AP Physics C 1976 Free Response Questions

Similar documents
a. On the circle below draw vectors showing all the forces acting on the cylinder after it is released. Label each force clearly.

AP Physics B 1976 Free Response

AP Physics B 1979 Free Response Questions

AP Physics B 1980 Free Response Questions

AP Calculus AB 2002 Free-Response Questions

2000 Advanced Placement Program Free-Response Questions

AP Calculus AB 2001 Free-Response Questions

AP Physics C 1984 Multiple Choice Questions Mechanics

2000 Advanced Placement Program Free-Response Questions

AP Physics C 1998 Multiple Choice Questions Electricity and Magnetism

AP Calculus AB 1998 Free-Response Questions

AP Calculus AB 1999 Free-Response Questions

AP Physics C: Mechanics 2001 Scoring Guidelines

AP Calculus BC 1998 Free-Response Questions


AP Physics C: Mechanics 2003 Scoring Guidelines

AP Physics C: Mechanics 2007 Free-Response Questions. The College Board: Connecting Students to College Success

AP Physics B 2002 Scoring Guidelines Form B

AP Physics C: Mechanics 2005 Scoring Guidelines

AP Calculus BC 2005 Free-Response Questions

AP Calculus BC 2005 Free-Response Questions Form B

AP Calculus AB 2008 Free-Response Questions Form B

AP Physics C: Electricity & Magnetism Sample Multiple-Choice Questions

AP Calculus AB 2006 Free-Response Questions Form B

AP Calculus BC 2008 Free-Response Questions Form B

AP Physics B 2004 Scoring Guidelines Form B

AP Physics C: Mechanics Sample Multiple-Choice Questions

AP Physics B 2007 Scoring Guidelines Form B

AP Physics B 2004 Scoring Guidelines

AP Physics B 2010 Scoring Guidelines

AP* Circular & Gravitation Free Response Questions

AP* Physics B: Newton s Laws YOU MAY USE YOUR CALCULATOR

AP* Magnetism Free Response Questions

AP Physics C: Electricity & Magnetism 1999 Free-Response Questions

AP Physics C: Electricity and Magnetism 2004 Scoring Guidelines

AP* Electrostatics Free Response Questions

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

AP Physics B 2011 Scoring Guidelines Form B

A Curriculum Module for AP Calculus Curriculum Module

AP Calculus AB AP Calculus BC

Physics C: Mechanics

AP Physics B 2007 Scoring Guidelines

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY

Physics for Scientists and Engineers 4th Edition, 2017

AP Calculus AB and AP. Calculus BC Exam. ApTutorGroup.com. ApTutorGroup.com SAMPLE QUESTIONS

Rotation. PHYS 101 Previous Exam Problems CHAPTER

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

AP Physics C: Mechanics 2012 Scoring Guidelines

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

Test 7 wersja angielska

AP Physics Free Response Practice Dynamics

AP Physics C: Mechanics

AP Æ Calculus AB Sample Multiple-Choice Questions

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Equilibrium: Forces and Torques

AP Physics C Mechanics Objectives

Suggested Problems. Chapter 1

On my honor, I have neither given nor received unauthorized aid on this examination.

St. Vincent College PH : General Physics II. Exam 5 4/8/2016

Physics 23 Exam 2 March 3, 2009

DO NOT TURN PAGE TO START UNTIL TOLD TO DO SO.

Chapter 9-10 Test Review

Questions on the December Assessment are broken into three categories: (Both MC and FR type questions can be in the following forms):

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)

Rotational Inertia (approximately 2 hr) (11/23/15)

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Rotation and Translation Challenge Problems Problem 1:

AP Calculus BC 2011 Free-Response Questions Form B

AP Calculus BC 2011 Free-Response Questions

2. Draw the Magnetic Field lines created by the below two bar magnets. Homework 3. Draw the Magnetic Field lines created by the below bar magnets.

AP Physics C: Work, Energy, and Power Practice

UNIVERSITY OF MANITOBA. All questions are of equal value. No marks are subtracted for wrong answers.

