Principles of Communications Lecture 12: Noise in Modulation Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Similar documents
Chapter 4: Angle Modulation

Fig. 2. Block Diagram of a DCS

Diversity Combining Techniques

Voltage controlled oscillator (VCO)

Digital Signal Processing. Homework 2 Solution. Due Monday 4 October Following the method on page 38, the difference equation

Communication Systems Lecture 25. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University

EECS 455 Solutions to Problem Set 8

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Chapter 10 Advanced Topics in Random Processes

Observer Design with Reduced Measurement Information

A COMBINED STOCHASTIC/DECISION-AIDED SNR ESTIMATOR. Witthaya Panyaworayan and Rolf Matzner

A Study of Capacity and Spectral Efficiency of Fiber Channels

Complex Algorithms for Lattice Adaptive IIR Notch Filter

Introduction to Signals and Systems, Part V: Lecture Summary

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

2(25) Mean / average / expected value of a stochastic variable X: Variance of a stochastic variable X: 1(25)

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220

Fluids Lecture 2 Notes

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal.

A Slight Extension of Coherent Integration Loss Due to White Gaussian Phase Noise Mark A. Richards

Orthogonal Gaussian Filters for Signal Processing

Regression and generalization

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Information Theory and Coding

The starting phase of each symbol is determined by past bits. This memory can improve detection by giving additional hints about past symbol values.

Communications II Lecture 4: Effects of Noise on AM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Asymptotic Coupling and Its Applications in Information Theory

ADVANCED DIGITAL SIGNAL PROCESSING

ELEC1200: A System View of Communications: from Signals to Packets Lecture 3

Lecture 7: MIMO Architectures Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

ME260W Mid-Term Exam Instructor: Xinyu Huang Date: Mar

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8

Blind Adaptive Filters & Equalization

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c

= 47.5 ;! R. = 34.0 ; n air =

Recurrences: Methods and Examples

Basic Waves and Optics

Statistical Noise Models and Diagnostics

EE 505. Lecture 29. ADC Design. Oversampled

OFDM Precoder for Minimizing BER Upper Bound of MLD under Imperfect CSI

6.003 Homework #12 Solutions

REFLECTION AND REFRACTION

CREDIBILITY EVALUATION FOR BLIND PROCESSING RESULTS OF BPSK SIGNALS BY USING PHASE SPECTRAL ENTROPY

ANOTHER PROOF FOR FERMAT S LAST THEOREM 1. INTRODUCTION

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

Wavelet Transform and its relation to multirate filter banks

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution

Formation of A Supergain Array and Its Application in Radar

Lecture 1: Channel Equalization 1 Advanced Digital Communications (EQ2410) 1. Overview. Ming Xiao CommTh/EES/KTH

6.003 Homework #12 Solutions

4. Optical Resonators

Signal Processing in Mechatronics

FIR Filter Design: Part I

Dynamic Response of Linear Systems

BER results for a narrowband multiuser receiver based on successive subtraction for M-PSK modulated signals

EL 675 UHF Propagation for Modern Wireless Systems. Henry L. Bertoni Polytechnic University

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Exponential Moving Average Pieter P

Orthogonal transformations

Cork Institute of Technology Bachelor of Science (Honours) in Applied Physics and Instrumentation-Award - (NFQ Level 8)

Lecture 8. Dirac and Weierstrass

An Improved Proportionate Normalized Least Mean Square Algorithm with Orthogonal Correction Factors for Echo Cancellation

THE MEASUREMENT OF THE SPEED OF THE LIGHT

Doppler frequency offset estimation and diversity reception scheme of high-speed railway with multiple antennas on separated carriage

I. Existence of photon

1.0 Probability of Error for non-coherent BFSK

A New Simulation Model of Rician Fading Channel Xinxin Jin 1,2,a, Yu Zhang 1,3,b, Changyong Pan 4,c

Analysis of spatial temporal converters for all-optical communication links

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

Probability of error for LDPC OC with one co-channel Interferer over i.i.d Rayleigh Fading

Organic Electronic Devices

INF-GEO Solutions, Geometrical Optics, Part 1

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

6.003 Homework #3 Solutions

Frequency Response of FIR Filters

Overview of Gaussian MIMO (Vector) BC

Sinusoidal Steady-state Analysis

B. Maddah ENMG 622 ENMG /20/09

Chapter 7 Maximum Likelihood Estimate (MLE)

