Review of the Riemann Integral

Similar documents
Sequence and Series of Functions

The Definite Integral

We will begin by supplying the proof to (a).

Math 104: Final exam solutions

Course 121, , Test III (JF Hilary Term)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

POWER SERIES R. E. SHOWALTER

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

1.3 Continuous Functions and Riemann Sums

The Weierstrass Approximation Theorem

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

MAS221 Analysis, Semester 2 Exercises

Convergence rates of approximate sums of Riemann integrals

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MA123, Chapter 9: Computing some integrals (pp )

Approximations of Definite Integrals

Riemann Integration. Chapter 1

EVALUATING DEFINITE INTEGRALS

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

18.01 Calculus Jason Starr Fall 2005

Riemann Integral and Bounded function. Ng Tze Beng

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

3.7 The Lebesgue integral

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Convergence rates of approximate sums of Riemann integrals

Basic Limit Theorems

1 Tangent Line Problem

Chapter 7 Infinite Series

Definite Integral. The Left and Right Sums

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

The Basic Properties of the Integral

General properties of definite integrals

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

Principles of Mathematical Analysis

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Review of Sections

Riemann Integral Oct 31, such that

lecture 16: Introduction to Least Squares Approximation

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

Math 140B - Notes. Neil Donaldson. September 2, 2009

The Reimann Integral is a formal limit definition of a definite integral

MTH 146 Class 16 Notes

The Definite Riemann Integral

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

Approximate Integration

Probability for mathematicians INDEPENDENCE TAU

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x.

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Limit of a function:

{ } { S n } is monotonically decreasing if Sn

( a n ) converges or diverges.

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

Advanced Calculus Test File Spring Test 1

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Notes on Dirichlet L-functions

The Regulated and Riemann Integrals

5.1 - Areas and Distances

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

4.1 Bounded integral.

b a 2 ((g(x))2 (f(x)) 2 dx

INTEGRATION IN THEORY

( ) dx ; f ( x ) is height and Δx is

Fall 2004 Math Integrals 6.1 Sigma Notation Mon, 15/Nov c 2004, Art Belmonte

ANSWERS TO MIDTERM EXAM # 2

Chapter 2 Infinite Series Page 1 of 9

Exploring the Rate of Convergence of Approximations to the Riemann Integral

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Sequences and Series of Functions

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Application: Volume. 6.1 Overture. Cylinders

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

Crushed Notes on MATH132: Calculus

THE GAMMA FUNCTION. z w dz.

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

Introductory Analysis I Fall 2014 Homework #7 Solutions

Dedicated to Prof. J. Kurzweil on the occasion of his 80th birthday

Closed Newton-Cotes Integration

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

MATRIX ALGEBRA, Systems Linear Equations

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Reversing the Arithmetic mean Geometric mean inequality

Ideas of Lebesgue and Perron Integration in Uniqueness of Fourier and Trigonometric Series By Ng Tze Beng

Transcription:

Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of [, b] is fiite subset of [, b] of the form P {x i : x 0 < x 1 < < x b}. Defiitio 1.0.2. For prtitio P of [, b] hvig elemets, 1. defie x i : x i x i 1, d 2. defie the orm of P, deoted s P, by P : mx{ x i : i 1, 2,..., }. Exmple 1.0.3. For y N we c costruct the -regulr prtitio P of [, b] by subdividig [, b] ito ideticl prts with the legth of ech subitervl beig b. I.e., x i b b for ech i, d P. Note tht x 1 + b, x 2 + 2 b,. x i + i b,. x + b b. Assume tht f(x) is bouded o [, b]. Let P be prtitio o [, b]. Let M i sup{f(x) : x [x i 1, x i ]}, d let m i if{f(x) : x [x i 1, x i ]}. The m i f(x) M i for ll x [x i 1, x i ]. 2