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet

AP Physics C: Mechanics

Chapter Rotational Motion

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

Chapter 5 Newton s Laws of Motion

Rolling, Torque & Angular Momentum

PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium

PHYSICS 221 SPRING 2014

HATZIC SECONDARY SCHOOL

BROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 234 Examination date: 5 December 2014 Number of hours: 3

Friday 21 June 2013 Morning

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

AP Physics C. Momentum. Free Response Problems

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Chapter 9. System of particles

Chapter 19 Practice Test 2

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Physics I (Navitas) FINAL EXAM Fall 2015

AP Physics C: Mechanics 2007 Scoring Guidelines

AP Calculus AB AP Calculus BC

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam.

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14

Hint 1. The direction of acceleration can be determined from Newton's second law

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

Transcription:

AP Physics C 1976 Free Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein. These materials were produced by Educational Testing Service (ETS ), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle. The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 4,200 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT, the PSAT/NMSQT, and the Advanced Placement Program (AP ). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns. APIEL is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service.

1976M1. A small block of mass m slides on a horizontal frictionless surface as it travels around the inside of a hoop of radius R. The coefficient of friction between the block and the wall is ; therefore, the speed v of the block decreases. In terms of m, R., and v, find expressions for each of the following. a. The frictional force on the block b. The block's tangential acceleration dv/dt c. The time required to reduce the speed of the block from an initial value v 0 to v o /3 1976M2. A cloth tape is wound around the outside of a uniform solid cylinder (mass M, radius R) and fastened to the ceiling as shown in the diagram above. The cylinder is held with the tape vertical and then released from rest. As the cylinder descends, it unwinds from the tape without slipping. The moment of inertia of a uniform solid cylinder about its center is ½MR 2. a. On the circle below draw vectors showing all the forces acting on the cylinder after it is released. Label each force clearly. b. In terms of g, find the downward acceleration of the center of the cylinder as it unrolls from the tape. c. While descending, does the center of the cylinder move toward the left, toward the right, or straight down? Explain.

1976M3. A bullet of mass m and velocity v o is fired toward a block of thickness L o and mass M. The block is initially at rest on a frictionless surface. The bullet emerges from the block with velocity v o /3. a. Determine the final speed of block M. b. If, instead, the block is held fixed and not allowed to slide, the bullet emerges from the block with a speed v o /2. Determine the loss of kinetic energy of the bullet c. Assume that the retarding force that the block material exerts on the bullet is constant. In terms of L o, what minimum thickness L should a fixed block of similar material have in order to stop the bullet? d. When the block is held fixed, the bullet emerges from the block with a greater speed than when the block is free to move. Explain. 1976E1. A solid metal sphere of radius R has charge +2Q. A hollow spherical shell of radius 3R placed concentric with the first sphere has net charge -Q. a. On the diagram below, make a sketch of the electric field lines inside and outside the spheres. b. Use Gauss's law to find an expression for the magnitude of the electric field between the spheres at a distance r from the center of the inner sphere (R < r < 3R). c. Calculate the potential difference between the two spheres. d. What would be the final distribution of the charge if the spheres were joined by a conducting wire?

1976E2. A conducting bar of mass M slides without friction down two vertical conducting rails which are separated by a distance L and are joined at the top through an unknown resistance R. The bar maintains electrical contact with the rails at all times. There is a uniform magnetic field B, directed into the page as shown above. The bar is observed to fall with a constant terminal speed v 0. a. On the diagram below, draw and label all the forces acting on the bar. b. Determine the magnitude of the induced current I in the bar as it falls with constant speed v 0 in terms of B, L, g, v 0, and M. c. Determine the voltage induced in the bar in terms of B, L, g, v 0, and M. d. Determine the resistance R in terms of B, L, g, v 0, and M.

1976E3. An ion of mass m and charge of known magnitude q is observed to move in a straight line through a region of space in which a uniform magnetic field B points out of the paper and a uniform electric field E points toward the top edge of the paper, as shown in region I above. The particle travels into region II in which the same magnetic field is present, but the electric field is zero. In region II the ion moves in a circular path of radius R as shown. a. Indicate on the diagram below the direction of the force on the ion at point P 2, in region II. b. Is the ion positively or negatively charged? Explain clearly the reasoning on which you base your conclusion. c. Indicate and label on the diagram below the forces which act on the ion at point P 1 in region I. P 1 d. Find an expression for the ion s speed v at point P 1 in terms of E and B. e. Starting with Newton s law, derive an expression for the mass m of the ion in terms of B, E, q, and R.