Effect of Uniform Horizontal Magnetic Field on Thermal Convection in a Rotating Fluid Saturating a Porous Medium

Similar documents
Effect of Uniform Horizontal Magnetic Field on Thermal Instability in A Rotating Micropolar Fluid Saturating A Porous Medium

Magnetized Dust Fluid Tilted Universe for Perfect. Fluid Distribution in General Relativity

Effects of polarization on the reflected wave

Tilted Plane Symmetric Magnetized Cosmological Models

INTRODUCTION TO COMPLEX NUMBERS

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

Name: SID: Discussion Session:

International Journal of Pure and Applied Sciences and Technology

The Study of Lawson Criterion in Fusion Systems for the

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Quiz: Experimental Physics Lab-I

PHYS 2421 Fields and Waves

Analysis of third-grade heat absorption hydromagnetic exothermic chemical reactive flow in a Darcy-forchheimer porous medium with convective cooling

6. Chemical Potential and the Grand Partition Function

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

Lecture 36. Finite Element Methods

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO-ELASTIC COMPOSITE MEDIA

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Least squares. Václav Hlaváč. Czech Technical University in Prague

3. Quasi-Stationary Electrodynamics

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Many-Body Calculations of the Isotope Shift

Haddow s Experiment:

Entrance and Wall Conduction Effects in Parallel Flow Heat Exchangers

A Family of Multivariate Abel Series Distributions. of Order k

DYNAMIC PROPAGATION OF A WEAK-DISCONTINUOUS INTERFACE CRACK IN FUNCTIONALLY GRADED LAYERS UNDER ANTI-PLANE SHEAR

4. Eccentric axial loading, cross-section core

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBERS INDEX

Activator-Inhibitor Model of a Dynamical System: Application to an Oscillating Chemical Reaction System

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

6 Roots of Equations: Open Methods

Lecture 4: Piecewise Cubic Interpolation

Sequences of Intuitionistic Fuzzy Soft G-Modules

Torsion, Thermal Effects and Indeterminacy

Work and Energy (Work Done by a Varying Force)

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping

NUMERICAL MODELLING OF A CILIUM USING AN INTEGRAL EQUATION

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

Remember: Project Proposals are due April 11.

Frequency-dependent seismic reflection coefficient for discriminating gas reservoirs

Linear Regression & Least Squares!

Modeling Labor Supply through Duality and the Slutsky Equation

Learning Enhancement Team

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Strong Gravity and the BKL Conjecture

Katholieke Universiteit Leuven Department of Computer Science

Inelastic electron tunneling through a vibrational modulated barrier in STM

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

Applied Statistics Qualifier Examination

Solution of Tutorial 5 Drive dynamics & control

Ruban s Cosmological Modelwith Bulk Stress In General Theory of Relativity

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Chemical Reaction Engineering

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Two Coefficients of the Dyson Product

Electrical double layer: revisit based on boundary conditions

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

Solubilities and Thermodynamic Properties of SO 2 in Ionic

13 Design of Revetments, Seawalls and Bulkheads Forces & Earth Pressures

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Effect of Wind Speed on Reaction Coefficient of Different Building Height. Chunli Ren1, a, Yun Liu2,b

? plate in A G in

CHAPTER 20: Second Law of Thermodynamics

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

The Schur-Cohn Algorithm

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Mixed Convection of the Stagnation-point Flow Towards a Stretching Vertical Permeable Sheet

CENTROID (AĞIRLIK MERKEZİ )

Homework Assignment 6 Solution Set

2.12 Pull Back, Push Forward and Lie Time Derivatives

Electrochemical Thermodynamics. Interfaces and Energy Conversion

EN2210: Continuum Mechanics. Homework 4: Balance laws, work and energy, virtual work Due 12:00 noon Friday February 4th

ψ ij has the eigenvalue

BULK VISCOUS BIANCHI TYPE IX STRING DUST COSMOLOGICAL MODEL WITH TIME DEPENDENT TERM SWATI PARIKH Department of Mathematics and Statistics,

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example.

A Brief Note on Quasi Static Thermal Stresses In A Thin Rectangular Plate With Internal Heat Generation

Chemical Reaction Engineering

CHAPTER 31. Answer to Checkpoint Questions

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

Investigation phase in case of Bragg coupling

Humidity Distributions in Multilayered Walls of High-rise Buildings

The areolar strain concept applied to elasticity

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Three-dimensional eddy current analysis by the boundary element method using vector potential

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

Mathematics. Area under Curve.