Defiitio 1.0.4. Give f(x), bouded o [, b], d prtitio P of [, b], we defie the upper Riem sum of f(x) with respect to P by U(f, P) : U b (f, P) d the lower Riem sum of f(x) with respect to P by L(f, P) : L b (f, P) M i x i, m i x i, where M i d m i re defied s bove. Filly, for ech i, choose c i [x i 1, x i ]; Riem sum for f(x) o [, b] with respect to P is defied by S b (f, P) f(c i ) x i. The bouds of summtio d b from defiitio 1.0.4 re usully omitted. Remrk 1.0.5. Sice m i f(c i ) M i d x i > 0, we c coclude tht L b (f, P) S b (f, P) U b (f, P). Defiitio 1.0.6. Give prtitio P, we sy tht prtitio Q is refiemet of P if d oly if P Q. We lso sy tht Q refies P or P is refied by Q. Theorem 1.0.7. Let f(x) be bouded o [, b]. Let P, Q be prtitios o [, b] with Q refiemet of P. The L(f, P) L(f, Q) U(f, Q) U(f, P). Proof. Assume tht Q P {y 0 } for some y 0 [, b] \ P. Hece Q {x i, y 0 : x 0 < x 1 < < x i 1 < y 0 < x i < < x b} d P {x i : x 0 < x 1 < < x b}. Let Also let M j sup{f(x) : x [x j 1, x j ]}, m i if{f(x) : x [x j 1, x j ]}. M i,1 sup{f(x) : x [x i 1, y 0 ]}, m i,1 if{f(x) : x [x i 1, y 0 ]}, M i,2 sup{f(x) : x [y 0, x i ]}, m i,2 if{f(x) : x [y 0, x i ]}. Note tht sice f([x i 1, x i ]) f([x i 1, y 0 ]) d f([x i 1, x i ]) f([y 0, x i ]), we hve tht M i,1 M i d 3

M i,2 M i. Similrly, m i,1 m i d m i,2 m i. Now Similrly, U(f, P) L(f, P) M j x j +M j x j + M i x i j i +M j x j + M i (y 0 x i 1 ) + M i (x i y 0 ) j i +M j x j + M i,1 (y 0 x i 1 ) + M i,2 (x i y 0 ) j i U(f, Q). m j x j +m j x j + m i x i j i +m j x j + m i (y 0 x i 1 ) + m i (x i y 0 ) j i +m j x j + m i,1 (y 0 x i 1 ) + m i,2 (x i y 0 ) j i L(f, Q). Due to remrk 1.0.5, we coclude tht L(f, P) L(f, Q) U(f, Q) U(f, P). We c use iductio o the umber of poits i Q \ P to estblish the theorem. Corollry 1.0.8. If P d Q re prtitios of f(x) o [, b], the L(f, P) U(f, Q). Proof. Let T P Q. The T refies both P d Q. Hece L(f, P) L(f, T ) U(f, T ) U(f, Q), s desired. Defiitio 1.0.9. Let f(x) be bouded o [, b]. The upper Riem itegrl for f(x) over [, b] is d the lower Riem itegrl for f(x) over [, b] is f(x) dx if{u(f, P) : P prtitio of [, b]}, f(x) dx sup{l(f, P) : P prtitio of [, b]}, 4

Observtio. f(x) dx f(x) dx. 1.1 Riem Itegrble Fuctios Defiitio 1.1.1. We sy tht f(x) is Riem itegrble o [, b] if i which cse we deote this commo vlue by f(x) dx f(x) dx. f(x) dx, I defiitios 1.0.9 d 1.1.1, we ecoutered ew ottios: the is the itegrl sig, d b re edpoits of itegrtio, f(x) is the itegrd, d dx refers to the vrible of itegrtio (lso clled the dummy vrible) i this cse it is x. Exmple 1.1.2. Let f(x) If P {x i : 0 x 0 < x 1 < < x 1}, the let We hve tht Hece U(f, P) L(f, P) { 1 if x [0, 1] Q, 1 if x [0, 1] \ Q. M i sup{f(x) : x [x i 1, x i ]}, 1 m i if{f(x) : x [x i 1, x i ]}. 0 M i x i m i x i f(x) dx 1 1 d hece this fuctio is ot Riem itegrble o [0, 1]. x i 1, d x i 1. 1 0 f(x) dx, Observtio. f(x) i the bove exmple is discotiuous everywhere o [, b]. Theorem 1.1.4. Let f(x) be bouded o [, b]. The f(x) is Riem itegrble o [, b] if d oly if for every > 0 there exists prtitio P of [, b] such tht U(f, P) L(f, P) <. Proof. Assume tht f(x) is Riem itegrble o [, b]. I.e., f(x) dx f(x) dx. 5

