A 3.6 nm Ti52-Oxo Nanocluster with Precise Atomic Structure

Similar documents
1. X-ray crystallography

Supporting Information

An unprecedented 2D 3D metal-organic polyrotaxane. framework constructed from cadmium and flexible star-like

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

Supporting Information

High-Connected Mesoporous Metal Organic Framework

Supporting information

Synthesis of 2 ) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity

Department of Chemistry, Tianjin University, Tianjin , P. R. China Tel:

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Exploring the Surfactant Thermal Synthesis of Crystalline Functional Thioarsenates

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor

Sulfur-bubble template-mediated synthesis of uniform porous g-c 3 N 4 with superior photocatalytic performance

Stabilizing vitamin D 3 by conformationally selective co-crystallization

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light

Electronic Supplementary Information

Supporting Information

A Mixed Crystal Lanthanide Zeolite-like Metal-Organic. Framework as a Fluorescent Indicator for Lysophosphatidic. Acid, a Cancer Biomarker

All materials and reagents were obtained commercially and used without further

Supplementary Information

Supplementary Information

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Supporting Information

Electronic supplementary information (ESI)

SUPPORTING INFORMATION

Supporting Information

Supplementary Information

A water-stable zwitterionic dysprosium carboxylate metal organic. framework: a sensing platform for Ebolavirus RNA sequences

Supporting Information

Synthesis of homochiral zeolitic imidazolate frameworks via solvent-assisted linker exchange for enantioselective sensing and separation

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Supporting information for:

Immobilization of BiOX (X=Cl, Br) on activated carbon fibers as

Benzene Absorption in a Protuberant-Grid-Type Zinc(II) Organic Framework Triggered by the Migration of Guest Water Molecules

Electronic Supplementary Information

Metal-organic frameworks (MOFs) as precursors towards TiO x /C. composites for photodegradation of organic dye

Supplementary Information

Electronic Supplementary Information

Supertetrahedral Cluster Based In-Se Frameworks with Unique Polyselenide Ion as Linker

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

SUPPORTING INFORMATION

Electronic supplementary information

Supporting Information

Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether

Supporting information

College of Materials Science and Engineering, Nanjing Tech University, Nanjing , P. R. China

Supplementary Information

Biomimetic Structure Design and Construction of Cactus-like MoS2/Bi19Cl3S27 Photocatalyst for Efficient Hydrogen Evolution

Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation

Selective total encapsulation of the sulfate anion by neutral nano-jars

Electronic Supplementary Information (ESI) Tunable Phase and Visible-Light Photocatalytic Activity

From Double-Shelled Grids to Supramolecular Frameworks

Redox-Responsive Complexation between a. Pillar[5]arene with Mono ethylene oxide Substituents. and Paraquat

Supporting Information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

A novel Ag 3 AsO 4 visible-light-responsive photocatalyst: facile synthesis and exceptional photocatalytic performance

Manganese-Calcium Clusters Supported by Calixarenes

BiFSeO 3 : An Excellent SHG Material Designed by Aliovalent. Substitution. Supporting Information for

Selective Binding and Removal of Organic Molecules in a Flexible Polymeric Material with Stretchable Metallosalen Chains

An Anionic Metal Organic Framework For Adsorption and. Separation of Light Hydrocarbons

Supplementary Information. Two Cyclotriveratrylene Metal-Organic Frameworks as Effective Catalysts

Supporting Information

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties

Electronic Supplementary Information (ESI) Green synthesis of shape-defined anatase TiO 2 nanocrystals wholly exposed with {001} and {100} facets

Supporting Information

Supporting Information. Modulating the photocatalytic redox preferences between

Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles

Supporting Information

University of Chinese Academy of Sciences, Beijing , China. To whom correspondence should be addressed :

metal-organic compounds

Facile Synthesis and Catalytic Properties of CeO 2 with Tunable Morphologies from Thermal Transformation of Cerium Benzendicarboxylate Complexes

Supporting Information. Ze-Min Zhang, Lu-Yi Pan, Wei-Quan Lin, Ji-Dong Leng, Fu-Sheng Guo, Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong*

The precursor (TBA) 3 [H 3 V 10 O 28 ] was synthesised according to the literature procedure. 1 (TBA = n tetrabutylammonium).

Supporting Information. Photocatalytic Reduction of CO 2 to CO Utilizing a Stable and Efficient Hetero-Homogeneous Hybrid System

Supporting Information. Table of Contents

A kinetically controlled crystallization process for identifying new co-crystal forms: Fast evaporation of solvent from solutions to dryness

Supramolecular Self-Assembly of Morphology-dependent Luminescent Ag Nanoclusters

Selective aerobic oxidation of biomass-derived HMF to 2,5- diformylfuran using a MOF-derived magnetic hollow Fe-Co

Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light

Electronic Supporting Information

photo-mineralization of 2-propanol under visible light irradiation

Electronic Supplementary Information. Fang He, Gang Chen,* Yaoguang Yu, Yansong Zhou, Yi Zheng and Sue Hao*

One-dimensional organization of free radicals via halogen bonding. Supporting information

Impeller-like dodecameric water clusters in metal organic nanotubes

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented

Novel fungus-titanate bio-nano composites as high performance. absorbents for the efficient removal of radioactive ions from.

Shuo Li, Qidong Zhao, Dejun Wang and Tengfeng Xie *

Supporting Information

Pt-Ni alloyed nanocrystals with controlled archtectures for enhanced. methanol oxidation

Electronic Supporting Information for

Halogen bonding of N-bromosuccinimide by grinding

Supporting Information

Transcription:

