CHAPTER 12 HERON S FORMULA Introduction

Similar documents
Visit: ImperialStudy.com For More Study Materials Class IX Chapter 12 Heron s Formula Maths

NCERT SOLUTIONS OF Mensuration Exercise 2

CHAPTER 11 AREAS OF PLANE FIGURES

CAREER POINT PRE FOUNDATION DIVISON CLASS-9. IMO Stage-II Exam MATHEMATICS Date :

AREA RELATED TO CIRCLES

Downloaded from

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

ANSWER KEY. LEARNING ACTIVITY 1 Challenge a. A + B = (The sum of its adjacent interior angles between two parallel sides is + B = B = B =

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

7. Find the value of If (a+1) and (a-1) are the factors of p(a)= a 3 x+2a 2 +2a - y, find x and y

Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Ismailia Road Branch

COMMON UNITS OF PERIMITER ARE METRE

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

Similarity of Triangle

INTERNATIONAL INDIAN SCHOOL, RIYADH. 11cm. Find the surface area of the cuboid (240cm 2 )

Class 9 Full Year 9th Grade Review

Free GK Alerts- JOIN OnlineGK to AREA FUNDEMENTAL CONCEPTS. 2.Sum of any two sides of a triangle is greater than the third side.

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

QUANTITATIVE APTITUDE

Preliminary chapter: Review of previous coursework. Objectives

Simplifying & Breaking Brackets

DESIGN OF THE QUESTION PAPER

KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD 32

4. Find the areas contained in the shapes. 7. Find the areas contained in the shapes.

1 What is the solution of the system of equations graphed below? y = 2x + 1

Higher. Ch 19 Pythagoras, Trigonometry and Vectors. Bilton

AREAS OF PARALLELOGRAMS AND TRIANGLES

Coordinate Geometry. Exercise 13.1

CHAPTER 1 BASIC ARITHMETIC

Important Instructions for the School Principal. (Not to be printed with the question paper)

CDS-I 2019 Elementary Mathematics (Set-C)

Important Instructions for the School Principal. (Not to be printed with the question paper)

A. 180 B. 108 C. 360 D. 540

1. If two angles of a triangle measure 40 and 80, what is the measure of the other angle of the triangle?

9 th CBSE Mega Test - II

GM1.1 Answers. Reasons given for answers are examples only. In most cases there are valid alternatives. 1 a x = 45 ; alternate angles are equal.

Geometry. Midterm Review

9.2. Length of Line Segments. Lesson Objectives. Find the lengths of line segments on the x-axis and y-axis.

ABC is a triangle. The point D lies on AC. Angle BDC = 90 BD = 10 cm, AB = 15 cm and DC = 12.5 cm.

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

Nozha Directorate of Education Form : 2 nd Prep

8. Quadrilaterals. If AC = 21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.

Alg. (( Sheet 1 )) [1] Complete : 1) =.. 3) =. 4) 3 a 3 =.. 5) X 3 = 64 then X =. 6) 3 X 6 =... 7) 3

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

Workout 8 Solutions. Peter S. Simon. Homework: February 9, 2005

Algebraic expression is formed from variables and constants using different operations. NCERT

Q1. The sum of the lengths of any two sides of a triangle is always (greater/lesser) than the length of the third side. askiitians

Year 9 Term 3 Homework

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

Pre RMO Exam Paper Solution:

TRIANGLES CHAPTER 7. (A) Main Concepts and Results. (B) Multiple Choice Questions

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle.

Name: Class: Date: c. WZ XY and XW YZ. b. WZ ZY and XW YZ. d. WN NZ and YN NX

Chapter 3 Cumulative Review Answers

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

0113ge. Geometry Regents Exam In the diagram below, under which transformation is A B C the image of ABC?

Geometry Honors Final Exam Review June 2018

Pre-Algebra Chapter 9 Spatial Thinking

Q4. In ABC, AC = AB and B = 50. Find the value of C. SECTION B. Q5. Find two rational numbers between 1 2 and.

Math 5 Trigonometry Fair Game for Chapter 1 Test Show all work for credit. Write all responses on separate paper.