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

Transcription:

Journl of Computer nd Mthemtcl Scences, Vol.8, 576-588 Novemer 07 An Interntonl Reserch Journl, www.compmth-journl.org 576 ISSN 0976-577 rnt ISSN 9-8 Onlne Effect of Unform Horzontl Mgnetc Feld on Therml Convecton n Rottng Flud Sturtng orous Medum Rovn Kumr nd Vjy Meht Deprtment of Mthemtcs nd Sttstcs, J Nrn Vys Unversty, Jodhpur 00 Rj. INDIA. eml: rovnprdhn86@gml.com; vjymehtnrs@gml.com Receved on: Novemer, Accepted: Novemer, 07 ABSTRACT In ths pper we study therml convecton n rottng flud sturtng porous medum n unform horzontl mgnetc feld nd otned dsperson relton. Usng norml mode nlyss, from ths dsperson relton we oserved tht the medum permelty k hs stlzng effect, n the sence of rotton the medum permelty hs destlzng effect. In the sence of mgnetc feld, the medum permelty hs stlzng effect, the rotton hs stlzng effect, whtever the mgnetc feld s ppled nd mgnetc feld hs stlzng effect nd necessry condton for osclltory mode s otned wth the condton E r m Er nd o k. Keywords: Therml convecton, orous medum, Mgnetc feld, Rotton.. INTRODUCTION The prolem of convecton n horzontl lyer of flud heted from elow referred to s therml nstlty prolem, under vryng ssumptons of hydrodynmcs nd hydromgnetcs, hs een dscussed n detl y Chndrsekhr 96. The effect of Hll currents on the therml nstlty of horzontl lyer of conductng flud hs een studed y Gupt 967. Lpwood 98 hs nvestgted the stlty of convectve flow n hydrodynmcs n porous medum usng Rylegh's procedure. Sstry nd Ro 98 notced tht when the flud, s heted from elow, the rotton of the system delys the onset of stlty.

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 Recently, Shrm et l. 006 hve nlyzed the effect of mgnetc feld nd rotton on the stlty of strtfed elstco-vscous flud n porous medum. The effect of Hll currents on the therml nstlty of electrclly conductng flud n the presence of unform vertcl mgnetc feld hs een studed y Gupt 967. Shrm nd Kumr 997 hve studed thermosolutl convecton n Rvln Erckson flud n hydromgnetcs sturtng porous medum. Bht nd Stener 97 hve studed the prolem of therml nstlty of Mxwelln vsco-elstc flud n the presence of rotton nd found tht rotton hs destlzng nfluence n contrst to the stlzng effect on vscous Newtonn flud. Just s n hydrodynmcs, when conductng flud permetes porous mterl n the presence of mgnetc feld the ctul pth of n ndvdul prtcle of flud cn not e followed nlytclly. The gross effect, s the flud slowly percoltes through the pores of the rock, must e represented y mcroscopc lw pplyng to msses of flud whch s the usul Drcy's lw. The usul vscous term n the equtons of flud moton wll e replced y the resstnce term q, where, s the vscosty of the flud, k the permelty of the k medum whch hs the dmenson of length squred, nd q the velocty of the flud, clculted from Drcy's lw. In ll the ove studes, the Boussnesq pproxmton hs een used whch mens tht densty vrtons re dsregrded n ll the terms n the equtons of moton except the one n the externl force. The equtons governng the system ecome qute complcted when the fluds re compressle. To smplfy them, Boussnesq tred to justfy the pproxmton for compressle fluds when the densty vrtons rse prncplly from therml effects. For sttonry convecton the medum permelty hs stlzng effect under the condton mkx ok nd the mgnetc feld hs stlzng effect under or the condton o k In the present pper, I studed the effect of unform horzontl mgnetc feld on therml convecton n rottng flud sturtng porous medum. To the est of my knowledge f t unnvestgted so fr.. MATHEMATICAL FORMULATION In ths prolem, we consder n nfnte, horzontl, electrclly non-conductng ncompressle flud lyer of thckness d. Ths lyer s heted from elow such tht the lower oundry s held t constnt temperture T T o nd the upper oundry s held t fxed dt temperture T T so tht T0 T, therefore unform temperture grdent s dz 577

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 mntned. The physcl structure of the prolem s one of nfnte extent n x nd y drectons ounded y the plnes z 0 nd z d. The flud lyer s ssumed to e flowng through n sotropc nd homogenous porous medum of porcty nd the medum permelty k, whch s cted upon unform rotton 0, 0, o nd grvty feld g 0, 0, g. A unform mgnetc feld H H o, 0, 0 s ppled long x-xs. The mgnetc Rynold numer s ssumed to very smll so tht the nduced mgnetc feld cn e neglected n comprson to the ppled feld. We lso ssumed tht oth the oundres re free nd no externl couples nd the het sources re present. Fg. Geometry of the rolem The equton governng the moton of rottng fluds sturtng porous medum. Followng Boussnesq pproxmton re s follow: The equton of contnuty for ncompressle flud s q 0 The equton of momentum, followng Drcy lw s gven y o q q. q t ˆ o g e q q e z H H k The equton of energy s gven y T C C C q. T o v s s o v T T t nd the equton of stte s o[ T To] 578