Supporting Information for: A 3.6 nm Ti52-Oxo Nanocluster with Precise Atomic Structure Wei-Hui Fang, Lei Zhang* and Jian Zhang* State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. Corresponding Author *E-mail: LZhang@fjirsm.ac.cn; zhj@fjirsm.ac.cn Content Materials and Instrumentation.... S2 Figure S1 The EDS spectrum of compound COM-1.... S4 Figure S2 The EDS spectrum of compound COM-2.... S4 Figure S3 The EDS spectrum of compound COM-3.... S4 Figure S4 The IR spectrum of COM-1.... S5 Figure S5 The IR spectrum of COM-2.... S5 Figure S6 The IR spectrum of COM-3.... S5 Figure S7 The TGA curve of COM-1.... S6 Figure S8 The TGA curve of COM-3.... S6 Figure S9 The PXRD of the simulated and experimental patterns of COM-1.... S6 Figure S10 The PXRD of the simulated and experimental patterns of COM-3.... S7 Figure S11 ORTEP of COM-1 (left) and only the metal oxide core (right).... S7 Figure S12 ORTEP of COM-2 (left) and only the metal oxide core (right).... S7 Figure S13 ORTEP of COM-3 (left) and only the metal oxide core (right).... S8 Table S1 Bond valence sum (BVS) analysis [a] for COMs.... S8 Table S2 Selected bond lengths (Å) for COMs.... S11 Figure S14 The packing view of COM-1 along with the [100], [010], and [001] direction... S15 Figure S15 The Ti 17 structural comparison between literature 4 and COM-2 herein.... S15 Figure S16 The packing view of COM-2 along with the [100], [010], and [001] direction.... S15 Figure S17 The packing view of COM-3 along with the [100], [010], and [001] direction.... S16 Figure S18 Comparisons of the reported Ti 34 (top left), Ti 42 (top right) and Ti 52 herein (bottom).... S16 Figure S19 Representation of the assembly of the boat-like Ti 26 moiety in COM-3.... S16 Figure S20 The linear fit of the H 2 generation of COM-1.... S17 Figure S21 The linear fit of the H 2 generation of COM-3.... S17 Figure S22 Recycling water-splitting H 2 evolution tests under UV-visible light illumination on COM-1.... S17 Figure S23 FTIR of recycled COM-1.... S18 Figure S24 FTIR of recycled COM-3.... S18 Figure S25 TEM (left) and High-resolution TEM (right) micrographs of COM-3.... S18 Figure S26 Diffuse reflectance spectra of COM-1 and COM-3..... S18 Figure S27 ESI-MS spectra of the synthetic reactions for COM-1 (black), COM-2 (red) and COM-3 (blue)... S19 Figure S28 ESI-MS spectra of the synthetic reaction for COM-1 (red) and toluene solution of pure crystals of COM-1 (black)..... S19 Figure S29 ESI-MS spectra of the synthetic reaction for COM-3 (red) and toluene solution of pure crystals of COM-3 (black)..... S20 Figure S30 ESI-MS spectrum of toluene solution of pure crystals of COM-3..... S20 Figure S31 Chemical stability tests of COM-1, including the photos and PXRD patterns of samples treated in different conditions..... S20 Figure S32 Chemical stability tests of COM-3, including the photos and PXRD patterns of samples treated in different conditions..... S21 References... S21 S1

Experimental Section Materials and Instrumentation. The energy dispersive spectroscopy (EDS) analyses of single crystals were performed on a JEOL JSM6700F field-emission scanning electron microscope equipped with a Oxford INCA system. Elemental analysis was measured on a Vario MICRO Elemental Analyzer instrument. IR spectra (KBr pellets) were recorded on an ABB Bomem MB102 spectrometer over a range 400-4000 cm -1. The thermogravimetric analyses (TGA) were performed on a Mettler Toledo TGA/SDTA 851e analyzer in air atmosphere with a heating rate of 10 o C/min from 30 o C to 600 o C. Powder X-ray diffraction (PXRD) data were collected on a Rigaku Mini Flex II diffractometer using CuKα radiation (λ = 1.54056 Å) under ambient conditions. The UV diffuse reflection data were recorded at room temperature using a powder sample with BaSO 4 as a standard (100% reflectance) on a PerkinElmer Lamda-950 UV spectrophotometer and scanned at 200-800 nm. The absorption data are calculated from the Kubelka-Munk function, (F(R) = (1-R) 2 /2R), 1 where R representing the reflectance. Transmission electron microscopy (TEM) images and high-resolution transmission electron microscopy (HRTEM) images were obtained on a Tecnai G2 F20 field emission transmission electron microscope at an accelerating voltage of 200 kv. The powder sample was dispersed in ethanol and a drop of the slurry was placed onto a TEM grid. ESI-MS was carried out on Impact II UHR-TOF (Bruker). Chemicals and Materials All reagents were purchased commercially and used without further purification. Tetraisopropoxytitanium and 1,2-benzenedicarboxylic acid were purchased from Adamas-beta, while isopropanol, propionic acid were acquired from Sinopharm Chemical Reagent Beijing. Synthesis of Ti 6(μ 3-O) 4(BDC) 2(PA) 2(OiPr) 10 (COM-1) A mixture of tetraisopropoxytitanium (0.92 ml, 3.0 mmol), 1,2-benzenedicarboxylic acid (0.166 mg, 1.0 mmol), propionic acid (0.50 ml, 0.69 mmol) and isopropanol (10 ml) was sealed in a 20 ml vial and transferred to a preheated oven at 80 o C for 3 days. When cooled to room temperature, colorless crystals of COM-1 were obtained (yield: 70% based on Ti(OiPr) 4). The crystals are rinsed with isopropanol and preserved under a sealed and dry environment. Synthesis of Ti 17(μ 2-O) 2(μ 3-O) 18(μ 4-O) 2(PA) 8(OiPr) 16 (COM-2) A mixture of tetraisopropoxytitanium (0.92 ml, 3.0 mmol), propionic acid (0.50 ml, 0.69 mmol) and isopropanol (10 ml) was sealed in a 20 ml vial and transferred to a preheated oven at 80 o C for 3 days. When cooled to room temperature, colorless crystals of COM-2 were obtained (yield: 7% based on Ti(OiPr) 4). The crystals are rinsed with isopropanol and preserved under a sealed and dry environment. Synthesis of Ti 52(μ 2-OH) 2(μ 2-O) 16(μ 3-O) 48(μ 4-O) 8(PA) 34(OiPr) 28 (COM-3) A mixture of tetraisopropoxytitanium (0.92 ml, 3.0 mmol), propionic acid (0.50 ml, 0.69 mmol) and isopropanol (5 ml) was sealed in a 20 ml vial and transferred to a preheated oven at 80 o C for 4 days. When cooled to room temperature, colorless crystals of COM-3 were obtained (yield: 30% based on Ti(OiPr) 4). The crystals are rinsed with isopropanol and preserved under a sealed and dry environment. S2