1. LINE SEGMENTS. a and. Theorem 1: If ABC A 1 B 1 C 1, then. the ratio of the areas is as follows: Theorem 2: If DE//BC, then ABC ADE and 2 AD BD

SOLUTIONS SECTION A SECTION B

OUR OWN HIGH SCHOOL, AL WARQA A, DUBAI CMLSTQT SUMMATIVE ASSESSMENT II ( ) MATHEMATICS Class IX Time allowed : 3 hours Maximum Marks : 90

2. In ABC, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If AC = 26, find AB.

ANSWERS. CLASS: VIII TERM - 1 SUBJECT: Mathematics. Exercise: 1(A) Exercise: 1(B)

MEP Pupil Text 13-19, Additional Material. Gradients of Perpendicular Lines

Questions Q1. x =... (Total for Question is 4 marks) Q2. Write down the value of (i) 7. (ii) 5 1. (iii) 9 ½. (Total for Question is 3 marks) Q3.

CBSE Sample Paper-04 (solved) SUMMATIVE ASSESSMENT II MATHEMATICS Class IX. Time allowed: 3 hours Maximum Marks: 90

Class 7 Mensuration - Perimeter, Area, Volume

CBSE SAMPLE PAPER Class IX Mathematics Paper 1 (Answers)

2012 GCSE Maths Tutor All Rights Reserved

1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT.

Assignment Mathematics Class-VII

(b) the equation of the perpendicular bisector of AB. [3]

Los Angeles Unified School District Periodic Assessments. Geometry. Assessment 2 ASSESSMENT CODE LA08_G_T2_TST_31241

Name: Class: Date: 5. If the diagonals of a rhombus have lengths 6 and 8, then the perimeter of the rhombus is 28. a. True b.

AREA CALCULATION - SOLVED EXAMPLES

CAREER POINT. PRMO EXAM-2017 (Paper & Solution) Sum of number should be 21


For all questions, E is NOTA, which denotes that none of the above is correct. All diagrams are not drawn to scale. All angles are in degrees.

VISHAL BHARTI PUBLIC SCHOOL SUBJECT-MATHEMATICS CLASS-VI ASSIGNMENT-4 REVISION (SEPTEMBER)

Geometry Final Review. Chapter 1. Name: Per: Vocab. Example Problems

Basic Trigonometry. Trigonometry deals with the relations between the sides and angles of triangles.

Geometry Cumulative Review

Answers. Investigation 4. ACE Assignment Choices. Applications. The number under the square root sign increases by 1 for every new triangle.

MATHEMATICS STANDARD IX TAMILNADU TEXTBOOK CORPORATION COLLEGE ROAD, CHENNAI

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

SOLUTIONS SECTION A [1] = 27(27 15)(27 25)(27 14) = 27(12)(2)(13) = cm. = s(s a)(s b)(s c)

Part (1) Second : Trigonometry. Tan

0112ge. Geometry Regents Exam Line n intersects lines l and m, forming the angles shown in the diagram below.

Geometry - Semester 1 Final Review Quadrilaterals

10. Circles. Q 5 O is the centre of a circle of radius 5 cm. OP AB and OQ CD, AB CD, AB = 6 cm and CD = 8 cm. Determine PQ. Marks (2) Marks (2)

DESIGN OF THE QUESTION PAPER

b) What is the area of the shaded region? Geometry 1 Assignment - Solutions

0610ge. Geometry Regents Exam The diagram below shows a right pentagonal prism.

Grade 8(Mathematics) EV 4( )

CHAPTER - 2 EQUATIONS. Copyright -The Institute of Chartered Accountants of India

Practice Test Geometry 1. Which of the following points is the greatest distance from the y-axis? A. (1,10) B. (2,7) C. (3,5) D. (4,3) E.

Basic Maths(M-I) I SCHEME. UNIT-I Algebra

Transcription:

CHAPTER 1 HERON S FORMULA 1.1 Introduction You have studied in earlier classes about figures of different shapes such as squares, rectangles, triangles and quadrilaterals. You have also calculated perimeters and the areas of some of these figures like rectangle, square etc. For instance, you can find the area and the perimeter of the floor of your classroom. Let us take a walk around the floor along its sides once; the distance we walk is its perimeter. The size of the floor of the room is its area. So, if your classroom is rectangular with length 10 m and width 8 m, its perimeter would be (10 m + 8 m) = 36 m and its area would be 10 m 8 m, i.e., 80 m. Unit of measurement for length or breadth is taken as metre (m) or centimetre (cm) etc. Unit of measurement for area of any plane figure is taken as square metre (m ) or square centimetre (cm ) etc. Suppose that you are sitting in a triangular garden. How would you find its area? From Chapter 9 and from your earlier classes, you know that: Area of a triangle = 1 base height (I) We see that when the triangle is right angled, we can directly apply the formula by using two sides containing the right angle as base and height. For example, suppose that the sides of a right triangle ABC are 5 cm, 1 cm and 13 cm; we take base as 1 cm and height as 5 cm (see Fig. 1.1). Then the Fig. 1.1

