SIGN: A Pressurized Noble Gas Approach to WIMP Detection

Similar documents
DarkSide new results and prospects

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London

Measurements of liquid xenon s response to low-energy particle interactions

Direct WIMP Detection in Double-Phase Xenon TPCs

arxiv:astro-ph/ v1 15 Feb 2005

Scintillation Efficiency of Nuclear Recoils in Liquid Xenon. T. Wongjirad, L. Kastens, A. Manzur, K. Ni, and D.N. McKinsey Yale University

R&D on Astroparticles Detectors. (Activity on CSN )

Factors Affecting Detector Performance Goals and Alternative Photo-detectors

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University

Current status of LUX Dark Matter Experiment

Background and sensitivity predictions for XENON1T

XMASS: a large single-phase liquid-xenon detector

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon

Oddities of light production in the noble elements. James Nikkel

LARGE UNDERGROUND XENON

Recent results from PandaX- II and status of PandaX-4T

The relevance of XENON10 constraints in this low-mass region has been questioned [15] C.E. Aalseth et al. arxiv: v1

PANDA-?? A New Detector for Dark Matter Search

XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th,

DARK MATTER SEARCH AT BOULBY MINE

PANDA-X A New Detector for Dark Matter Search. Karl Giboni Shanghai Jiao Tong University

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

The XENON Project. M. Selvi The XENON project

Luca Grandi.

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

The XENON1T experiment

Down-to-earth searches for cosmological dark matter

After LUX: The LZ Program. David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011

Liquefied noble gases as targets for light dark matter

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Direct dark matter search using liquid noble gases

Detectors for astroparticle physics

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search

Low Energy Particles in Noble Liquids

The Neutron/WIMP Acceptance In XENON100

PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

The LZ Experiment Tom Shutt SLAC. SURF South Dakota

New Physics Results from DarkSide-50. Masayuki Wada Princeton University on behalf of the DarkSide-50 Collaboration Feb

the DarkSide project Andrea Pocar University of Massachusetts, Amherst

XENONNT AND BEYOND. Hardy Simgen. WIN 2015 MPIK Heidelberg. Max-Planck-Institut für Kernphysik Heidelberg

The XENON100 Dark Matter Experiment at LNGS: Status and Sensitivity

nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON

The XENON Dark Matter Project: Status of the XENON100 Phase. Elena Aprile Columbia University

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment

Understanding the response of LXe to electronic and nuclear recoils at low energies

BubXe: a liquid xenon bubble chamber for Dark Matter detection!

High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search

Prospects for WIMP Dark Matter Direct Searches with XENON1T and DARWIN

Particle Energy Loss in Matter

next The NEXT double beta decay experiment Andrew Laing, IFIC (CSIC & UVEG) on behalf of the NEXT collaboration. TAUP2015, Torino, 8/09/2015

The DarkSide-50 Outer Detectors

Direct dark matter search using liquid noble gases

Status of the XENON100 Dark Matter Search

PandaX detector calibration and response. 报告人 : 肖梦姣 Shanghai Jiao Tong University (On behalf of the Panda-X Collaboration)

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University

SLAC - Advanced Instrumentation Seminars

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration

EEE4106Z Radiation Interactions & Detection

C. Galbiati Princeton

LUX-ZEPLIN (LZ) Status. Attila Dobi Lawrence Berkeley National Laboratory June 10, 2015 WIN Heidelberg

Constraints on Low-Mass WIMPs from PICASSO. Carsten B. Krauss University of Alberta for the PICASSO Collaboration IDM Chicago, July

Sensitivity and Backgrounds of the LUX Dark Matter Search

The XENON dark matter search. T. Shutt CWRU

DarkSide-50: performance and results from the first atmospheric argon run

Recent results from the UK Dark Matter Search at Boulby Mine.

arxiv:physics/ v1 3 Aug 2006

COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015

DARWIN: dark matter WIMP search with noble liquids

can be read by PMTs w/o wave length shifter

A survey of recent dark matter direct detection results

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011

arxiv:physics/ v1 [physics.ins-det] 14 Feb 2005

DARWIN. Marc Schumann Physik Institut, Universität Zürich. Aspera Technology Forum 2010, October 21-22, 2010

Measurement of the transverse diffusion coefficient of charge in liquid xenon

Prospects for 0-ν ββ Search with a High-Pressure Xenon Gas TPC. What s NEXT?

DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

THE qualities of liquid xenon (LXe) as an efficient

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination

SuperCDMS: Recent Results for low-mass WIMPS

Studies of Hadron Calorimeter

Coherent Neutrino-Nucleus Scattering Using the DAEdALUS Cyclotron(s) and a CLEAR-like Detector

The Search for Dark Matter with the XENON Experiment

arxiv: v1 [physics.ins-det] 31 Oct 2015 Alden Fan 1

Nuclear Physics and Astrophysics

Radiation (Particle) Detection and Measurement

Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures

The ArDM project: A Liquid Argon TPC for Dark Matter Detection

The XENON1T Experiment

Kiseki Nakamura (Kyoto university)

XMASS 1.5, the next step of the XMASS experiment

Transcription:

SIGN: A Pressurized Noble Gas Approach to WIMP Detection J.T. White Texas A&M University Dark Side of the Universe U. Minnesota, 6/7/2007

Why Gaseous Nobles? Original Motivation: Neon Electron mobility possible S2/S1 discrimination fiducial well defined - TPC Another Advantage: Room Temperature Operation!!! Simpler purification No leveling No Cryo,, etc NEW!! S2/S1 Discrimination observed at WIMP Energy scale!