General Methods for X-ray Crystallography. Crystallographic data of COM-1 were collected on a Mercury single crystal diffractometer equipped with graphite-monochromatic Mo Kα radiation (λ = 0.71073 Å). While crystallographic data of COM-2 and COM-3 were collected on Supernova single crystal diffractometer equipped with graphite-monochromatic Cu Kα radiation (λ = 1.54178 Å) at room temperature. The structures were solved with direct methods using SHELXS-97 2 and refined with the full-matrix least-squares technique based on F 2 using the SHELXL-97. 3 Non-hydrogen atoms were refined anisotropically, and all hydrogen atoms bond C were generated geometrically. Crystal data for COM-1: C 52H 88O 26Ti 6, M = 1416.44, triclinic, a = 10.649(10) Å, b = 12.774(12) Å, c = 13.552(13) Å, α = 95.684(4) o, β = 101.803(15) o, γ = 100.819(17) o, V = 1754(3) Å 3, T = 293(2) K, space group P-1, Z = 1. 20118 reflections measured, 7953 independent reflections (R int = 0.0481). The final R 1 values were 0.0746 (I > 2σ(I)). The final wr(f 2 ) values were 0.2122 (I > 2σ(I)). The final R 1 values were 0.1174 (all data). The final wr(f 2 ) values was 0.2410 (all data). The goodness of fit on F 2 was 1.094. Crystal data for COM-2: C 72H 152O 54Ti 17, M = 2695.73, triclinic, a = 13.5955(5) Å, b = 17.6692(6) Å, c = 27.3364(6) Å, α = 101.765(2) o, β = 98.045(2) o, γ = 108.369(3) o, V = 5952.1(3) Å 3, T = 293(2) K, space group P-1, Z = 2. 42637 reflections measured, 22468 independent reflections (R int = 0.0589). The final R 1 values were 0.0644 (I > 2σ(I)). The final wr(f 2 ) values were 0.1742 (I > 2σ(I)). The final R 1 values were 0.0892 (all data). The final wr(f 2 ) values was 0.2096 (all data). The goodness of fit on F 2 was 1.008. Crystal data for COM-3: C 186H 368O 170Ti 52, M = 7815.6, triclinic, a = 16.9162(11) Å, b = 19.2495(6) Å, c = 28.6275(13) Å, α = 102.673(3) o, β = 103.063(5) o, γ = 102.052(4) o, V = 8525.8(7) Å 3, T = 293(2) K, space group P-1, Z = 1. 23398 reflections measured, 10260 independent reflections (R int = 0.0672). The final R 1 values were 0.0778 (I > 2σ(I)). The final wr(f 2 ) values were 0.2011 (I > 2σ(I)). The final R 1 values were 0.1039 (all data). The final wr(f 2 ) values was 0.2183 (all data). The goodness of fit on F 2 was 1.25. Photocatalytic H 2 generation Photocatalytic hydrogen production tests were carried out in a pyrex reaction cell connected to a closed gas circulation and evacuation system (Perfect Light Company Labsolar-III (AG)). 20 mg photocatalyst loaded with 33 μl 1.0 wt% H 2PtCl 6 was dispersed into an aqueous methanol solution (100 ml, 10%) in a closed gas circulation system. The suspension was degassed thoroughly and then irradiated by a 300W Xe lamp. The evolved hydrogen was detected by online GC (FULI; TDX-01 column, TCD, Ar Carrier). The composition of these three Ti-oxo clusters were further characterized by the combination of energy-dispersive X-ray spectroscopy (EDS) (Supplementary Figs S1-S3) and IR spectroscopy (Supplementary Figs S4-S6). The thermogravimetric analysis (TGA) confirmed that COM-1 and COM-3 could be stable up to about 200 C (Supplementary Figs S7-S8). COM-1 underwent two stages of weight loss for the presence of the BDC ligands, while COM-3 exhibited overall one-step weight loss. The peak positions of simulated and experimental powder X-ray diffraction (PXRD) patterns were in good agreement with each other, indicating the good purity of the crystalline samples (Supplementary Figs S9 and S10). Their detailed structure information was determined by single-crystal X-ray diffraction analysis (Supplementary Figs S11-S13). The valence states of the titanium ions were confirmed by bond valence sum (BVS) calculations (Table S1). S3

Figure S1 The EDS spectrum of compound COM-1. Figure S2 The EDS spectrum of compound COM-2. Figure S3 The EDS spectrum of compound COM-3. S4

Figure S4 The IR spectrum of COM-1. Figure S5 The IR spectrum of COM-2. Figure S6 The IR spectrum of COM-3. S5

Figure S7 The TGA curve of COM-1. Figure S8 The TGA curve of COM-3. Figure S9 The PXRD of the simulated and experimental patterns of COM-1. S6

Figure S10 The PXRD of the simulated and experimental patterns of COM-3. Figure S11 ORTEP of COM-1 (left) and only the metal oxide core (right). Hydrogen atoms omitted for clarity. Thermal ellipsoids displayed at 30% probability. All of the six titanium atoms are 6-coordinated by oxygen atoms to form distorted octahedral geometries. Four μ 3-O atoms bridge these Ti atoms into a ribbon-like {Ti 6(μ 3-O) 4} structure. The up and down faces of the {Ti 6} cluster in COM-1 are occupied by two BDC ligands in (κ 1 -κ 1 -κ 1 -κ 1 )-μ 4-coordination mode, and the peripheral coordinate environments are fulfilled by a couple of propionic acid molecules and 10 isopropoxy groups. The diameter of this {Ti 6} cluster core is about 0.9 nm (taking off the ionic radius of two Ti 4+ ions). Figure S12 ORTEP of COM-2 (left) and only the metal oxide core (right). Hydrogen atoms omitted for clarity. Thermal ellipsoids displayed at 30% probability. The 17 titanium atoms in COM-2 are linked by 2 μ 2-oxo bridges, 18 μ 3-oxo bridges and 2 μ 4-oxo bridges to form a {Ti 17(μ 2-O) 2(μ 3-O) 18(μ 4-O) 2} cluster, whose structure can be seemed as a {Ti 6}-{Ti 4}-{Ti 6} sandwich decorated by an extra titanium centre. Therefore, the diameter of the cluster core of COM-2 is similar as that of COM-1, whilst the thickness is about three times higher. Of the 17 titanium atoms, 16 are 6-coordinated in distorted octahedral environments and only one is 5-coordinated to give S7