198 MATHEMATICS area of Δ ABC is given by 1 base height = 1 1 5 cm, i.e., 30 cm Note that we could also take 5 cm as the base and 1 cm as height. Now suppose we want to find the area of an equilateral triangle PQR with side 10cm (see Fig. 1.). To find its area we need its height. Can you find the height of this triangle? Let us recall how we find its height when we know its sides. This is possible in an equilateral triangle. Take the mid-point of QR as M and join it to P. We know that PMQ is a right triangle. Therefore, by using Pythagoras Theorem, we can find the length PM as shown below: PQ =PM + QM i.e., (10) =PM + (5), since QM = MR. Fig. 1. Therefore, we have PM = 75 i.e., PM = 75 cm = 5 3 cm. Then area of Δ PQR = 1 base height = 1 10 5 3 cm 5 3 cm. Let us see now whether we can calculate the area of an isosceles triangle also with the help of this formula. For example, we take a triangle XYZ with two equal sides XY and XZ as 5 cm each and unequal side YZ as 8 cm (see Fig. 1.3). In this case also, we want to know the height of the triangle. So, from X we draw a perpendicular XP to side YZ. You can see that this perpendicular XP divides the base YZ of the triangle in two equal parts. Therefore, YP = PZ = 1 YZ = 4 cm Then, by using Pythagoras theorem, we get XP =XY YP =5 4 = 5 16 = 9 So, XP = 3 cm Fig. 1.3 Now, area of Δ XYZ = 1 base YZ height XP = 1 8 3 cm = 1 cm. File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65

HERON S FORMULA 199 Now suppose that we know the lengths of the sides of a scalene triangle and not the height. Can you still find its area? For instance, you have a triangular park whose sides are 40 m, 3 m, and 4 m. How will you calculate its area? Definitely if you want to apply the formula, you will have to calculate its height. But we do not have a clue to calculate the height. Try doing so. If you are not able to get it, then go to the next section. 1. Area of a Triangle by Heron s Formula Heron was born in about 10AD possibly in Alexandria in Egypt. He worked in applied mathematics. His works on mathematical and physical subjects are so numerous and varied that he is considered to be an encyclopedic writer in these fields. His geometrical works deal largely with problems on mensuration written in three books. Book I deals with the area of squares, rectangles, triangles, trapezoids (trapezia), various other specialised quadrilaterals, the regular polygons, circles, surfaces of cylinders, cones, spheres etc. In this book, Heron has derived the famous formula for the area of a triangle in terms of its three sides. Heron (10AD 75 AD) Fig. 1.4 The formula given by Heron about the area of a triangle, is also known as Hero s formula. It is stated as: Area of a triangle = s( s a)( s b) ( s c) (II) where a, b and c are the sides of the triangle, and s = semi-perimeter, i.e., half the a b c perimeter of the triangle =, This formula is helpful where it is not possible to find the height of the triangle easily. Let us apply it to calculate the area of the triangular park ABC, mentioned above (see Fig. 1.5). Let us take a = 40 m, b = 4 m, c = 3 m, so that we have s = 40 4 3 m = 48 m. File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65

00 MATHEMATICS s a = (48 40) m = 8 m, s b = (48 4) m = 4 m, s c = (48 3) m = 16 m. Therefore, area of the park ABC = s( s a) ( s b) ( s c) = 48 8 4 16 m 384m Fig. 1.5 We see that 3 + 4 = 104 + 576 = 1600 = 40. Therefore, the sides of the park make a right triangle. The largest side, i.e., BC which is 40 m will be the hypotenuse and the angle between the sides AB and AC will be 90. By using Formula I, we can check that the area of the park is 1 3 4 m = 384 m. We find that the area we have got is the same as we found by using Heron s formula. Now using Heron s formula, you verify this fact by finding the areas of other triangles discussed earlier viz., (i) equilateral triangle with side 10 cm. (ii) isosceles triangle with unequal side as 8 cm and each equal side as 5 cm. You will see that 10 10 10 For (i), we have s = cm = 15 cm. Area of triangle = 15(15 10) (15 10) (15 10) cm = 15 5 5 5 cm 5 3cm For (ii), we have s = 8 5 5 cm 9 cm. Area of triangle = 9(9 8)(9 5)(9 5) cm = 9 1 4 4cm 1 cm. Let us now solve some more examples: File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65