REQUIREMENTS FOR EFFICIENT TRANSISTOR OPERATION I B. Icn. I cp

Random Signals and Noise Winter Semester 2017 Problem Set 12 Wiener Filter Continuation

1. Linearization of a nonlinear system given in the form of a system of ordinary differential equations

Non-Linear Chirp Spread Spectrum Communication Systems of Binary Orthogonal Keying Mode

Cooperative Communication Fundamentals & Coding Techniques

UNIDIMENSIONAL PHASE DOMAIN ADAPTIVE EQUALIZER

Chapter 7: The z-transform. Chih-Wei Liu

5.1. Periodic Signals: A signal f(t) is periodic iff for some T 0 > 0,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

Par$cle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, ProbabilisAc RoboAcs

SYNTHESIS OF SIGNAL USING THE EXPONENTIAL FOURIER SERIES

Fundamentals. Relative data redundancy of the set. C.E., NCU, Taiwan Angela Chih-Wei Tang,

Vibratory Motion. Prof. Zheng-yi Feng NCHU SWC. National CHung Hsing University, Department of Soil and Water Conservation

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Ray Optics Theory and Mode Theory. Dr. Mohammad Faisal Dept. of EEE, BUET

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions

Performance Analysis and Channel Capacity for Multiple-Pulse Position Modulation on Multipath Channels

1.010 Uncertainty in Engineering Fall 2008

Transcription:

Priiples of Commuiatios Leture 1: Noise i Modulatio Systems Chih-Wei Liu 劉志尉 Natioal Chiao ug Uiversity wliu@twis.ee.tu.edu.tw

Outlies Sigal-to-Noise Ratio Noise ad Phase Errors i Coheret Systems Noise i Agle Modulatio hreshold Pheomeo Noise i Pulse Code Modulatio Commu.-Le1 wliu@twis.ee.tu.edu.tw

Sigal-to-Noise Ratio SNR is oe of the most importat parameters i ommuiatios. (he other is badwidth). N / SNR Sigal power Noise power Chael Model: Additive, White, Gaussia Noise (AWGN). Idepedet of sigal. Compare differet reeivers (modulatios): Same SNR at A, ompare SNR at B. = sigal (otaiig message) at a ertai poit + A B Reeiver + (t) oise message Commu.-Le1 wliu@twis.ee.tu.edu.tw 3

Noise i Basebad System he power spetral desity is. (Some books use N ) Physial meaig: N is the average oise power per uit N badwidth (sigle-sided psd) at the frot ed of the reeiver. Commu.-Le1 wliu@twis.ee.tu.edu.tw 4

Basebad model: a basis for ompariso (behmark) Sigal power = P watts. (trasmitted power, modulated sigal) B 1 P Filter iput oise power = Ndf = NB, ad ( SNR) i =. B NB W 1 P Filter output oise power= Ndf = NW, ( SNR) o =. W NW SNR ehaemet ( SNR) ( SNR) o i = B. (he filter redues part of oise.) W his is a basi operatio i may omm systems We filter out the out-of-bad oise. his filterig does ot hage sigal (power). Commu.-Le1 wliu@twis.ee.tu.edu.tw 5

A. SB-SC System Assume oheret detetio. os(ω t +θ) x () t = Am()os( t ω t+ θ ) + () t r e () t = Am()os( t ω t+ θ) + ()os( t ω t+ θ) ()si( t ω t+ θ) Badpass filterig Badpass oise s Commu.-Le1 wliu@twis.ee.tu.edu.tw 6

1 1 Noise power: () t = () t + s() t = NW. A rasmitted sigal power: m ( t ). Am Pre-detetio SNR: ( SNR) =. (For SB-SC) 4WN Passbad e () t = e () t os( ω t+ θ) 3 = Am(){1 t + os(( ω t+ θ))} + ( t){1 + os( ( ω t+ θ))} ( t)si(( ω t+ θ)). hrough LPF y ( t) = Am( t) + ( t). s Commu.-Le1 wliu@twis.ee.tu.edu.tw 7