distorted square pyramidal geometry. Such sandwich type structure of COM-2 differs significantly from those formerly reported spherical {Ti 17} clusters composited of a {Ti 12} Keggin-unit plus four 5-coordinated titanium centers (Supplementary Figs S15 and S16). Figure S13 ORTEP of COM-3 (left) and only the metal oxide core (right). Hydrogen atoms omitted for clarity. Thermal ellipsoids displayed at 30% probability. Table S1 Bond valence sum (BVS) analysis [a] for COMs. COM-1 1 4.156 Ti1-O13 1.120 d=1.773(2) Ti1-O1 0.864 d=1.869(3) Ti1-O2 0.638 d=1.981(3) Ti1-O4 0.570 d=2.023(3) Ti1-O6 0.513 d=2.062(3) Ti1-O2 0.451 d=2.110(3) Ti1 4.057 Ti1-O24 0.902 d=1.853(4) Ti1-O11 0.825 d=1.886(3) Ti1-O2 0.817 d=1.890(3) Ti1-O18 0.613 d=1.996(3) Ti1-O4 0.502 d=2.070(3) Ti1-O9 0.398 d=2.156(4) Ti4 4.086 Ti4-O52 1.053 d=1.796(4) Ti4-O12 0.945 d=1.836(3) Ti4-O9 0.848 d=1.876(3) Ti4-O11 0.709 d=1.942(3) Ti2 4.196 Ti2-O9 1.099 d=1.780(3) Ti2-O2 0.902 d=1.853(3) Ti2-O12 0.711 d=1.941(3) Ti2-O1 0.517 d=2.059(3) Ti2-O5 0.483 d=2.084(3) Ti2-O8 0.482 d=2.085(4) COM-2 Ti2 4.178 Ti2-O28 0.960 d=1.830(3) Ti2-O8 0.898 d=1.855(3) Ti2-O2 0.741 d=1.926(3) Ti2-O5 0.723 d=1.935(3) Ti2-O31 0.530 d=2.050(4) Ti2-O13 0.327 d=2.229(4) Ti5 4.120 Ti5-O28 1.030 d=1.804(3) Ti5-O15 0.874 d=1.865(3) Ti5-O20 0.850 d=1.875(3) Ti5-O49 0.556 d=2.032(4) Ti3 4.238 Ti3-O11 1.123 d=1.772(3) Ti3-O10 1.073 d=1.789(4) Ti3-O7 0.573 d=2.021(4) Ti3-O1 0.534 d=2.047(3) Ti3-O3 0.499 d=2.072(4) Ti3-O12 0.435 d=2.123(3) Ti3 4.188 Ti3-O29 1.090 d=1.783(4) Ti3-O16 0.741 d=1.926(3) Ti3-O14 0.658 d=1.970(3) Ti3-O7 0.652 d=1.973(4) Ti3-O11 0.607 d=2.000(3) Ti3-O1 0.440 d=2.119(3) Ti6 4.188 Ti6-O44 1.114 d=1.775(4) Ti6-O13 0.810 d=1.893(3) Ti6-O12 0.689 d=1.953(4) Ti6-O8 0.558 d=2.031(3) S8