Let > 0. Sice f(x) dx if{u(f, P) : P is prtitio}, there exists prtitio P 1 such tht f(x) dx U(f, P 1 ) < f(x) dx + 2. Similrly, sice f(x) dx sup{l(f, P) : P is prtitio}, there exists prtitio P 2 such tht Let Q P 1 P 2. The This implies tht f(x) dx 2 f(x) dx 2 < L(f, P 2) < L(f, P 2 ) f(x) dx 2 f(x) dx. L(f, Q) (by theorem 1.0.7) U(f, Q) U(f, P 1 ) (by theorem 1.0.7) < f(x) dx + 2 f(x) dx + 2. U(f, Q) L(f, Q) <. To prove the coverse, ssume tht for ech > 0 there exists prtitio P of [, b] such tht However, by defiitio 1.0.9, we hve tht d hece Sice is rbitrry, we obti L(f, P) 0 U(f, P) L(f, P) <. f(x) dx f(x) dx f(x) dx therefore f(x) is Riem itegrble o [, b], s required. f(x) dx U(f, P), f(x) dx <. f(x) dx; Exmple 1.1.5. Let f(x) x 2. Let P be the -regulr prtitio of [0, 1]. The U 1 0(f, P ) f(x i ) x i i 2 2 1 d L 1 0(f, P ) f(x i 1 ) x i (i 1) 2 2 1. 6

The U(f, P ) L(f, P ) ( 2 2 1 ) ( 0 2 2 1 ) 1. This shows tht for ll > 0, we c fid prtitio P such tht U(f, P) L(f, P) < (simply select lrge eough by the Archimede Priciple d use the -regulr prtitio P ). Hece by theorem 1.1.4, f(x) is Riem itegrble o [0, 1]. Lter, we will be ble to show tht 1 0 x 2 dx 1 3. Recll the followig defiitio. Defiitio 1.1.6. We sy tht f(x) is uiformly cotiuous o itervl I if for every > 0, there exists δ > 0 such tht for ll x, y I, Also recll the followig theorem. x y < δ implies f(x) f(y) <. Theorem 1.1.7 [Sequetil Chrcteriztio of Uiform Cotiuity]. A fuctio f(x) is uiformly cotiuous o itervl I if d oly if wheever {x }, {y } re sequeces i I, lim (x y ) 0 implies lim (f(x ) f(y )) 0. Exmple 1.1.8. Let I R d f(x) x 2. Tke {x } { + } 1, {y } {}. The lim (x y ) 0, but lim 1 Hece f(x) x 2 is ot uiformly cotiuous o R. lim ) f(y )) [ ( lim + 1 ) ] 2 2 lim (2 + 1 ) 2 0. Oe should lredy be fmilir with the followig theorem. Theorem 1.1.9. If f(x) is cotiuous o [, b], the f(x) is uiformly cotiuous o [, b]. Proof. Assume tht f(x) is cotiuous o [, b] but ot uiformly cotiuous o [, b]. The by theorem 1.1.7, there exists sequeces {x } d {y } with lim (x y ) 0 but lim (f(x ) f(y )) 0. (Note tht this limit my ot eve exist.) By choosig subsequece if ecessry, we c ssume without loss of geerlity tht there exists 0 > 0 such tht (1.1) (f(x ) f(y )) 0 f(x ) f(y ) 0 for ll N. 7

Sice {x } [, b], by the Bolzo-Weierstrss Theorem {x } hs subsequece {x k } with lim k x k x 0 [, b]. Note tht lim k (x k y k ) 0, hece lim k y k x 0 lso. By the sequetil chrcteriztio of cotiuity, we hve Therefore, we c select K N with lim f(x k ) f(x 0 ), k lim f(y k ) f(x 0 ). k for ll k K. Hece we hve, for ll k K, f(x k ) f(x 0 ) < 0 2 f(y k ) f(x 0 ) < 0 2 d 0 f(x k ) f(y k ) f(x k ) f(x 0 ) + f(y k ) f(x 0 ) < 0 2 + 0 2 0, directly cotrdictig equtio (1.1). Hece f(x) is uiformly cotiuous o [, b]. Theorem 1.1.10 [Itegrbility Theorem for Cotiuous Fuctios]. If f(x) is cotiuous o [, b], the f(x) is Riem itegrble o [, b]. Proof. Let > 0. Sice f(x) is cotiuous o [, b], f(x) is lso uiformly cotious o [, b] by theorem 1.1.9 bove. We c fid δ > 0 such tht if x y < δ, the f(x) f(y) < b. Let P be prtitio of [, b] with P mx{ x i } < δ. For exmple, we c choose the -regulr prtitio of [, b] with lrge eough (chose by the Archimede Priciple) so tht b P < δ. After we hve chose P, let M i sup{f(x) : x [x i 1, x i ]}, m i if{f(x) : x [x i 1, x i ]}. By the extreme vlue theorem, there exists c i, d i [x i 1, x i ] such tht f(c i ) m i d f(d i ) M i ; ote tht M i m i M i m i f(d i ) f(c i ). Sice c i d i < x i < δ, we hve tht f(d i ) f(c i ) < b. This shows tht U(f, P) L(f, P) < M i x i m i x i (M i m i ) x i b b. Hece f(x) is Riem itegrble by theorem 1.1.4. b x i x i (b ) 8

