Effect of Resin Molecular Architecture on Epoxy Thermoset Mechanical Properties

Similar documents
MOLECULAR MODELING OF THERMOSETTING POLYMERS: EFFECTS OF DEGREE OF CURING AND CHAIN LENGTH ON THERMO-MECHANICAL PROPERTIES

A Molecular Modeling Approach to Predicting Thermo-Mechanical Properties of Thermosetting Polymers

USING MOLECULAR DYNAMICS COUPLED WITH HIGHER LENGTHSCALE SIMULATIONS FOR THE DEVELOPMENT OF IMPROVED COMPOSITE MATRIX MATERIALS

Molecular Modeling Approach to Prediction of Thermo-Mechanical Behavior of Thermoset Polymer Networks

MODELING THERMOSET POLYMERS AT THE ATOMIC SCALE: PREDICTION OF CURING, GLASS TRANSITION TEMPERATURES AND MECHANICAL PROPERTIES

Effect of different crosslink densities on the thermomechanical properties of polymer nanocomposites

ATOMISTIC MODELLING OF CROSSLINKED EPOXY POLYMER

MedeA : Atomistic Simulations for Designing and Testing Materials for Micro/Nano Electronics Systems

Atomistic Modeling of Cross-linked Epoxy Polymer

Polymer 54 (2013) 3370e3376. Contents lists available at SciVerse ScienceDirect. Polymer. journal homepage:

MOLECULAR MODELING OF PHYSICAL AGING IN EPOXY POLYMERS

Synergy of the combined application of thermal analysis and rheology in monitoring and characterizing changing processes in materials

RHEOLOGICAL AND MORPHOLOGICAL INFLUENCES ON THE VISCOELASTIC BEHAVIOUR OF POLYMER COMPOSITES

Effect Of Curing Method On Physical And Mechanical Properties Of Araldite DLS 772 / 4 4 DDS Epoxy System

Development of a code to generate randomly distributed short fiber composites to estimate mechanical properties using FEM

Molecular modeling of crosslink distribution in epoxy polymers

CURE DEPENDENT CREEP COMPLIANCE OF AN EPOXY RESIN

MD Toughness Predictions for Hybrids for Extreme Environments. Logan Ward Summer Intern, JEOM Program Mentor: Dr. Mollenhauer RXBC

Aspects of Network Formation in Glassy Thermosets

The Effect of Cure Rate on Glassy Polymer Networks

Relative Reactivity Volume Criterion for Cross-Linking: Application to Vinyl Ester Resin Molecular Dynamics Simulations

Relationships Between Cure Kinetics, Network Architecture, and Fluid Sensitivity in Glassy Epoxies

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends

A Technical Whitepaper Polymer Technology in the Coating Industry. By Donald J. Keehan Advanced Polymer Coatings Avon, Ohio, USA

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

Monitoring the Kinetics of UV Curing Using In Situ Rheology and Real-Time Fourier Transform Infrared Spectroscopy

Mechanical and Thermoviscoelastic Behavior of Clay/Epoxy Nanocomposites

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France

EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1*

Thermal Properties Of Epoxy Based Adhesive Reinforced With

A Molecular Dynamic Modelling of Cross-Linked Epoxy Resin Using Reactive Force Field: Thermo-Mechanical Properties

MATERIALS SCIENCE POLYMERS

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

EFFECT OF VACANCY DEFECTS ON THE MECHANICAL PROPERTIES OF CARBON NANOTUBE REINFORCED POLYPROPYLENE

Theoretical Study of EUXIT 50 KI Epoxy and its Hardener using Hyperchem-8 Program

Simulation of Cure Volume Shrinkage Stresses on Carbon/Vinyl Ester Composites in Microindentation Testing

Multi component Epoxy Resin Formulation for High Temperature Applications

Computational prediction of the influence of crosslink distribution on the thermo-mechanical properties of epoxies

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is

Experimental Study of the Induced Residual Stresses During the Manufacturing Process of an Aeronautic Composite Material