= Sigal power: Am. (Sigal power "doubled") Noise power: ( t) NW. (Noise power remais the same.) Am Post-detetio SNR: ( SNR) =. (For SB-SC) NW Δ ( SNR) etetio gai = = ( = 3 db). ( SNR) We assume oheret detetio, i.e., the LO sigal has the same freq ad phase as the arrier. oes this detetio (demodulatio) provide a 3dB gai? Not quite. Compare the equivalet basebad system. Commu.-Le1 wliu@twis.ee.tu.edu.tw 8

What is the equivalet basebad system? P γ = trasmitted power = NW Am = = ( SNR) NW 1 A m Why? he basebad oise is N W (BW=W). he passbad oise is N W (BW=W). he detetio gai aels the oise BW irease. Commu.-Le1 wliu@twis.ee.tu.edu.tw 9

B. SSB System Assume oheret detetio he reeived sigal ( + for the upper; for the lower sidebad): x () t = A[ m()os( t ω t+ θ) ± mˆ ()si( t ω + θ)] + () t r where mˆ : the Hilbert trasform of m( t). -w w f os(ω t +θ) Commu.-Le1 wliu@twis.ee.tu.edu.tw 1

Key: SSB BW = W ot W. Hee, the reeived oise power is redued. Noise ompoet: (eompose ito I ad Q ompoets) t () = ()os( t ω t+ θ) ()si( t ω t+ θ) Let N s BP oise hus, e () t = [ Am() t + ()]os( t ω t+ θ) ± [ Amˆ () t m ()]si( t ω t+ θ) e 3 s = = = N W os( ω t + θ) s oheret LPF y ( t) = Am( t) + ( t) oise term. N / f -w do't are f f Commu.-Le1 wliu@twis.ee.tu.edu.tw 11

Assume that mt ( ) is idepedet of = = = Post-detetio sigal power: S A( m ). Post-detetio oise power: N ( ) NW. Am Post-detetio SNR: SNR = NW What is the pre-detetio SNR? he trasmitted sigal power (t).. (For SSB-SC) S = { A[ m( t)os( ω t+ θ) mˆ ( t)si( ω t+ θ)]} = A {[ m( t)os( ω t+ θ)] + [ mˆ ( t)si( ω t+ θ)] mtmt ( ) ˆ ( )os( ωt+ θ)si( ωt+ θ) ( mt ( ) ad mt ˆ ( ) are orthogoal.) ( os( ω t) ad si( ω t) are orthogoal.) Commu.-Le1 wliu@twis.ee.tu.edu.tw 1

S = A { m ( t) os ( ω t+ θ) + mˆ ( t) si ( ω t+ θ) 1 1 1 1 + os(ωt+ θ) os( ωt+ θ) 1 1 { ( ) ˆ ( ) = A m t + m t } (Notie that m ( t) = mˆ ( t).) = A ( m ( t)) = S! he detetio gai is ( SNR) ( SNR) S N ( W ) N = = 1. hat is, SNR = SNR. S N ( = N W) N / -f -f +w f -w No gai! No loss ( Q N = N )! (I SB, N = N ) f f Commu.-Le1 wliu@twis.ee.tu.edu.tw 13

C. AM System -- Coheret Assume oheret detetio Reeived sigal x ( t) = A [1 + am ( t)]os( ω t + θ). a: modulatio idex x r (t) = x (t) + (t) m : ormalized message arrier BPF M (f) e (x) X os(ω t + θ) e 3 (x) LPF -W W y () t = Aam () t + () t + A. ( A is removed.) Commu.-Le1 wliu@twis.ee.tu.edu.tw 14

A is removed. Q1) assume mt ( ) =, we a thus remove d term; ) I reality, we aot reover d term of mt ( ) ayway. hus we simply remove it. Post-detetio sigal power: S = ( Aam ( t)) = Aa m Post-detetio oise power: N = = NW. Aa m Post-detetio SNR: ( SNR) =. (For AM) NW. N ( W ) = N W Commu.-Le1 wliu@twis.ee.tu.edu.tw 15