Multiple Target Motivation WIMP 1 σ 2 0 scalar A A E_recoil

dr de R A 2 Dependence of Recoil Spectra = σ 0 ρ0 2 v min+ ve v min v F ( E ) 2 R erf erf 4vemxmr v0 v0 e

Mass / Halo <v> / # species? Xenon Neon

Pressurized noble gas Test Cell 12.7 mm Sense Wire Field Tube Primary Scintillation S1 8 mm PTFE Sapphire Windows 12.7 mm TPB Prop. Scintillation S2 S1 S2

4-PMT - 100 atm Test Cell Field tube PTFE reflector

Sapphire Windows TPB coating

2.250E-01 R 0.000E+00 0.000E+00 2.750E-01 Z File prefix: tetrav2.eou Plot type: Contour Quantity: Potential (V) Minimum value: 0.000E+00 Maximum value: 4.198E+03 3.498E+02 6.997E+02 1.049E+03 1.399E+03 1.749E+03 2.099E+03 2.449E+03 2.799E+03 3.148E+03 3.498E+03 3.848E+03 4.198E+03 Current view window Field Tuning Adjust field tube potential to optimize E-field uniformity along sense wire

Event Waveform (Ne-Xe (0.5%)) Primary (S1) Secondary (S2)

Calibration Xe gas: 20 atm 122 kev Gamma (+ some 136) 92 kev e- 12.7 mm 30 kev x-ray Range 92 kev e- ~ 2 mm Range 30 kev x-ray ~ 1 cm Range 30 kev e- ~ 0.2 mm 8 mm 12.7 mm

Calibration 122 kev Gamma 92 kev e- 30 kev x-ray unobserved

Calibration 122 kev Gamma unobserved 92 kev e- 30 kev x-ray

Calibration 122 kev Gamma unobserved 92 kev e- 30 kev x-ray Leff ~ 4.5% if Ws=76ev/ph Qgain ~ 1.2 p.e./e- (here)

Neutron Scattering w/ Mono-Energetic Neutrons En En, m θ Θ π Er, M Er Ermax = (4 m M/(m+M) 2 ) En S Wave dn/der CM frame Edge *** Er

4-MeV Proton Accelerator at TAMU Tandem van de Graaff Duoplasmatron Ion source up to ~ 15 ua Monochromatic neutrons up to 2 MeV using 7 (Li(p,n) 7 Be reactions. Achieved >1 ua on target >5E6 n/sr/s

Results Xe @ 20 atm ~ 300 psi

Digression: Two-Phase Xenon Discrimination Gammas Neutrons S2/S1 TAMU Test Cell AmBe Source Centroid Separation ~ x 2 Acceptance box Recoil Energy (KeVr)

Xe 20 atm Nuclear Recoils S2/S1 gammas neutrons Er_max ~ 27 kev

S2 Spectra? Co-57 data

Xe 20 atm NR Q & L yields 27 kev Assuming Wi = 21.7 ev/e- 39 kev Assuming Leff=4.5%

Xe S2/S1 Discrimination 23.7 116 21.6 107 Centroid Separation > X4?

20 atm Xe Electron Recoils Nuclear Recoils Er edge 39 kev Er edge 20 kev

Results ArXe(0.5%) @ 50 atm ~ 750 psi

ArXe(0.5%) 50 atm NR Response ~ 15 events/ton/yr @ 10-45 pb/n Er threshold 40 kevr, Mx=100 GeV Er_max ~ 104 kev

Ar Xe(0.5%) Charge Yield Key! (Penning effect ) 85 kev Average over E ~ 0.6 2.5 kv/cm 120 kev

ArXe Xe(0.5%) Light Yield Key! E ~ 0.6 2.5 kv/cm E ~ 0.6 2.5 kv/cm

Results NeXe(0.5%) @ 100 atm 1600 psi

Event Waveforms (Ne-Xe example) Gamma Event Neutron Event Primary (S1) Secondary (S2) Areas Same i.e. ionization same

Nuclear Recoil Discrimination: S2 vs S1 Drift regions AmBe Higher field Lower field S2/S1 field (and density) dependent for nuclear recoils Gammas unaffected (Emin ~ 600 v/cm here)

Primary Pulse Shape Discrimination

S2/S1 AND Primary Shape Discrimination! Primary Pulse Shape Discrimination Gammas Neutrons

NeXe(0.5%) 100 atm NR Response ~ 1.8 evts/ton/yr @ 10-45 pb/n @ Er >= 40 kev Mx=100 GeV Red = 140 kevr Based on S2 Er_max ~ 140 kev

NeXe(0.5%) Q&L Yield E ~ 0.6 2 kv/cm E ~ 0.6 2 kv/cm

Light 6 kev 55 Fe 6 kev gamma in Ne-Xe(0.5%) Charge

SIGN conceptual design Cylinder WIMP Gas CsI Photocathode Light gain structure using WLS fibers S2 S1 Primary Ionization Prompt Scintillation Photoelectrons

Detector Concept Composite Cylinder

Composite Vessels Carbon, Kevlar wound Some rated > 10000 psi! Used on mass transit (Methane)) Used for Hydrogen fuel cells On jets, spacecraft DOT certified!

Hub Structure one example Field Shaping Electrodes Proportional light gain structure WLS Structure

Electron Drift Flow

Gas Light Multiplier Concept Cirlex plate electron Fluorescence VUV blue or green WLS Structure 100% e- transmission Fluorescence E/P>1 Lit 0.006 p.e./vuv pho.

20 kg 20 atm Xe Prototype 2 m 0.4 m Shielding PMT SS Tube ~0.25 inch wall WLS Fibers CsI

Shielding 4 m water shield ~~4-5 m 10 modules 1 ton

Plans Phased Program 20 kg Xe proto-experiment @ 20 atm SS vessel Water shield Only 300 psi Future Neon @ 200 atm WIMP Mass =???? Halo velocity dispersion =???? Number of species =????