THE MATRIX: EVOLUTIONS II

THERMODYNAMIC AND MECHANICAL PROPERTIES OF EPON 862 WITH CURING AGENT DETDA BY MOLECULAR SIMULATION. A Thesis JEREMY LEE TACK

Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK

Deterministic Solutions for a Step-growth Polymerization

Influence of representative volume element size on predicted elastic properties of polymer materials

Elastic Deformation Mechanics of Cellulose Nanocrystals

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

Dynamic Mechanical Analysis of Thermosetting Materials

Analysis of high loss viscoelastic composites

Chapter 5 Methods for studying diffusion in Polymers:

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane

TOPIC 7. Polymeric materials

Characterization of Epoxy/Amine Networks with Glycidal Polyhedral Oligomeric Silsesquioxane Surface Modified Silica Nanoparticles

3.032 Problem Set 4 Fall 2007 Due: Start of Lecture,

A Phenomenological Model for Linear Viscoelasticity of Monodisperse Linear Polymers

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics

Cationic Cure of Epoxy Resin by an Optimum Concentration of N-benzylpyrazinium Hexafluoroantimonate

Modelling of viscoelastic properties of a curing adhesive

MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy

Prediction of Micromechanical Behaviour of Elliptical Frp Composites

MACROSCALE EXPERIMENTAL EVIDENCE OF A REDUCED- MOBILITY NON-BULK POLYMER PHASE IN NANOTUBE- REINFORCED POLYMERS

Introduction to Polymerization Processes

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS

New Developments in Structure/Property Relationships: Relating Fluid Ingress to mechanical and thermal properties

VISCOELASTIC PROPERTIES OF POLYMERS

Thermal Properties Of Epoxy Based Adhesive Reinforced With

Thermal-Mechanical Decoupling by a Thermal Interface Material

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS

MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES

Molecule Dynamics Simulation of Epoxy Resin System

Chapter 11. Polymer Structures. Natural vs man-made

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev

Molecular modeling of EPON 862-DETDA polymer

Molecular Dynamics Simulation on Permeation of Acetone/Nitrogen Mixed Gas

Molecular Dynamics Model of Carbon Nanotubes in EPON 862/DETDA Polymer

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Institut fur Theoretische Physik. Universitat Heidelberg. Philosophenweg 19. Germany. and. Interdisziplinares Zentrum. fur Wissenschaftliches Rechnen

Molecular modeling of EPON-862/graphite composites: Interfacial characteristics for multiple crosslink densities

3D Compression Molding

CHEM-E2200: Polymer blends and composites Fibre architecture and principles of reinforcement

Periodic table with the elements associated with commercial polymers in color.

Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate

Coarse-Grained Molecular Dynamics Study of the Curing and Properties of Highly Cross-Linked Epoxy Polymers

Nondestructive and Destructive Testing of Reinforced Polymeric Materials

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations

Structure-Property Investigation of Functional Resins for UV-Curable Gaskets

Property Prediction with Multiscale Simulations of Silicon Containing Polymer Composites

The main purpose of this work

Calculation of single chain cellulose elasticity using fully atomistic modeling

Molecular modeling of EPON-862/graphite composites: Interfacial characteristics for multiple crosslink densities

INFLUENCE OF INTERPHASE MATERIAL PROPERTY GRADIENTS ON THE MICROMECHANICS OF FIBROUS THERMOSETTING-MATRIX COMPOSITES

Computational Analysis for Composites

Atomistic Modeling of Composite Interfaces

A FINITE ELEMENT COUPLING MODEL FOR INTERNAL STRESS PREDICTION DURING THE CURING OF THICK EPOXY COMPOSITES

Chemical Engineering Seminar Series

Photostabilization of an epoxy resin by forming interpenetrating polymer networks with bisphenol-a diacrylate

Europa 1, Trieste, 34127, Italy. Labem, , Czech Republic. Sciences of the Czech Republic, 6-Suchdol, Prague, , Czech Republic

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization

Transcription:

Effect of Resin Molecular Architecture on Epoxy Thermoset Mechanical Properties The effect of resin molecular architecture on the small strain elastic constants of diamine-cured epoxy thermosets has been studied using classical all-atom simulations conducted within the MedeA simulation environment. Batches of thermoset systems have been created using chemically similar di, tri and tetrafunctional resins, followed by calculation of stiffness and compliance matrices for each individual model. Analysis of the batches of topologically and geometrically distinct structures using the Hill-Walpole approach yields upper and lower bounds estimates of the moduli differing by typically 1%, enabling critical comparison with experimentally-measured values. Keywords: Thermoset, Mechanical Properties, Modulus, Epoxy Introduction Epoxy thermosets, formed by reacting a tetrafunctional amine with an epoxide, are a class of polymeric material widely used in advanced composite applications in the aerospace, automotive, electronics and other industries. Their frequent use in composites, in combination with fiber or particulate reinforcing material, leads to a strong research interest in understanding the relationship between the chemical nature and molecular architecture of individual components and characteristics such as mechanical, thermal and adhesive properties, which is required in order to predict accurately the behavior of the final composite material. The present application note focuses on one particular aspect of epoxy-based matrix material, namely the effect of varying the chemical functionality [1] of the resin component on the small strain elastic constants of the crosslinked resin. Specifically, using the standard nomenclature RA fa +R'B fb polymerization types applied to such reactions [2], where fa and fb denote the functionality of individual reactants, we concentrate here on comparing the elastic constants of RA 4 +R'B 2, RA 4 +R'B 3 and RA 4 +R'B 4 type systems. Materials Studied In the studies described in this note, the crosslinker (or curing agent, or hardener) is diaminodiphenylsulfone (DDS) depicted in the form of the 4,4' isomer in Figure 1. Figure 1. 4,4'-DDS curing agent The resins used, diglycidyl ether of bisphenol A (DGEBA), triglycidyl p-aminophenol (TGAP) and tetraglycidyl diaminodiphenylmethane (TGDDM) are chemically similar but contain different numbers of glydidyl ether end groups capable of reacting with the amine, as shown below. a. DGEBA b. TGAP Copyright Materials Design, Inc. 2013-1 -

c. TGDDM Figure 2. Di, tri and tetrafunctional resins, (a) DGEBA, (b)tgap and (c) TGDDM. Modeling Details Crosslinking Reaction The chemical reaction between a primary amine and the reactive oxirane rings in the resin is as follows: Figure 3. Reaction between the primary amine and oxirane ring. A further reaction with the secondary amine group can then occur, giving a final product with a tertiary amine structure, i.e. Figure 4. Second crosslinking reaction involving secondary amine groups. This implies that in order to obtain 100% reaction of all functional groups when preparing epoxy resins, a ratio of two epoxy to one amine moieties are required. For molecular modeling and simulation purposes it is convenient to work with 'network segments', in a manner similar to that used when building models of ordinary polymers where repeat units as opposed to actual monomers are generally used. In the case of the present epoxy-amine reactions, the oxirane rings of the resin are opened as shown in Figure 5, creating the terminal methyl shown in bold type, such that the crosslinking reaction can be completed by linking the terminal carbon with an amine nitrogen, followed by deletion of hydrogen atoms. Figure 5. Network segment epoxy units used in the uncured crosslinkable system. Modeling Details Simulation & Analysis Since epoxy resins are essentially structurally disordered systems, capable of adopting many topologically distinct structures, computation of average material properties of each individual resin system requires generation of large ensembles of individual configurations, with the details depending on overall system size and the property of interest. In the present work, in which the primary interest is in studying the small strain mechanical behavior, we have chosen to generate batches of 100 independent crosslinked thermoset configurations for subsequent simulation and property calculation, with each system containing between 3000 and 4000 atoms. For studies of tensile and other moduli of amorphous polymer glasses, this procedure has previously been shown to be of sufficiently high precision to predict differences of a fraction of a gigapascal, equivalent to a few percent, in tensile moduli [3]. In order to create the individual systems, we have made use of the MedeA Amorphous Materials Builder to create 'uncured' mixture systems, followed by use the MedeA Thermoset Builder, which creates densely crosslinked structures with minimal internal strain using the capture sphere approach pioneered by Eichinger and coworkers [4] for studying the properties of lightly crosslinked Copyright Materials Design, Inc. 2013-2 -