Ti4-O7 0.531 d=2.049(3) Ti7 4.140 Ti7-O26 1.108 d=1.777(4) Ti7-O3 0.788 d=1.903(4) Ti7-O7 0.755 d=1.919(3) Ti7-O19 0.572 d=2.022(4) Ti7-O1 0.468 d=2.096(3) Ti7-O12 0.449 d=2.111(4) Ti10 4.066 Ti10-O24 1.064 d=1.792(3) Ti10-O16 0.890 d=1.858(3) Ti10-O20 0.763 d=1.915(3) Ti10-O38 0.533 d=2.048(4) Ti10-O45 0.487 d=2.081(4) Ti10-O39 0.328 d=2.227(4) Ti13 4.222 Ti13-O37 1.182 d=1.753(4) Ti13-O6 0.776 d=1.909(4) Ti13-O9 0.759 d=1.917(3) Ti13-O21 0.640 d=1.980(4) Ti13-O42 0.474 d=2.091(4) Ti13-O4 0.390 d=2.163(3) Ti16 4.220 Ti16-O34 1.093 d=1.782(4) Ti16-O33 1.084 d=1.785(5) Ti16-O18 0.562 d=2.028(4) Ti16-O41 0.520 d=2.057(5) Ti16-O21 0.487 d=2.081(4) Ti16-O4 0.473 d=2.092(3) Ti1 4.167 Ti1-O37 1.053 d=1.796(9) Ti1-O47 0.905 d=1.852(9) Ti1-O8 0.817 d=1.890(10) Ti1-O21 0.780 d=1.907(9) Ti1-O38 0.613 d=1.996(12) Ti4 3.842 Ti4-O25 0.753 d=1.920(9) Ti4-O55 0.590 d=2.010(10) Ti4-O16 0.564 d=2.027(10) Ti4-O24 0.550 d=2.036(10) Ti4-O42 0.536 d=2.046(12) Ti4-O2 0.435 d=2.123(10) Ti4-O10 0.414 d=2.141(9) Ti7 3.898 Ti7-O44 1.139 d=1.767(11) Ti7-O58 0.613 d=1.996(11) Ti5-O36 0.507 d=2.066(4) Ti5-O35 0.302 d=2.258(4) Ti8 4.182 Ti8-O22 1.108 d=1.777(4) Ti8-O5 0.834 d=1.882(3) Ti8-O4 0.660 d=1.969(4) Ti8-O2 0.578 d=2.018(3) Ti8-O43 0.544 d=2.040(4) Ti8-O6 0.458 d=2.104(4) Ti11 4.222 Ti11-O46 1.108 d=1.777(4) Ti11-O35 0.780 d=1.907(4) Ti11-O17 0.763 d=1.915(4) Ti11-O47 0.527 d=2.052(4) Ti11-O15 0.526 d=2.053(3) Ti11-O10 0.519 d=2.058(4) Ti14 4.194 Ti14-O40 1.061 d=1.793(4) Ti14-O13 0.837 d=1.881(3) Ti14-O6 0.823 d=1.887(4) Ti14-O30 0.502 d=2.070(4) Ti14-O5 0.499 d=2.072(4) Ti14-O48 0.472 d=2.093(4) Ti17 4.131 Ti17-O53 1.126 d=1.771(4) Ti17-O35 0.853 d=1.874(4) Ti17-O39 0.837 d=1.881(4) Ti17-O51 0.489 d=2.080(4) Ti17-O54 0.477 d=2.089(4) Ti17-O20 0.350 d=2.203(3) COM-3 Ti2 4.302 Ti2-O29 1.225 d=1.740(10) Ti2-O1 0.860 d=1.871(10) Ti2-O34 0.656 d=1.971(10) Ti2-O37 0.620 d=1.992(10) Ti2-O20 0.570 d=2.023(12) Ti2-O3 0.372 d=2.181(11) Ti5 4.105 Ti5-O26 1.033 d=1.803(11) Ti5-O31 0.920 d=1.846(9) Ti5-O8 0.823 d=1.887(9) Ti5-O21 0.755 d=1.919(9) Ti5-O85 0.575 d=2.020(13) Ti8 4.136 Ti8-O17 1.163 d=1.759(11) Ti8-O6 0.709 d=1.942(10) Ti6-O3 0.528 d=2.051(3) Ti6-O23 0.489 d=2.080(4) Ti9 4.235 Ti9-O15 0.803 d=1.896(3) Ti9-O8 0.780 d=1.907(3) Ti9-O1 0.741 d=1.926(3) Ti9-O10 0.719 d=1.937(3) Ti9-O3 0.625 d=1.989(3) Ti9-O27 0.567 d=2.025(4) Ti12 4.175 Ti12-O50 1.058 d=1.794(4) Ti12-O39 0.788 d=1.903(4) Ti12-O17 0.780 d=1.907(3) Ti12-O16 0.524 d=2.054(3) Ti12-O14 0.523 d=2.055(4) Ti12-O32 0.502 d=2.070(4) Ti15 4.112 Ti15-O25 1.099 d=1.780(4) Ti15-O14 0.733 d=1.930(3) Ti15-O10 0.656 d=1.971(4) Ti15-O17 0.638 d=1.981(4) Ti15-O19 0.513 d=2.062(4) Ti15-O1 0.473 d=2.092(3) Ti3 4.211 Ti3-O28 1.231 d=1.738(10) Ti3-O7 0.715 d=1.939(10) Ti3-O25 0.687 d=1.954(10) Ti3-O47 0.625 d=1.989(10) Ti3-O11 0.540 d=2.043(13) Ti3-O2 0.413 d=2.142(9) Ti6 4.206 Ti6-O13 1.129 d=1.770(10) Ti6-O31 0.721 d=1.936(9) Ti6-O4 0.667 d=1.965(10) Ti6-O25 0.656 d=1.971(10) Ti6-O22 0.568 d=2.024(11) Ti6-O10 0.464 d=2.099(10) Ti9 4.067 Ti9-O16 0.995 d=1.817(9) Ti9-O35 0.735 d=1.929(10) S9

