feng, X.; Bao, M. rg. Lett. 2011, 13, 5402 5405; b). Zhang, S.; 18 Wang, Y.; Feng, X. J. Am. Chem. Soc. 2012, 134, 5492 5495.

Palladium catalyzed Dearomatization eaction & Electrophilic rearrangement of amides 19

Electrophilic rearrangement of amides: background Keteniminium Chemistry [2+2] cycloaddition of Keteniminium Salt Intermolecular Intramolecular Ph Me 2 Tf 2, 2,6-di-t-Bu-py t Bn Bn Ph 65% yield i) Tf 2, DTBMP C 2 Cl 2 ii) 2 * * 62% yield, 92% ee Ph Tf Bn Snider B.B. Chem. ev. 1988, 88, 793 20

Electrophilic rearrangement of amides: background ational design VS Serendipitous result 21

Electrophilic rearrangement of amides: background 2010 Vivi, Claire Tf 2, collidine 120 C, µw, DCE 2 2 1 ( )n n( ) Tf 2, collidine 2 31%- 90% 40%- 76% 9examples 6examples Tf Keteniminum induced Claisen earrangement b). Madelaine C., Valerio V., Maulide., Angew. Chem. Ed. 2010, 49, 1583 1586; c). Valerio V., Madelaine 22 C., Maulide., Chem. Eur. J. 2011, 17, 4742 4745.

Electrophilic rearrangement of amides: content Part 1. ucleophilic/electrophilic p capture of in-situ generated iminium ethers Part 2. Development of Asymmetric α-allylation Part 3. Development of A Brønsted Acid-Catalyzed edox Arylation 23

Part 1. ucleophilic/electrophilic capture of in-situ generated iminium ethers With Daniel and Igor Previous discovery: Tf 2, collidine 120 C C, µw, DCE 24

Part 1. ucleophilic/electrophilic capture of in-situ generated iminium ethers With Daniel and Igor Dual ucleophilic/electrophilic Capture of Iminium ether: 2 25

Part 1. ucleophilic/electrophilic capture of in-situ generated iminium ethers With Daniel and Igor scope of substrates 2, ab 4 26

Part 1. ucleophilic/electrophilic capture of in-situ generated iminium ethers With Daniel and Igor reactions of diastereomeric enriched iminium ether 2d 27

Part 1. ucleophilic/electrophilic capture of in-situ generated iminium ethers With Daniel and Igor Dearomatisation inspired by Ji Woong s SM Tf not observed 11 65% 28

Part 1. ucleophilic/electrophilic capture of in-situ generated iminium ethers With Daniel and Igor Tandem Electrophilic/ucleophilic trap of In Situ Generated Iminium Ethers 1a i. Tf 2, 2,4,6-collidine 120 C, µw, 5 min ii. a, BnBr DMF, 75 C 16 h Br Ph 2g ii. BnBr ucleophilic Capture Electrophilic Capture 29

Part 1. ucleophilic/electrophilic capture of in-situ generated iminium ethers With Daniel and Igor summary 2, ab 4 u 2 1 n n 1 2 Claisen rearrangement Tf 2 n 1 ac, asph, a 3,PPh 3, pyrrolidine, piperidine 41-90% yield 8examples n 2 1 u 28-85% yield 18 examples e) Peng B., Donovan D.., Jurberg I. D., Maulide. Chem. Eur. J. 2012, 18, 16292 16296 30

Electrophilic rearrangement of amides: content Part 1. ucleophilic/electrophilic p capture of in-situ generated iminium ethers Part 2. Development of Asymmetric α-allylation Part 3. Development of A Brønsted Acid-Catalyzed edox Arylation 31

Part 2. Development of Asymmetric α-allylation With Danny Previous discovery: 32

Part 2. Development of Asymmetric α-allylation With Danny Xc = 1a L-prolinol 33

Part 2. Development of Asymmetric α-allylation With Danny emove auxiliary towards α allylated carboxylic acid and aldehyde Ph a) Claisen rearrangement Tf 2 2-fluoropyridine - Tf Ph b) hydrolysis 3 + /dioxane 2a 4a 5a 63% (96%ee) 9 2b Ph a) Claisen rearrangement Tf 2 2-fluoropyridine - Tf c) reduction/ Ph hydrolysis 9 9 K-selectride/ 2 4b 6b 76% (96%ee) a): Tf 2 (1.5eq),2-fluoropyridine(2.0eq),DCM,0 C,12h; b): 2 S 4 /dioxane (1/ 1 ), 100 C, 24 h; c): K-selectride (3.0 eq), -78 C to rt, 3 h, then silica/dcm/ 2, rt, 12 h. 34