HERON S FORMULA 01 Example 1 : Find the area of a triangle, two sides of which are 8 cm and 11 cm and the perimeter is 3 cm (see Fig. 1.6). Solution : Here we have perimeter of the triangle = 3 cm, a = 8 cm and b = 11 cm. Third side c = 3 cm (8 + 11) cm = 13 cm So, s = 3, i.e., s = 16 cm, s a = (16 8) cm = 8 cm, s b = (16 11) cm = 5 cm, s c = (16 13) cm = 3 cm. Fig. 1.6 Therefore, area of the triangle = s( s a)( s b)( s c) = 16 8 5 3cm 8 30 cm Example : A triangular park ABC has sides 10m, 80m and 50m (see Fig. 1.7). A gardener Dhania has to put a fence all around it and also plant grass inside. How much area does she need to plant? Find the cost of fencing it with barbed wire at the rate of Rs 0 per metre leaving a space 3m wide for a gate on one side. Solution : For finding area of the park, we have s = 50 m + 80 m + 10 m = 50 m. i.e., s = 15 m Now, s a = (15 10) m = 5 m, s b = (15 80) m = 45 m, s c = (15 50) m = 75 m. Fig. 1.7 Therefore, area of the park = s( s a) ( s b) ( s c) = 15 5 45 75 m = 375 15 m Also, perimeter of the park = AB + BC + CA = 50 m Therefore, length of the wire needed for fencing = 50 m 3 m (to be left for gate) = 47 m And so the cost of fencing = Rs 0 47 = Rs 4940 File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65

0 MATHEMATICS Example 3 : The sides of a triangular plot are in the ratio of 3 : 5 : 7 and its perimeter is 300 m. Find its area. Solution : Suppose that the sides, in metres, are 3x, 5x and 7x (see Fig. 1.8). Then, we know that 3x + 5x + 7x = 300 (perimeter of the triangle) Therefore, 15x = 300, which gives x = 0. So the sides of the triangle are 3 0 m, 5 0 m and 7 0 m i.e., 60 m, 100 m and 140 m. Can you now find the area [Using Heron s formula]? We have s = 60 100 140 m = 150 m, Fig. 1.8 and area will be 150(150 60) (150 100) (150 140) m = 150 90 50 10 m = 1500 3 m EXERCISE 1.1 1. A traffic signal board, indicating SCHOOL AHEAD, is an equilateral triangle with side a. Find the area of the signal board, using Heron s formula. If its perimeter is 180 cm, what will be the area of the signal board?. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 1 m, m and 10 m (see Fig. 1.9). The advertisements yield an earning of ` 5000 per m per year. A company hired one of its walls for 3 months. How much rent did it pay? Fig. 1.9 File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65

HERON S FORMULA 03 3. There is a slide in a park. One of its side walls has been painted in some colour with a message KEEP THE PARK GREEN AND CLEAN (see Fig. 1.10 ). If the sides of the wall are 15 m, 11 m and 6 m, find the area painted in colour. Fig. 1.10 4. Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 4cm. 5. Sides of a triangle are in the ratio of 1 : 17 : 5 and its perimeter is 540cm. Find its area. 6. An isosceles triangle has perimeter 30 cm and each of the equal sides is 1 cm. Find the area of the triangle. 1.3 Application of Heron s Formula in Finding Areas of Quadrilaterals Suppose that a farmer has a land to be cultivated and she employs some labourers for this purpose on the terms of wages calculated by area cultivated per square metre. How will she do this? Many a time, the fields are in the shape of quadrilaterals. We need to divide the quadrilateral in triangular parts and then use the formula for area of the triangle. Let us look at this problem: Example 4 : Kamla has a triangular field with sides 40 m, 00 m, 360 m, where she grew wheat. In another triangular field with sides 40 m, 30 m, 400 m adjacent to the previous field, she wanted to grow potatoes and onions (see Fig. 1.11). She divided the field in two parts by joining the mid-point of the longest side to the opposite vertex and grew patatoes in one part and onions in the other part. How much area (in hectares) has been used for wheat, potatoes and onions? (1 hectare = 10000 m ) Solution : Let ABC be the field where wheat is grown. Also let ACD be the field which has been divided in two parts by joining C to the mid-point E of AD. For the area of triangle ABC, we have a = 00 m, b = 40 m, c = 360 m Therefore, s = 00 40 360 m = 400 m. File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65