Ti7-O35 0.564 d=2.027(10) Ti7-O53 0.561 d=2.029(10) Ti7-O50 0.513 d=2.062(12) Ti7-O40 0.509 d=2.065(10) Ti10 4.232 Ti10-O54 0.893 d=1.857(10) Ti10-O40 0.843 d=1.878(10) Ti10-O35 0.661 d=1.968(11) Ti10-O83 0.627 d=1.988(11) Ti10-O40 0.611 d=1.997(10) Ti10-O58 0.597 d=2.006(11) Ti13 4.198 Ti13-O75 1.195 d=1.749(10) Ti13-O24 0.819 d=1.889(10) Ti13-O30 0.620 d=1.992(12) Ti13-O47 0.610 d=1.998(9) Ti13-O71 0.499 d=2.072(11) Ti13-O2 0.455 d=2.106(10) Ti16 4.323 Ti16-O56 1.053 d=1.796(12) Ti16-O12 0.803 d=1.896(10) Ti16-O15 0.725 d=1.934(11) Ti16-O3 0.704 d=1.945(10) Ti16-O23 0.578 d=2.018(13) Ti16-O1 0.460 d=2.102(11) Ti19 4.079 Ti19-O5 1.117 d=1.774(12) Ti19-O1 0.771 d=1.911(10) Ti19-O18 0.767 d=1.913(12) Ti19-O45 0.553 d=2.034(13) Ti19-O27 0.493 d=2.077(12) Ti19-O12 0.377 d=2.176(12) Ti22 4.351 Ti22-O15 0.912 d=1.849(11) Ti22-O14 0.843 d=1.878(10) Ti22-O9 0.711 d=1.941(10) Ti22-O67 0.702 d=1.946(14) Ti22-O6 0.603 d=2.002(10) Ti22-O70 0.579 d=2.017(13) Ti25 4.203 Ti25-O84 1.079 d=1.787(11) Ti25-O13 0.867 d=1.868(11) Ti25-O28 0.788 d=1.903(10) Ti25-O59 0.552 d=2.035(10) Ti25-O49 0.478 d=2.088(14) Ti25-O41 0.440 d=2.119(12) Ti8-O26 0.656 d=1.971(10) Ti8-O34 0.647 d=1.976(9) Ti8-O63 0.550 d=2.036(14) Ti8-O9 0.410 d=2.145(10) Ti11 3.935 Ti11-O34 0.797 d=1.899(9) Ti11-O48 0.640 d=1.980(10) Ti11-O81 0.625 d=1.989(10) Ti11-O32 0.550 d=2.036(14) Ti11-O15 0.536 d=2.046(10) Ti11-O9 0.447 d=2.113(10) Ti11-O3 0.340 d=2.214(11) Ti14 4.283 Ti14-O46 1.105 d=1.778(12) Ti14-O44 0.790 d=1.902(10) Ti14-O10 0.713 d=1.940(10) Ti14-O4 0.576 d=2.019(10) Ti14-O16 0.555 d=2.033(9) Ti14-O19 0.543 d=2.041(14) Ti17 4.247 Ti17-O59 1.033 d=1.803(10) Ti17-O4 0.821 d=1.888(11) Ti17-O53 0.814 d=1.891(10) Ti17-O80 0.654 d=1.972(11) Ti17-O82 0.528 d=2.051(11) Ti17-O78 0.396 d=2.158(15) Ti20 4.494 Ti20-O36 1.087 d=1.784(12) Ti20-O55 0.922 d=1.845(10) Ti20-O81 0.767 d=1.913(10) Ti20-O24 0.727 d=1.933(10) Ti20-O48 0.663 d=1.967(9) Ti20-O8 0.328 d=2.228(9) Ti23 3.986 Ti23-O68 1.039 d=1.801(15) Ti23-O77 0.902 d=1.853(10) Ti23-O55 0.694 d=1.950(10) Ti23-O65 0.509 d=2.065(12) Ti23-O10 0.451 d=2.110(10) Ti23-O31 0.391 d=2.162(9) Ti26 4.247 Ti26-O39 1.248 d=1.733(15) Ti26-O12 0.850 d=1.875(11) Ti26-O14 0.806 d=1.895(11) Ti26-O79 0.491 d=2.078(14) Ti26-O43 0.470 d=2.094(14) Ti26-O18 0.381 d=2.172(12) Ti9-O2 0.681 d=1.957(10) Ti9-O7 0.632 d=1.985(9) Ti9-O72 0.527 d=2.052(12) Ti9-O69 0.498 d=2.073(11) Ti12 4.373 Ti12-O54 1.221 d=1.741(10) Ti12-O53 0.774 d=1.910(10) Ti12-O7 0.739 d=1.927(10) Ti12-O57 0.607 d=2.000(12) Ti12-O62 0.540 d=2.043(14) Ti12-O59 0.493 d=2.077(11) Ti15 4.346 Ti15-O66 1.202 d=1.747(12) Ti15-O48 0.797 d=1.899(10) Ti15-O75 0.784 d=1.905(10) Ti15-O3 0.579 d=2.017(10) Ti15-O74 0.514 d=2.061(12) Ti15-O37 0.469 d=2.095(10) Ti18 4.539 Ti18-O61 1.251 d=1.732(14) Ti18-O77 1.084 d=1.785(10) Ti18-O81 0.733 d=1.930(10) Ti18-O76 0.600 d=2.004(15) Ti18-O26 0.444 d=2.115(10) Ti18-O9 0.426 d=2.131(10) Ti21 4.161 Ti21-O60 1.076 d=1.788(12) Ti21-O17 0.817 d=1.890(11) Ti21-O29 0.776 d=1.909(10) Ti21-O64 0.526 d=2.053(14) Ti21-O52 0.498 d=2.073(13) Ti21-O21 0.469 d=2.095(9) Ti24 4.533 Ti24-O33 1.300 d=1.718(13) Ti24-O18 0.922 d=1.845(12) Ti24-O6 0.825 d=1.886(10) Ti24-O73 0.592 d=2.009(13) Ti24-O51 0.526 d=2.053(15) Ti24-O14 0.368 d=2.185(11) [a] Vi =ΣSij = Σexp[(r1-rij)/B], where r0 is the length of a single bond (here r1=1.815 for Ti iv -O), r1 is the bond length between atoms i and j; B is a constant, the universal parameter ~0.37 Å; Sij is the valence of a bond between atoms i and j; Vi is the sum of all bond valences of the bonds formed by a given atom i. S10

Table S2 Selected bond lengths (Å) for COMs. COM-1 Ti(1)-O(1) 1.869(3) Ti(2)-O(5) 2.084(3) Ti(1)-O(13) 1.773(2) Ti(2)-O(8) 2.085(4) Ti(1)-O(2) 2.110(3) Ti(2)-O(9) 1.780(3) Ti(1)-O(2)#1 1.981(3) Ti(3)-O(1) 2.047(3) Ti(1)-O(4)#1 2.023(3) Ti(3)-O(10) 1.789(4) Ti(1)-O(6) 2.062(3) Ti(3)-O(11) 1.772(3) Ti(2)-O(1) 2.059(3) Ti(3)-O(12) 2.123(3) Ti(2)-O(12) 1.941(3) Ti(3)-O(3)#1 2.072(4) Ti(2)-O(2) 1.853(3) Ti(3)-O(7) 2.021(4) Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z. COM-2 Ti(1)-O(24) 1.853(4) Ti(9)-O(3) 1.989(3) Ti(1)-O(11) 1.886(3) Ti(9)-O(8) 1.907(3) Ti(1)-O(18) 1.996(3) Ti(10)-O(16) 1.858(3) Ti(1)-O(2) 1.890(3) Ti(10)-O(20) 1.915(3) Ti(1)-O(4) 2.070(3) Ti(10)-O(24) 1.792(3) Ti(1)-O(9) 2.156(4) Ti(10)-O(38) 2.048(4) Ti(2)-O(13) 2.229(4) Ti(10)-O(39) 2.227(4) Ti(2)-O(2) 1.926(3) Ti(10)-O(45) 2.081(4) Ti(2)-O(28) 1.830(3) Ti(11)-O(10) 2.058(4) Ti(2)-O(31) 2.050(4) Ti(11)-O(15) 2.053(3) Ti(2)-O(5) 1.935(3) Ti(11)-O(17) 1.915(4) Ti(2)-O(8) 1.855(3) Ti(11)-O(35) 1.907(4) Ti(3)-O(1) 2.119(3) Ti(11)-O(46) 1.777(4) Ti(3)-O(11) 2.000(3) Ti(11)-O(47) 2.052(4) Ti(3)-O(14) 1.970(3) Ti(12)-O(14) 2.055(4) Ti(3)-O(16) 1.926(3) Ti(12)-O(16) 2.054(3) Ti(3)-O(29) 1.783(4) Ti(12)-O(17) 1.907(3) Ti(3)-O(7) 1.973(4) Ti(12)-O(32) 2.070(4) Ti(4)-O(11) 1.942(3) Ti(12)-O(39) 1.903(4) Ti(4)-O(12) 1.836(3) Ti(12)-O(50) 1.794(4) Ti(4)-O(52) 1.796(4) Ti(13)-O(21) 1.980(4) Ti(4)-O(7) 2.049(3) Ti(13)-O(37) 1.753(4) Ti(4)-O(9) 1.876(3) Ti(13)-O(4) 2.163(3) Ti(5)-O(15) 1.865(3) Ti(13)-O(42) 2.091(4) Ti(5)-O(20) 1.875(3) Ti(13)-O(6) 1.909(4) S11