Part 2. Development of Asymmetric α-allylation With Danny b) hydrolysis a) Claisen - Tf 5 Ph rearrangement Ph 2 4 c) reduction/ hydrolysis y selected examples 6 8 examples 10 examples in situ hydrolysis to carboxylic acids Ph Ph 3 Br 5c 75%(88%ee) 5d 43%(88%ee) b,c 5g 47%(94%ee) 5h 80%(95%ee) in situ reduction/hydrolysis to aldehydes Me 2 Br 3 Ph 3 6c 68%(90%ee) 6m 6k 6h 87% (90%ee) b,e 55% (90%ee) b,e 54%(91%ee) e 35

Part 2. Development of Asymmetric α-allylation With Danny 36

Part 2. Development of Asymmetric α-allylation With Danny 1 Ph a) Claisen rearrangement 1 * b) reduction/ hydrolysis 2 7 8 2 6 6 n-ex 8a, 72% 8b, 67% 8c, 42% (d.r. 3.2/1, 94% ee) (d.r. 2.6/1, 93% ee) (d.r.3.7/1,94%ee) n-ex 8d, 65% b (d.r. 4.3/1, 94% ee) 8e, 82% c (d.r. 5.3/1, 93% ee) 8f, 53% (d.r. 5.7/1, 92% ee) 8g, 69% c (d.r.3.2/1,87%ee) 37

Part 2. Development of Asymmetric α-allylation With Danny Single crystal X ray determination of the absolute configuration 38

Part 2. Development of Asymmetric α-allylation With Danny Myers alkylation Claisen rearrangement strategy Ph Ph (1S, 2S)-pseudoephedrine Ph LDA, LiCl enolization electrophilic activation Tf 2, 2-F-pyridine Tf (solvent)nli Li(solvent)n Br () Ph (S) Tf Ph =-n-c 10 21 39

Part 2. Development of Asymmetric α-allylation With Danny Mechanistic proposal for the observed diastereo and enantioselectivity steps steps (2S,3S) boat transition state t (disfavored) less hindered f acial interaption (f avored) chair transition state (f avored) less hindered f acial interaption (f avored) (2S,3) 8a (presumed) steps steps (2,3) (2,3S) boat transition state chair transition state =-n-c 10 21 (disfavored) hindered f acial interaption (f avored) (f avored) hindered f acial interaption (disfavored) 40

Part 2. Development of Asymmetric α-allylation With Danny summary Peng, B.; Geerdink, D.; Maulide,. J. Am. Chem. Soc. 2013, 135, 14968 14971 41

Electrophilic rearrangement of amides: content Part 1. ucleophilic/electrophilic p capture of in-situ generated iminium ethers Part 2. Development of Asymmetric α-allylation Part 3. Development of A Brønsted Acid-Catalyzed edox Arylation 42

Part 4. Development of A Brønsted Acid-Catalyzed edox Arylation Previous work: 43

Part 4. Development of A Brønsted Acid-Catalyzed edox Arylation 44

Part 4. Development of A Brønsted Acid-Catalyzed edox Arylation Substrate scope: 4a-m S 2.0 eq. 5a Tf (10 mol%) DCM rt, 30 min PhS 7a-m With uang and Xie 13 examples 44-96% PhS PhS Me PhS Me PhS 7j, 53% 7k, 85% 7l, 83% 7m, 87% ucleophilescope: 45

Part 4. Development of A Brønsted Acid-Catalyzed edox Arylation With uang and Xie labelling experiments: 46

Part 4. Development of A Brønsted Acid-Catalyzed edox Arylation Asymmetric arylation reaction With uang and Xie n-c 10 21 n-c 10 21 Tf (10 mol%) Ph S PhS Ph DCM t-bu t-bu -78 C to rt, 12 h 2.0 eq. 92%, dr = 75:25 8a 5a 9a Synthesis of a dibenzothiophene: h S Tf(10 mol%) n-c 10 21 S n-c 10 21 DCM, rt, 1 h 4a 5n 7an, 72% Elaboration of products: 47

Part 4. Development of A Brønsted Acid-Catalyzed edox Arylation summary 48

Acknowledgements Prof. Ming Bao Prof. uno Maulide 49