Remrk 1.1.11. Assume tht f(x) is cotiuous o [, b]. For ech, let P be the -regulr prtitio. The if S(f, P ) is y Riem sum ssocited with P, we hve f(x) dx lim S(f, P ). Proof. Give > 0, we c fid N lrge eough so tht if N, the b 1.1.10 bove. Hece U(f, P ) L(f, P ) <, vi similr rgumet mde i theorem 1.1.10. f(x) dx L(f, P ). This implies tht d so lim S(f, P ) f(x) dx, s remrked. < δ s defied i theorem But U(f, P ) S(f, P ) L(f, P ) d U(f, P ) f(x) dx S(f, P ) < Note tht the bove remrk shows tht if f(x) is cotiuous, we hve f(x) dx lim [ ( f + i b ) b ]. Defiitio 1.1.12. Give prtitio P {x i : x 0 < x 1 < < x b}, defie the right-hd Riem sum, S R, by S R : f(x i ) x i ; defie the left-hd Riem sum, S L, by defie the midpoit Riem sum, S M, by S M : S L : f(x i 1 ) x i ; ( ) xi 1 + x i f x i. 2 Theorem 1.1.13. Assume tht f(x) is Riem itegrble o [, b]. Give > 0, there exists δ > 0 such tht if P is prtitio of [, b] with P < δ, the S(f, P) f(x) dx < for y Riem sum S(f, P). Proof. Sice f(x) is Riem itegrble, we c fid prtitio P 1 of [, b] with U(f, P 1 ) L(f, P 1 ) < 2. I prticulr, for y Riem sum S(f, P 1 ), we hve U(f, P 1 ) S(f, P 1 ) L(f, P 1 ) d U(f, P 1 ) f(x) dx L(f, P 1). Suppose P 1 {x i : x 0 < x 1 < < x b}. The let M sup{f(x) : x [, b]}, m if{f(x) : x [, b]}. 9

If M m 0, the f(x) is costt o [, b], so sy f(x) c for ll x [, b]. I this cse U(f, P) c(b ) L(f, P) for y prtitio P. Hece y δ > 0 would stisfy the theorem d we re doe. So ssume M > m. Let δ < 2(M m). Let P {y i : y 0 < y 1 < < y j < < y k b} be y prtitio of [, b] with P < δ. Let T {j : j {1, 2,..., k}, d [y j 1, y j ] [x i 1, x i ] for some i}. Also, let The we hve tht U(f, P) L(f, P) M j sup{f(x) : x [y j 1, y j ]}, m j if{f(x) : x [y j 1, y j ]}. k M j y j k m j y j k (M j m j ) y j j T(M j m j ) y j + j {1,2,...,k}\T (M j m j ) y j. Note tht (M j m j ) y j U(f, P 1 P) L(f, P 1 P) j T U(f, P 1 ) L(f, P 1 ) < 2. Observe tht {1, 2,..., k} \ T hs t most elemets (sice for ech j T, we hve uique i such tht y j 1 < x i 1 < y j < x i ; coversely for ech such i there exists uique j T but there re oly poits i P 1 ). Hece for ech j {0, 1,..., k} \ T, we hve This shows tht (M j m j ) y j (M m) P j {1,2,...,k}\T < (M m) 2. (M j m j ) y j < 2. 2(M m) j {1,2,...,k}\T 2 2 Hece, if P < δ, U(f, P) L(f, P) < 2 + 2 ; therefore, if S(f, P) is y Riem sum, the S(f, P) f(x) dx <, s required. 10