Now, let's alulate the pre-detetio SNR. he x sigal power: S = { A[1 + am ( t)]os( ω t+ θ)} = A os ( ω t+ θ) + A a m ( t) os ( ω t+ θ). ( m( t) = m, os ( ωt+ θ) = + os( ωt+ θ).) 1 1 P = S = A + Aa m. 1 1 A + Aa m Badpass oise power N = NW. ( SNR) =. NW ( SNR) A a m a m he detetio gai = = = < 1. 1 ( SNR) ( A ) 1 + A am a m + am Reall, (power) effiiey E ff =. 1+ am ( SNR) ( SNR) (.5).1 : If.1 ad.5. ff.44. Ex m = a = E = = 1 + (.5).1 etetio gai =.488! It is quite low! Commu.-Le1 wliu@twis.ee.tu.edu.tw 16 = E. ff

. AM System: Evelope etetio Evelope detetor ioheret he reeived sigal e () t = x () t + () t x ():modulated t sigal ( t) : arrow-bad oise = A[1 + am ( t)]os( ω t+ θ) + ( t)os( ω t+ θ) ( t)si( ω t+ θ). s e () t = r()os[ t ω t+ θ + φ()]. t Noise: ( ) = ( s) = NW. rt = A + am t + t + t 1 s() t φ() t = ta. A[1 + am( t)] + ( t) () { [1 ()] ()} s(). Commu.-Le1 wliu@twis.ee.tu.edu.tw 17

y ( t) = r( t) amplitude (evelope) ' remove d (iludig the arrier) y () t = rt () rt () rt ():average Case 1: Whe ( SNR) is large (i.e., small oise) A[1 + am ( t)] + ( t) >> ( t) s rt () A[1+ am( t)] + ( t) most of the time y () t Aam () t + () t zero mea same as oheret detetio Commu.-Le1 wliu@twis.ee.tu.edu.tw 18

Case : Whe ( SNR) is small he badpass oise: r ( t)os( ω t + φ ( t)). he eevelope detetor iput ( θ is ot importat): e () t = A [1 + am ()]os( t ω t + θ) + r ()os( t ω t + φ () t + θ) = rt ( )os( ω t+ ψ + φ ( t)). Assume that A [1 + am ( t)] << r ( t) for most of time. rt ( ) = [ r( t) + A[1 + am( t)]os φ ( t)] + [ A(1 + am( t)]si φ ( t)] r () t + A [1 + am ()]os t φ () t remove "d" y () t r () t + A [1 + am ()]os t φ () t rt () Radom atteuatio; the message is lost! Commu.-Le1 wliu@twis.ee.tu.edu.tw 19

AM Noise isussios (t) = s (t) r (t) f R (r ) where (t) ad s (t) are all idepedet zero mea Gaussia (t) r r r ( t) = Now, r( t) ~ r ( t) + s ( t) + ( t) = Rayleigh - distr. A [1 + am ( t)]osφ ( t) message is lost! osφ ( t) : radom What we try to show here is that whe oise > (message) sigal, oise beomes the domiate output ompoet. I the output sigal, o message sigal is proportioal to the message sigal. (f. Coheret detetio: ) Commu.-Le1 wliu@twis.ee.tu.edu.tw

hreshold Effet his is the threshold effet. (Reall: he aalysis i iterferee.) ( he evelope detetor is oliear, the message is lost whe SNR< threshold ) Remark: It s diffiult to alulate the exat (SNR). ef. of threshold: A value of the arrier-to-oise ratio (or SNR) below whih the oise performae of a detetor deteriorates muh more rapidly tha proportioately to the arrier-to-oise ratio (or SNR). (Hayki&Moher, Comm Systems, p.15, 1) Commu.-Le1 wliu@twis.ee.tu.edu.tw 1

E. AM System: Square-Law etetio A example of simple oliear detetor that we a alulate ad thus the threshold regio a be more preisely determied. e () t = x + () t ():badpass t oise ' ' 3 = A [1 + am ( t)]os( ω t) + ( t)os( ω t) ( t)si( ω t). e () t = e () t s Commu.-Le1 wliu@twis.ee.tu.edu.tw

e () t = e () t = { A[1 + am ()] t + ()}os( t ω t) 3 A am t t t ω t ω t t ω t { [1 + ( )] + ( )} s( )os( ) si( ) + s( )si ( ) 1 1 = { A[1 + am( t)] + ( t)} [ + os( ωt)] LPF 1 1 { A[1 + am( t)] + ( t)} s()si( t ωt) + s()[ t os( ωt)]. (si( ω t), os( ω t): high freq. ompoets) y () t { A[1 + am ()] t + ()} t + () t ' s = r ( t) ( = evelope ) = A + Aam( t) + Aam( t) + A( t) + Aam( t ) ( t) + () t + (). t s y t y t m t = t = t = ' remove d () (), (), () s() Commu.-Le1 wliu@twis.ee.tu.edu.tw 3