04 MATHEMATICS So, area for growing wheat = 400(400 00) (400 40) (400 360) m = 400 00 160 40 m = 16000 m = 1.6 hectares =.6 hectares (nearly) Let us now calculate the area of triangle ACD. 40 30 400 Here, we have s = m = 480 m. So, area of Δ ACD = 480(480 40)(480 30) (480 400) m Fig. 1.11 = 480 40 160 80 m = 38400 m = 3.84 hectares We notice that the line segment joining the mid-point E of AD to C divides the triangle ACD in two parts equal in area. Can you give the reason for this? In fact, they have the bases AE and ED equal and, of course, they have the same height. Therefore, area for growing potatoes = area for growing onions = (3.84 ) hectares = 1.9 hectares. Example 5 : Students of a school staged a rally for cleanliness campaign. They walked through the lanes in two groups. One group walked through the lanes AB, BC and CA; while the other through AC, CD and DA (see Fig. 1.1). Then they cleaned the area enclosed within their lanes. If AB = 9 m, BC = 40 m, CD = 15 m, DA = 8 m and B = 90º, which group cleaned more area and by how much? Find the total area cleaned by the students (neglecting the width of the lanes). Solution : Since AB = 9 m and BC = 40 m, B = 90, we have: AC = 9 40 = 81 1600 m = 1681 m = 41m Fig. 1.1 Therefore, the first group has to clean the area of triangle ABC, which is right angled. m Area of Δ ABC = 1 base height = 1 40 9 m = 180 m File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65

HERON S FORMULA 05 The second group has to clean the area of triangle ACD, which is scalene having sides 41 m, 15 m and 8 m. Here, s = 41 15 8 m = 4 m Therefore, area of Δ ACD = s( s a)( s b)( s c) = 4(4 41) (4 15)(4 8) m = 4 1 7 14 m = 16 m So first group cleaned 180 m which is (180 16) m, i.e., 54 m more than the area cleaned by the second group. Total area cleaned by all the students = (180 + 16) m = 306 m. Example 6 : Sanya has a piece of land which is in the shape of a rhombus (see Fig. 1.13). She wants her one daughter and one son to work on the land and produce different crops. She divided the land in two equal parts. If the perimeter of the land is 400 m and one of the diagonals is 160 m, how much area each of them will get for their crops? Solution : Let ABCD be the field. Perimeter = 400 m So, each side = 400 m 4 = 100 m. i.e. AB = AD = 100 m. Let diagonal BD = 160 m. Then semi-perimeter s of Δ ABD is given by Fig. 1.13 s = 100 100 160 m = 180 m Therefore, area of Δ ABD = 180(180 100) (180 100) (180 160) = 180 80 80 0m = 4800 m Therefore, each of them will get an area of 4800 m. File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65

06 MATHEMATICS Alternative method : Draw CE BD (see Fig. 1.14). As BD = 160 m, we have DE = 160 m = 80 m And, DE + CE = DC, which gives CE = DC DE or, CE = 100 80 m 60 m Therefore, area of Δ BCD = 1 160 60 m = 4800 m Fig. 1.14 EXERCISE 1. 1. A park, in the shape of a quadrilateral ABCD, has C = 90º, AB = 9 m, BC = 1 m, CD = 5 m and AD = 8 m. How much area does it occupy?. Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm. 3. Radha made a picture of an aeroplane with coloured paper as shown in Fig 1.15. Find the total area of the paper used. Fig. 1.15 4. A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 6 cm, 8 cm and 30 cm, and the parallelogram stands on the base 8 cm, find the height of the parallelogram. File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65

HERON S FORMULA 07 5. A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting? 6. An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see Fig. 1.16), each piece measuring 0 cm, 50 cm and 50 cm. How much cloth of each colour is required for the umbrella? 7. A kite in the shape of a square with a diagonal 3 cm and an isosceles triangle of base 8 cm and sides 6 cm each is to be made of three different shades as shown in Fig. 1.17. How much paper of each shade has been used in it? Fig. 1.16 Fig. 1.17 8. A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being 9 cm, 8 cm and 35 cm (see Fig. 1.18). Find the cost of polishing the tiles at the rate of 50p per cm. 9. A field is in the shape of a trapezium whose parallel sides are 5 m and 10 m. The non-parallel sides are 14 m and 13 m. Find the area of the field. 1.4 Summary Fig. 1.18 In this chapter, you have studied the following points : 1. Area of a triangle with its sides as a, b and c is calculated by using Heron s formula, stated as Area of triangle = s( s a) ( s b) ( s c) a b c where s =. Area of a quadrilateral whose sides and one diagonal are given, can be calculated by dividing the quadrilateral into two triangles and using the Heron s formula. File Name : C:\Computer Station\Maths-IX\Chapter\Chap-1\Chap-1 (03-01-006).PM65