This thoerem is geerliztio of remrk 1.1.11. I prticulr, this theorem provides esy, lterte proof of remrk 1.1.11. Here we stte the remrk gi s corollry. Corollry 1.1.14. If f(x) is Riem itegrble o [, b], the f(x) dx lim S(f, P ) lim f(c i ) b, where P is the -regulr prtitio of [, b] d c i [x i 1, x i ]. ( S(f, P ) is y Riem sum.) Proof. Let > 0. By the bove theorem, we c fid δ > 0 so tht if P 1 < δ, S(f, P ) f(x) dx < for y Riem sum S(f, P ). The result follows by choosig N (usig the Archimede Priciple) so tht 1 1 N < δ for ll N. I geerl, we write f(x) dx lim S(f, P). P 0 Theorem 1.1.15. Let f(x) be mootoic o [, b]. The f(x) is Riem itegrble o [, b]. Proof. Let P be the -regulr prtitio. Assume, without loss of geerlity, tht f(x) is odecresig o [, b]. The So U(f, P ) S R (f, P ) L(f, P ) S L (f, P ) U(f, P ) L(f, P ) f(x i ) b, d f(x i 1 ) b. f(x i ) b 1 i0 f(x i ) b b [(f(x 1) + + f(x )) (f(x 0 ) + + f(x 1 ))] b (f(x ) f(x 0 )) b (f(b) f()). b Sice lim (f(b) f()) 0, f(x) is Riem itegrble o [, b] by theorem 1.1.4. Questio: Assume tht f(x) is cotiuous o [, b] except t c. (Note tht f(x) is bouded o [, b].) Is f(x) still Riem itegrble o [, b]? Theorem 1.1.17. Assume tht f(x) is cotiuous o [, b] except t c [, b]. itegrble o [, b]. The f(x) is Riem 11

Proof. Let P {x i : x 0 < x 1 < < x b} be prtitio of [, b] so tht c (x i0 1, x i0 ) for some i 0. Let > 0. Let M sup{f(x) : x [, b]}, m if{f(x) : x [, b]}, M i sup{f(x) : x [x i 1, x i ]}, m i if{f(x) : x [x i 1, x i ]}. We c choose P so tht x i0 < 3(M m). The (M i 0 m i0 ) x i0 (M m) x i0 < (M m) 3(M m) 3. Sice f(x) is uiformly cotiuous o [, x i0 1], by refiig s ecessry, we c ssume tht if 0 i i 0, the M i m i < 3(x i0 ). We ow hve i 0 1 (M i m i ) x i < i 0 1 A similr rgumet shows, by refiig if ecessry, tht ii 0+1 3(x i0 1 ) x i i 0 1 3 (M i m i ) x i < 3. x i x i0 1 3. The U(f, P) L(f, P) (M i m i ) x i i 0 1 (M i m i ) x i + (M i0 m i0 ) x i0 + (M i m i ) x i ii 0+1 < 3 + 3 + 3. This shows tht f(x) is Riem itegrble o [, b] by theorem 1.1.4. Observtio. Observe the followig fcts: 1. If f(x) is bouded o [, b] d cotiuous except t possibly t fiitely my poits, the f(x) is Riem itegrble o [, b]. 2. If f(x) is Riem itegrble o [, b] d g(x) f(x) except t fiitely my poits, the g(x) is Riem itegrble d f(x) dx g(x) dx. 1.2 Flws i the Riem Itegrl The followig problem will be key to our motivtio for the costructio of coutbly dditive mesures. 12

Problem 1.2.1. Assume tht {f } is sequece of Riem itegrble fuctios with {f } covergig poitwise o [, b] to fuctio f 0. Is f 0 Riem itegrble, d if so is f 0 (x) dx lim f (x) dx? Ufortutely, s we will see below, the swer to both questios bove is egtive. Exmple 1.2.2. 1) Let [0, 1] Q {r 1, r 2,, r, } d { 0 if x [0, 1] \ {r 1, r 2,, r 1 } f (x) 1 if x {r 1, r 2,, r 1 }. The ech f (x) is Riem itegrble. Moreover, f (x) f 0 (x) poitwise, where { 0 if x [0, 1] \ Q f 0 (x) 1 if x [0, 1] Q. d f 0 (x) is ot Riem itegrble. 2) Let 4 2 x if x [0, 1 2 ] f (x) 2 4 2 (x 1 2 ) if x ( 1 2, 1 ] 0 if x ( 1, 1] 14 12 10 (x) 5 8 4 The digrm bove represets the grph of f 5 (x). It is esy to see geometriclly tht 1 0 f 5(t) dt 1 sice the itegrl represets the re of trigle with bse 0.2 d height 10. Geericlly, 1 0 f (t) dt 1 sice the itegrl represets the re of trigle with bse 1 d height 2. From this it follows tht f (x) f 0 (x) 0 for ech x [0, 1], d 1 lim 1 0 f (t) dt 1 0 lim f (t) dt 0. 13