polymers, combined with commonly applied minimization and molecular dynamics approaches to effect structural relaxation following crosslink formation. Typically, the procedure results in structures with a range of extents of reaction, as illustrated in Figure 6, with an average conversion of ~90±1% of the available reactive groups. flowchart created within the MedeA interactive environment, with job submission and data processing managed by the MedeA Jobserver/ Taskserver browser-controlled architecture. Building, simulation and analysis of a typical batch of 50 thermoset structures requires approximately 2 days on a small cluster using say 12-24 cpu cores. Results and Discussion As is invariably the case with mechanical property calculations on amorphous glasses, a distribution of individual elastic constants is obtained depending on the detailed local packing, as illustrated in Figure 7 below, which depicts the distribution of individual moduli obtained from the stiffness matrix of each sample. Figure 6. Distribution of extents of reaction of a batch of crosslinked epoxy thermoset models. Each crosslinked structure was then subjected to further equilibration using the LAMMPS [5] simulation program in conjunction with the PCFF+ forcefield [6] an extension of the PCFF forcefield [7] in which the parameters describing nonbonded interactions have been refined to give accurate predictions of the equation of state properties of organic materials. Following equilibration of the density using constant pressure molecular dynamics at 298K, the 6x6 stiffness and compliance matrices, and associated moduli, were determined by applying six tensile and six shear deformations with minimization following each stage [8], until the maximum force on any atom falls below 1.0 x 10-6 kcal mol -1 Å -1. To avoid the significant manual effort involved in repetitively building uncured systems, crosslinking, performing atomistic simulations and analyzing the resulting structures to obtain predictions of mechanical properties, the entire procedure has been encapsulated in a single Figure 7. Distribution of tensile moduli extracted from stiffness matrices of a batch of DGEBA/4,4'-DDS crosslinked systems. From the literature on composite materials, it is well known that estimates of the upper and lower bounds of the moduli the so-called Voigt and Reuss bounds - can be obtained from averages of the stiffness and compliance matrices respectively. However, as pointed out by Suter and Eichinger [9], when this approach is applied to obtain modulus estimates for atomistic-scale models with linear dimensions of a few tens of Angstroms, the differences in upper and lower bounds are too large to be of Copyright Materials Design, Inc. 2013-3 -

practical use for distinguishing between the mechanical properties of all but the most dissimilar materials. Accordingly, these workers applied a more sophisticated approach, based on the early work of Hill [10] and Walpole [11] to compute more rigorous and precise bounds estimates of the moduli obtained using atomistic scale models. They then proceeded to demonstrate that the method is effective for analyzing glassy polystyrene data, which has since be shown in this laboratory to be successfully applcable to other glassy systems [3]. The Hill-Walpole based bounds estimates obtained in this manner for the crosslinked epoxy systems studied in this work are presented in Table 1 below, in which the predicted modulus bounds for the three resin architectures are compared with available experimental data. Resin Calculated Bounds (GPa) Experiment (GPa) DGEBA 3.49-3.53 2.4-3.2 a TGAP 4.42-4.45 4.396±.027 b TGDDM 5.18-5.19 5.103±.033 c a. Ref. 12. Extents of reaction 0.5-1.0; ~300K; using dynamic mechanical analysis at 1Hz. b. Ref. 13. Extent of reaction 0.93; 295K; strain rate 1.67 x10-2 s -1. c. Ref 13. Extent of reaction 0.88; 295K; strain rate 1.67 x10-2 s -1. Table 1. Predicted and experimental tensile moduli for the DGEBA, TGAP and TGDDM epoxy resins crosslinked with 4,4'-DDS. Before comparing the experimentally-measured and simulation-derived data, it is worthwhile noting that in the case of the three and four functional TGAP and TGDDM resin based epoxies, the experimental data exhibit an increase in modulus with increasing strain rates in the compressive stress-strain experiments used for the measurements. Since the method used to obtain moduli in the simulations effectively corresponds to a very high strain rate involving instantaneous initial deformations, we have therefore chosen to perform comparisons with the experimental data at the highest strain rates, which are least affected by viscoelastic effects. In the case of the difunctional DGEBA based epoxies, no information other than the frequency of measurement is available and, moreover the actual strain rate is unknown. Focusing on the tensile moduli calculated for all three resin architectures, it is clear that the Hill-Walpole analysis indeed yields well-defined ranges of moduli for each system, each of which is considerably narrower than the typical width of the range of individual elastic constants illustrated in Figure 7. Moreover, comparison with the experimental data shows remarkably good agreement with the high strain rate measurements for the trifunctional and tetrafunctional TGAP and TGDDM systems. For the DGEBA system, the calculated tensile modulus of around 3.5GPa does appear to be higher than the experimental values, which average around 2.8GPa. The precise origin of the discrepancy, which appears to be statistically significant, remains unclear, although factors such as strain rate effects and the chemical composition of the resin, which in commercial samples can contain molecules with more than one bisphenol A group per molecule, may warrant further investigation. In conclusion, it appears that strain free all-atom models of densely crosslinked thermosets can be created with cure states comparable with experiment. Calculation of elastic moduli, with appropriate averaging of moderately large batches of structures, yield precise bounds estimates in good agreement with available experimental data. Copyright Materials Design, Inc. 2013-4 -