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 Where q, p,, o, s,, e, k, T, t, T, To, Cv, Cs nd êz denote respectvely flter velocty, pressure, flud densty, reference densty, densty of sold mtrx, flud vscosty, mgnetc permelty, medum permelty, temperture, tme, therml conductvty, reference temperture, specfc het t constnt volume, specfc het of sold mtrx nd unt vector long z-drecton. The Mxwell s equton ecome H q H m H 5 t nd H 0 6 where m s the mgnetc vscosty.. BASIC STATE OF THE ROBLEM The sc stte of the prolem s tken s q q 0, 0, 0, 0, 0, o, z, z nd H H Ho, 0, 0 usng ths sc stte, equton to 6 yeld dp g 0 dz 7 T z T o 8 o z 9. ERTURBATION EQUATIONS Let q u, v, w, ', ', nd h h x, h y, h z represent the erturton n q,,, T nd H respectvely usng ove perturtons, the new vrles re q q q ', ', T T, H H h Usng these new vrle nd usng 7, 8 nd 9 equton -6 fter lnerzton yeld. q ' 0 0 o q ' ' ' o g q q ' e h H t k C C C q '. T o v o s s v p T dt 579

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 ' o h H. q ' m h t. h 0 5 Mkng the equton 0- nto non-dmensonl lnerlzed form y usng the followng non-dmensonl vrle nd droppng the strs. We hve * * * k,,, ' T x x d y y d z z d q q *, t o d t *, d * k, ' T * d d *, h H h *, o where k T T s the therml dffusvty, we otn o d o C v. q 0 6 q ˆ o Rez q [ q eˆ z ] h eˆ x t K 7 E r W t 8 h q r r h t x m 9 nd. h 0 0 g d Where R o H d s the Rylegh numer, Q e o s the Chndrsekhr numer k T k T K K, r C d k the rndtl numer, s s E, m s the mgnetc T ocv om rndtl numer nd eˆ x, eˆ y, eˆ z re the unt vector long x, y nd z-drecton respectvely nd W q. eˆ z s the z-component. 5. BOUNDARY CONDITIONS Here, we consder the cse when oth oundres re free s well s eng perfect conductor of het, whle the djonng medum s perfectly conductng, then we hve W W 0 t z 0 t z z 580

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 6. DISERSION RELATIONS Applyng curl twce, to equton 7 nd tkng z-component, we hve o W R W D z Q hz t K z Where, x y z x y z q z s the z-component of vortcty vector hz h. eˆz, W q. eˆz, D z Apply curl once to equton 7 nd tkng z-component, we hve, z o m DW Q z z t K x Where mz h z s the z-component of current densty Applyng curl once to equton 9 nd tkng z-component, we hve m or z r r mz t x m Tkng z-component of the equton 9, we get hz W r r hz t x m 5 7. NORMAL MODE ANALYSIS The norml mode nlyss cn e defned s follows: [ W, z,, mz, hz ] [ W z, X z, z, M z, B z]exp.[ kx ky t] Where s the stlty prmeter whch s n generl complex constnt nd k k x y s the wve numer. Anlyzng ove norml mode, we hve D W R o DX k Q D x B k 6 r r D M kx X m 7 r D r B kxw m 8 58

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 X 0 DW kxqm 9 K [ E r D ] W 0 The oundry condton how ecomes W D W 0 DX M, 0, DB 0 t z 0 nd Also DM 0, B 0 on perfectly conductng oundry lso D 0, D M 0, D B 0, D X 0 nd z 0 nd z Elmntng X,, M nd B etween 6 to 0 we hve from 9 nd 7 we get r X k D o x r DW K m W [ E D ] r From 6, 8,, we get D W R E D r W K 0 D r k D o D x r W K m k Q D r D x r W m From the equton we oserve tht D n W 0, n s postve nteger t z 0, Therefore the proper soluton W chrcterzng the lowest mode s W Wo sn z Where W o s constnt Susttutng for W n equton we hve [ E ] E r k r r xq K m r k Q R r r x r K m m r o k Q [ E ] r r x r r 5 K m m 58

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 8. STATIONARY CONVECTION For sttonry mrgnl stte we put 0 n 5 we get r k Q r k x x Q K m K m r r o r R kxq m K m m When Q 0 n the sence of mgnetc feld we hve R o K 7 K When o 0 In the sence of rotton we hve R 8 K From 6 we get k Q m x o R 9 K r mk xq K r To nvestgte the effects of medum permelty K, rotton o, mgnetc feld Q. We dr dr dr exmne the ehvor of,, nlytclly. dk d o dq From 9, we otn dr dk o K 0 k m xq K r dr 0 dk When m k x o K or Thus, the medum permelty hs stlzng effect when m k x o K or 58 6