y t = Aam t + Aa m t m t + A t + () () [ () ()] () message ( ) ( ) ( ) ( ) s( ) s( ). 4 Post-detetio sigal power: 4 ( ). Post-detetio oise power: N = A 4 A am t t + t t + t t S = A a m a [( m ( t) m ) ] + 4 A [1 + am ( t)] + 4 4 4 ( ) ( ) + ( s) ( s). 4 4 ( x x ) = ( x ) x x + ( x ) = ( x ) ( x ) ( Assume the ross terms are either zero or a be egleted) = 4 Note : ( ) 3 ( ), if is Gaussia. his a be show usig the momet geerator. N = A a [( m m ) ] + 4 A (1 + a m ) σ + σ + σ. 4 4 4 4 4 S 4Aa m ( SNR) = =. N Aa ( m m ) + 4 A (1 + a m ) σ + 4σ 4 4 4 Commu.-Le1 wliu@twis.ee.tu.edu.tw 4

Example: message = siusoidal Let m ( t) = os( ω t). ot a radom sigal 1 1 1 ( m( t) m) = [os ( ωmt) ] = [ os( ωmt)] =. 8 Assume this part i N a be egleted. ( Will be disussed.) 4 he, N = 4 A(1 + a ) + 4. m 1 σ ' Note: If we examie y( t) ad y( t) σ y ( t) = A + A aos( ω t) + A a [os ( ω t)] ' m m + ω + + remove d + A[1 aos( mt)] () t () t s() t 1 1 ( os ωmt = + os ωmt) 1 y( t) = Aaos( ωmt) + Aa os( ωmt) message A + a ω t t + t t + t t + [1 os( m )] ( ) ( ) ( ) s( ) s( ) he term ( )os( ω t) is alled harmoi distortio.--ot radom oise. 1 1 Its power: = A a ( = a S ) 8 16 m 4 4 Commu.-Le1 wliu@twis.ee.tu.edu.tw 5

Example (oti.) 1 = + + = Aa 4 4 Now, N 4 A(1 a ) σ 4 σ. Ad S Aa. 4 Aa σ 4 + a σ + σ σ ( SNR) = =. A ( ) 4 ( + a ) + ( ) A hreshold effet illustratio: 1 1 1 he total x power is P = { A[1 + am( t)] os( wt)} = A(1 + a m) = A (1 + a ). P a NW P ( SNR) ( ). (Basebad systems: ( ) = SNR.) = + a 1 + ( N W / P ) NW Case 1: If 1, ( SNR) ( ) E ( Coheret) NW + a NW NW Case : If 1, ( SNR) ( ) ( ). ( ( ) NW + a NW P a P P P a P P NW ( 1 ) Q NW NW + P P Commu.-Le1 wliu@twis.ee.tu.edu.tw 6 )

Example (oti.) For a 1 st approximatio, the performae of liear evelope detetor ~ square-law detetor For high SNR ad a=1, the performae of evelope detetor is better by ~1.8 db. Commu.-Le1 wliu@twis.ee.tu.edu.tw 7

isussios ( m m ) a 4 Geeral form: (assume is small) ( SNR) ( SNR) 4 4 + a m σ + σ 1 P = A(1 + a m) ( = { A[1 + am( t)] os( ωt)} ) am E = 1 + 4Aa m = 4 A (1 ) 4 am 4 4Aa m 1 (1 ) A E A E + am 4 1 4 1 + a m σ + σ 1 4 σ + σ σ + σ (1 + am) 4 P = = = 4 A (1 ) 4 1 A E = P = N W N W am P P a m NW + (1 + ) NW 1+ Commu.-Le1 wliu@twis.ee.tu.edu.twp 8 P

isussios (oti.) Speial ases: If P >> N W, ( SNR) a (1 + a m m ) P N W If P << N W, ( SNR) ( ) (1 + a m ) N W a m P Example: siusoidal message (previous example) = m 1 Commu.-Le1 wliu@twis.ee.tu.edu.tw 9

Summary Commu.-Le1 wliu@twis.ee.tu.edu.tw 3