1.3 A Vector-Vlued Riem Itegrl I this sectio we will see how we my defie vector-vlued versio of the Riem itegrl. I doig so we will ssume tht B is Bch spce d tht F : [, b] B is cotiuous fuctio. Defiitio 1.3.1. Let B be Bch spce. Let F : [, b] B be cotiuous. Give prtitio P { t 0 < t 1 < < t b} of [0, b], by Riem sum we will me sum S(F, P ) of the form where c i [t i 1, t i ]. S(F, P) F (c i )(t i t i 1 ) Lemm 1.3.2. Assume tht F : [, b] B is cotiuous. Let > 0. The there exists δ > 0 such tht if P is y prtio of [, b] with P < δ d if P 1 is refiemet of P, the for y Riem sums S(F, P) d S(F, P 1 ) we hve S(F, P) S(F, P 1 ) <. Proof. Give > 0, sice F is uiformly cotiuous, we c fid δ such tht if x y < δ, the F (x) F (y) < (b ). Assume tht P mx{ t i } < δ. Let P 1 be refiemet of P with ech itervl [t i 1, t i ] beig prtitioed ito {t i 1 s i,0 < s i,1 < < s i,ki t i }. Let S(F, P 1 ) be y Riem sum ssocited with P 1. Sice we kow tht k i F (c i )(t i t i 1 ) F (c i )(s i,j s i,j 1 ), we hve S(F, P ) S(F, P 1 ). F (c i )(t i t i 1 ) k i F (c i,j )(s i,j s i,j 1 ) k i F (c i )(s i,j s i,j 1 ) k i F (c i,j )(s i,j s i,j 1 ) k i F (c i ) F (c i,j ) (s i,j s i,j 1 ) b k i (s i,j s i,j 1 ) Theorem 1.3.3. Assume tht F : [, b] B is cotiuous. Let > 0. The there exists δ > 0 such tht if P d Q re y two prtitios of [, b] with P < δ d Q < δ, the for y Riem sums s(f, P) d s(f, Q) we hve S(F, P) S(F, Q) <. Proof. From the previous lemm, we kow tht we c choose δ > 0 such tht if P 1 is y prtio of [, b] with P 1 < δ d if R is refiemet of P 1, the for y Riem sums S(F, P 1 ) d S(F, R) we hve S(F, P 1 ) S(F, R) < 2. 14

Next ssume tht P d Q re y two prtitios of [, b] with P < δ d P < δ. Let R P Q be refiemet of both P d Q, d let S(F, P) d S(F, Q) be Riem sums for F ssocited with P d Q respectively. Next let S(F, R) be y Riem sums for F ssocited with R respectively. The S(F, P) S(F, Q) S(F, P) S(F, R) + S(F, R) S(F, Q) < 2 + 2. Corollry 1.3.4. Let F : [, b] B be cotiuous. If {P k } is sequece of prtitios of [, b] such tht lim P k 0, the for y choice of Riem sums {S(F, P k )} is Cuchy i B, d hece coverges. k Moreover, the limit is idepedet of both the choice of prtitios d of the choice of Riem sums. Proof. Sice lim P k 0, the previous theorem llows us to immeditely deduce tht {S(F, P k )} is k Cuchy i B. Let {P k } d {Q k } be two sequece of prtitios of [, b] such tht Let {S(F, P k )} d {S(F, Q k )} be such tht d lim P k lim Q k 0. k k lim {S(F, P k)} x 0 B k lim {S(F, Q k)} y 0 B. k The we crete the sequece {P 1, Q 1, P 2, Q 2, P 3, Q 3, } of prtitios. It follows tht the sequece {S(F, P 1 ), S(F, Q 1 ), S(F, P 2 ), S(F, Q 2 ), } is lso Cuchy i B. From this we c coclude tht x 0 y 0 d hece tht the limit is i fct idepedet of both the choice of prtitios d of the choice of Riem sums. Defiitio 1.3.5. [Vector-vlued Riem Itegrl] Let F : [, b] B be cotiuous. We defie the B-vlued Riem itegrl of F (X) o [, b] by F (t) dt lim S(F, P). P 0 where lim P 0 S(F, P) is the uique limit obtied s i the Corollry bove. 15