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 In the sence of rotton o 0, equton reduces to dr dk K dr 0 dk Whch s lwys negtve, thus n ths cse the medum permelty hs destlzng effect n the sence of rotton. In the sence of mgnetc feld Q 0, equton 0 reduce to dr K o dk K dr 0 dk When o K Thus, n the sence of mgnetc feld the medum permelty hs stlzng effect When o K From 9, we hve dr 8 o 0 d o mk x Q K r Whch s lwys postve, thus the rotton hs stlzng effect From 9 we hve m kx Q m kxq o K K dr k r m x r dq r k m xq K r dr 0 dq When o K 58

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 Thus, the mgnetc feld hs stlzng effect when o K 9. OSCILLATORY CONVECTION Equton 5 cn e rewrtten E r [ ] k r m xq K m r R [ ] r [ ] k m m xq m K m E r o r [ ] m m k Q Let E,, x m r A A A, then we hve K r [ A ] [ A ] [ m ] A R [ m ] [ A ] [ ] A [ A ] [ ] m o m uttng n [ A ] m A A A m R [ m ] m A A A m [ A ] [ ] o m A A m, A m A m,, m [ A R [ ] [ o A ] Equtng rel nd mgnry prt we get Rel prt A o A R 585

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 Imgnry prt A o A R Elmntng R etween nd 5 we get A A o A A A A A A o A A A A 6 Equton 6 cn e rewrtten s A A A A o A A A A A A 0 7 After puttng the expressons for,,,, we otn 6 [ ] m m A m m m A A m A ma m m A A m A A A m A A A A o m o m A A 5 Am m A m A m A m AA 5 ma m A m A m A A m A AA 5 A A m A m A A A A m A A m A A A ma A m A A m A A m A A A m A 586 5

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 6 6 ma A m A A A A m o m A A 8 p A o m o m o m A o m A 5 A 5 A A A A A A A A A A A 5 A A m A m A m A A m A A 8 Equton 8 cn e wrtten s 6 0 0 0 [for osclltory modes] 9 Where 0 m m A m m Er A A A m m m m m m A A m A A m A A m m A A A A o m o m A A Smlrly, re defned s the coeffcent n equton 8 Let r the equton 8 ecomes 0r r r 0 50 Snce r whch s lwys postve, so tht the sum of roots of equton 50 s postve, the sum of roots of equton 50 s 0 s postve. Necessry condton for the exstence of osclltory modes s gven y condton clerly 0 0, f m Er 0 nd E 0, r r, E r f m Er o k k x m kx m k 0. CONCLUSIONS For Sttonry Convecton. The crtcl Rylegh numer ncreses s the medum permelty ncreses for sttonry convecton under the condton 5. Thus the medum permelty hs stlzng effect when. 587 5

Rovn Kumr, et l., Comp. & Mth. Sc. Vol.8, 576-588 07 m k x o k o r 588 5 In the sence of rotton, the crtcl Rylegh numer decreses s the medum permelty ncreses. In the sence of rotton the medum permelty hs destlzng effect. In the sence of mgnetc feld, the crtcl Rylegh numer ncreses the medum permelty ncreses under the condton stlzng effects when. o k o the medum permelty k. The crtcl Rylegh numer ncreses wth the ncrese of rotton, thus the rotton hs stlzng effect, whtever the mgnetc feld s ppled.. The crtcl Rylegh numer ncreses wth the ncrese of Chndrshekhr numer, thus the mgnetc feld hs stlzng effect under the condton o k For osclltory Convecton: The necessry condton for the exstence of osclltory mode re gven y condton clerly 0 0, f m Er 0 nd. E 0, r r, E r f m Er o k k x m kx m k REFERENCES. Bht,.K., Stener, J.M., Convectve nstlty n rottng vscoelstc flud lyer, Z. Angew. Mth. Mech. 5 7 97.. Chndrsekhr, S. Hydrodynmc nd Hydromgnetc Stlty, Oxford Unversty ress, Chps. -5 96.. Gupt, A.S. Rev. Roumne Mth. ures Appl., 665 967.. Gupt, A.S., Hll effects on therml nstlty, Rev. Roum. Mth. ures Appl. 665-677 967. 5. Lpwood, E.R. roc. Cm. hl. Soc., 508 98. 6. Shrm, R.C., Kumr,., On the mcropolr flud heted from elow n hydromgnetcs n porous medum, Czechoslovk J. hys. 7 67 997. 7. Shrm, V., Sunl, Gupt, U., Stlty of strtfed elstco-vscous wlters Model B flud n the presence of horzontl mgnetc feld nd rotton n porous medum, Arch. Mech. 58 87 97 006. 8. Shstry, V.U.K., nd Ro, V.R., Int. J. Eng. Sc. 5, 9 98.