References 1. Chemical functionality denotes the maximum number of chemical reactions each component of a crosslinkable material is capable of undergoing. 2. P.J. Flory, Principles of Polymer Chemistry, Cornell Univ.. Press, Ithaca, New York (1953), Ch. 9. 3. P.W. Saxe, C.M. Freeman and D. Rigby, AIChE Annual Meeting, 2012; manuscript in preparation. 4. see, for example, L.Y. Shi, Y.K. Leung and B.E. Eichinger, Critical Exponents for Off-Lattice Gelation of Polymer Chains Macromolecules 18, 983 (1985). 5. S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys., 117, 1 (1995). 6. Materials Design Inc., unpublished work. 7. see, for example, H. Sun, S.J. Mumby, J.R. Maple and A.T. Hagler, An ab initio CFF93 All-Atom Force Field for Polycarbonates, J. Am. Chem. Soc. 116, 2978 (1994). 8. D.N. Theodorou and U.W. Suter, Atomistic Modeling of Mechanical Properties of Polymeric Glasses, Macromolecules 19, 139 (1986). 9. U.W. Suter and B.E. Eichinger, Estimating Elastic Constants By Averaging Over Simulated Structures, Polymer 43, 575 (2002). 10. Hill, R., A Self-Consistent Mechanics of Composite Materials, J. Mech. Phys. Solids 13, 213 (1965). 11. L.J. Walpole, On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems-I, J. Mech. Phys. Solids 14, 151 (1966). 12. S.R. White, P.J. Mather and M.J. Smith, Characterization of the Cure State of DGEBA-DDS Epoxy Using Ultrasonic, Dynamic Mechanical and Thermal Probes, Polym. Eng. Sci. 42, 51 (2002). 13. S. Behzadi and F.R. Jones, Yielding Behaviour of Model Epoxy Matrices for Fiber- Reinforced Composites: Effect of Strain Rate and Temperature, J. Macromol. Sci. Part B:Physics, 44, 993 (2005). MedeA Modules Used For This Application The present calculations were performed with the MedeA platform using the following integrated modules of the MedeA software environment: MedeA environment including Flowcharts and LAMMPS user interface. MedeA Amorphous Materials Builder and Thermoset Builder MedeA Forcefields MedeA Mechanical Properties and MT module. For further information please contact: Materials Design, Inc. 343 West Manhattan Avenue Santa Fe, NM 87501, USA T+1 760 495-4924 info@materialsdesign.com www.materialsdesign.com Copyright Materials Design, Inc. 2013-5 -