Ti(5)-O(28) 1.804(3) Ti(13)-O(9) 1.917(3) Ti(5)-O(35) 2.258(4) Ti(14)-O(13) 1.881(3) Ti(5)-O(36) 2.066(4) Ti(14)-O(30) 2.070(4) Ti(5)-O(49) 2.032(4) Ti(14)-O(40) 1.793(4) Ti(6)-O(12) 1.953(4) Ti(14)-O(48) 2.093(4) Ti(6)-O(13) 1.893(3) Ti(14)-O(5) 2.072(4) Ti(6)-O(23) 2.080(4) Ti(14)-O(6) 1.887(4) Ti(6)-O(3) 2.051(3) Ti(15)-O(1) 2.092(3) Ti(6)-O(44) 1.775(4) Ti(15)-O(10) 1.971(4) Ti(6)-O(8) 2.031(3) Ti(15)-O(14) 1.930(3) Ti(7)-O(1) 2.096(3) Ti(15)-O(17) 1.981(4) Ti(7)-O(12) 2.111(4) Ti(15)-O(19) 2.062(4) Ti(7)-O(19) 2.022(4) Ti(15)-O(25) 1.780(4) Ti(7)-O(26) 1.777(4) Ti(16)-O(18) 2.028(4) Ti(7)-O(3) 1.903(4) Ti(16)-O(21) 2.081(4) Ti(7)-O(7) 1.919(3) Ti(16)-O(33) 1.785(5) Ti(8)-O(2) 2.018(3) Ti(16)-O(34) 1.782(4) Ti(8)-O(22) 1.777(4) Ti(16)-O(4) 2.092(3) Ti(8)-O(4) 1.969(4) Ti(16)-O(41) 2.057(5) Ti(8)-O(43) 2.040(4) Ti(17)-O(20) 2.203(3) Ti(8)-O(5) 1.882(3) Ti(17)-O(35) 1.874(4) Ti(8)-O(6) 2.104(4) Ti(17)-O(39) 1.881(4) Ti(9)-O(1) 1.926(3) Ti(17)-O(51) 2.080(4) Ti(9)-O(10) 1.937(3) Ti(17)-O(53) 1.771(4) Ti(9)-O(15) 1.896(3) Ti(17)-O(54) 2.089(4) Ti(9)-O(27) 2.025(4) COM-3 Ti(1)-O(21) 1.907(9) Ti(14)-O(10) 1.940(10) Ti(1)-O(37) 1.796(9) Ti(14)-O(16) 2.033(9) Ti(1)-O(38) 1.996(12) Ti(14)-O(19) 2.041(14) Ti(1)-O(47) 1.852(9) Ti(14)-O(4) 2.019(10) Ti(1)-O(8) 1.890(10) Ti(14)-O(44) 1.902(10) Ti(2)-O(1) 1.871(10) Ti(14)-O(46) 1.778(12) Ti(2)-O(20) 2.023(12) Ti(15)-O(3) 2.017(10) Ti(2)-O(29) 1.740(10) Ti(15)-O(37) 2.095(10) Ti(2)-O(3) 2.181(11) Ti(15)-O(48) 1.899(10) Ti(2)-O(34) 1.971(10) Ti(15)-O(66) 1.747(12) Ti(2)-O(37) 1.992(10) Ti(15)-O(74) 2.061(12) S12

Ti(3)-O(11) 2.043(13) Ti(15)-O(75) 1.905(10) Ti(3)-O(2) 2.142(9) Ti(16)-O(1) 2.102(11) Ti(3)-O(25) 1.954(10) Ti(16)-O(12) 1.896(10) Ti(3)-O(28) 1.738(10) Ti(16)-O(15) 1.934(11) Ti(3)-O(47) 1.989(10) Ti(16)-O(23) 2.018(13) Ti(3)-O(7) 1.939(10) Ti(16)-O(3) 1.945(10) Ti(4)-O(10) 2.141(9) Ti(16)-O(56) 1.796(12) Ti(4)-O(16) 2.027(10) Ti(17)-O(4) 1.888(11) Ti(4)-O(2) 2.123(10) Ti(17)-O(53) 1.891(10) Ti(4)-O(24) 2.036(10) Ti(17)-O(59) 1.803(10) Ti(4)-O(25) 1.920(9) Ti(17)-O(78) 2.158(15) Ti(4)-O(42) 2.046(12) Ti(17)-O(80) 1.972(11) Ti(4)-O(55) 2.010(10) Ti(17)-O(82) 2.051(11) Ti(5)-O(21) 1.919(9) Ti(18)-O(26) 2.115(10) Ti(5)-O(26) 1.803(11) Ti(18)-O(61) 1.732(14) Ti(5)-O(31) 1.846(9) Ti(18)-O(76) 2.004(15) Ti(5)-O(8) 1.887(9) Ti(18)-O(77) 1.785(10) Ti(5)-O(85) 2.020(13) Ti(18)-O(81) 1.930(10) Ti(6)-O(10) 2.099(10) Ti(18)-O(9) 2.131(10) Ti(6)-O(13) 1.770(10) Ti(19)-O(1) 1.911(10) Ti(6)-O(22) 2.024(11) Ti(19)-O(12) 2.176(12) Ti(6)-O(25) 1.971(10) Ti(19)-O(18) 1.913(12) Ti(6)-O(31) 1.936(9) Ti(19)-O(27) 2.077(12) Ti(6)-O(4) 1.965(10) Ti(19)-O(45) 2.034(13) Ti(7)-O(35) 2.027(10) Ti(19)-O(5) 1.774(12) Ti(7)-O(40) 2.065(10) Ti(20)-O(24) 1.933(10) Ti(7)-O(44) 1.767(11) Ti(20)-O(36) 1.784(12) Ti(7)-O(50) 2.062(12) Ti(20)-O(48) 1.967(9) Ti(7)-O(53) 2.029(10) Ti(20)-O(55) 1.845(10) Ti(7)-O(58)#1 1.996(11) Ti(20)-O(8) 2.228(9) Ti(8)-O(17) 1.759(11) Ti(20)-O(81) 1.913(10) Ti(8)-O(26) 1.971(10) Ti(21)-O(17) 1.890(11) Ti(8)-O(34) 1.976(9) Ti(21)-O(21) 2.095(9) Ti(8)-O(6) 1.942(10) Ti(21)-O(29) 1.909(10) Ti(8)-O(63) 2.036(14) Ti(21)-O(52) 2.073(13) Ti(8)-O(9) 2.145(10) Ti(21)-O(60) 1.788(12) Ti(9)-O(16) 1.817(9) Ti(21)-O(64) 2.053(14) Ti(9)-O(2) 1.957(10) Ti(22)-O(14) 1.878(10) Ti(9)-O(35) 1.929(10) Ti(22)-O(15) 1.849(11) S13

Ti(9)-O(69) 2.073(11) Ti(22)-O(6) 2.002(10) Ti(9)-O(7) 1.985(9) Ti(22)-O(67) 1.946(14) Ti(9)-O(72) 2.052(12) Ti(22)-O(70) 2.017(13) Ti(10)-O(35) 1.968(11) Ti(22)-O(9) 1.941(10) Ti(10)-O(40) 1.878(10) Ti(23)-O(10) 2.110(10) Ti(10)-O(40)#1 1.997(10) Ti(23)-O(31) 2.162(9) Ti(10)-O(54) 1.857(10) Ti(23)-O(55) 1.950(10) Ti(10)-O(58) 2.006(11) Ti(23)-O(65) 2.065(12) Ti(10)-O(83) 1.988(11) Ti(23)-O(68) 1.801(15) Ti(11)-O(15) 2.046(10) Ti(23)-O(77) 1.853(10) Ti(11)-O(3) 2.214(11) Ti(24)-O(14) 2.185(11) Ti(11)-O(32) 2.036(14) Ti(24)-O(18) 1.845(12) Ti(11)-O(34) 1.899(9) Ti(24)-O(33) 1.718(13) Ti(11)-O(48) 1.980(10) Ti(24)-O(51) 2.053(15) Ti(11)-O(81) 1.989(10) Ti(24)-O(6) 1.886(10) Ti(11)-O(9) 2.113(10) Ti(24)-O(73) 2.009(13) Ti(12)-O(53) 1.910(10) Ti(25)-O(13) 1.868(11) Ti(12)-O(54) 1.741(10) Ti(25)-O(28) 1.903(10) Ti(12)-O(57) 2.000(12) Ti(25)-O(41) 2.119(12) Ti(12)-O(59) 2.077(11) Ti(25)-O(49) 2.088(14) Ti(12)-O(62) 2.043(14) Ti(25)-O(59) 2.035(10) Ti(12)-O(7) 1.927(10) Ti(25)-O(84) 1.787(11) Ti(13)-O(2) 2.106(10) Ti(26)-O(12) 1.875(11) Ti(13)-O(24) 1.889(10) Ti(26)-O(14) 1.895(11) Ti(13)-O(30) 1.992(12) Ti(26)-O(18) 2.172(12) Ti(13)-O(47) 1.998(9) Ti(26)-O(39) 1.733(15) Ti(13)-O(71) 2.072(11) Ti(26)-O(43) 2.094(14) Ti(13)-O(75) 1.749(10) Ti(26)-O(79) 2.078(14) Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1. S14

Figure S14 The packing view of COM-1 along with the [100], [010], and [001] direction. The shortest inter-cluster separation (Ti Ti distance) is 8.83 Å. Figure S15 The Ti 17 structural comparison between literature 4 and COM-2 herein. Figure S16 The packing view of COM-2 along with the [100], [010], and [001] direction. The shortest inter-cluster separation (Ti Ti distance) is 8.38 Å. S15

Figure S17 The packing view of COM-3 along with the [100], [010], and [001] direction. The shortest inter-cluster separation (Ti Ti distance) is 7.49 Å. Figure S18 Comparisons of the reported Ti34 (top left), Ti42 (top right) and Ti52 herein (bottom). Figure S19 Representation of the assembly of the boat-like Ti26 moiety in COM-3. Color code: green Ti; pink μ-o; red μ3-o; yellow μ4-o. The {Ti@Ti5} subunits are emphasized in blue. S16

Figure S20 The linear fit of the H 2 generation of COM-1. Figure S21 The linear fit of the H 2 generation of COM-3. Figure S22 Recycling water-splitting H 2 evolution tests under UV-visible light illumination on COM-1. S17

Figure S23 FTIR of recycled COM-1. Figure S24 FTIR of recycled COM-3. Figure S25 TEM (left) and High-resolution TEM (right) micrographs of COM-3. The crystalline spots represent similar sizes as the Ti 52 cluster in COM-3. S18

Figure S26 Diffuse reflectance spectra of COM-1 and COM-3. Insert displays the photos of COM-1 and COM-3 crystals. Figure S27 ESI-MS spectra of the synthetic reactions for COM-1 (black), COM-2 (red) and COM-3 (blue). Samples were diluted by methanol and immediately injected into the MS instrument. Figure S28 ESI-MS spectra of the synthetic reaction for COM-1 (red) and toluene solution of pure crystals of COM-1 (black). Samples were diluted by methanol and immediately injected into the MS instrument. S19

Figure S29 ESI-MS spectra of the synthetic reaction for COM-3 (red) and toluene solution of pure crystals of COM-3 (black). Samples were diluted by methanol and immediately injected into the MS instrument. Figure S30 ESI-MS spectrum of toluene solution of pure crystals of COM-3. Samples were diluted by methanol and immediately injected into the MS instrument. Figure S31 Chemical stability tests of COM-1, including the photos and PXRD patterns of samples treated in different conditions. Simulated PXRD pattern of COM-1 has also been illustrated for comparison. S20

Figure S32 Chemical stability tests of COM-3, including the photos and PXRD patterns of samples treated in different conditions. Simulated PXRD pattern of COM-3 has also been illustrated for comparison. References (1) W. W. Wendlandt; H. G. Hecht Reflectance Spectroscopy; Interscience: New York, 1966. (2) Sheldrick, G. M. SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, Germany, 1997). (3) Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, Germany, 1997).. (4) Steunou, N.; Kickelbick, G.; Boubekeur, K.; Sanchez, C. J. Chem. Soc., Dalton Trans. 1999, 3653. S21