Multiple Regression Analysis

Similar documents
Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

4. Standard Regression Model and Spatial Dependence Tests

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Linear Regression with One Regressor

Simple Linear Regression

Lecture Notes Types of economic variables

ENGI 3423 Simple Linear Regression Page 12-01

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

Econometric Methods. Review of Estimation

Chapter 13 Student Lecture Notes 13-1

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model

Handout #8. X\Y f(x) 0 1/16 1/ / /16 3/ / /16 3/16 0 3/ /16 1/16 1/8 g(y) 1/16 1/4 3/8 1/4 1/16 1

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

ESS Line Fitting

Statistics MINITAB - Lab 5

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance

Econometrics. 3) Statistical properties of the OLS estimator

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Fundamentals of Regression Analysis

Multiple Linear Regression Analysis

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

Chapter 14 Logistic Regression Models

Chapter 8. Inferences about More Than Two Population Central Values

STA302/1001-Fall 2008 Midterm Test October 21, 2008

Example: Multiple linear regression. Least squares regression. Repetition: Simple linear regression. Tron Anders Moger

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

Dr. Shalabh. Indian Institute of Technology Kanpur

Summary of the lecture in Biostatistics

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Lecture 8: Linear Regression

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I

Simple Linear Regression

Objectives of Multiple Regression

Special Instructions / Useful Data

Lecture 3. Sampling, sampling distributions, and parameter estimation

X ε ) = 0, or equivalently, lim

Probability and. Lecture 13: and Correlation

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn:

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

residual. (Note that usually in descriptions of regression analysis, upper-case

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y.

Chapter 4 Multiple Random Variables

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Simple Linear Regression - Scalar Form

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1

Statistics Review Part 3. Hypothesis Tests, Regression

Chapter 3 Multiple Linear Regression Model

Chapter Two. An Introduction to Regression ( )

Simulation Output Analysis

Chapter 5 Properties of a Random Sample

CLASS NOTES. for. PBAF 528: Quantitative Methods II SPRING Instructor: Jean Swanson. Daniel J. Evans School of Public Affairs

Statistics: Unlocking the Power of Data Lock 5

TESTS BASED ON MAXIMUM LIKELIHOOD

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

Qualifying Exam Statistical Theory Problem Solutions August 2005


Multiple Choice Test. Chapter Adequacy of Models for Regression

CHAPTER 2. = y ˆ β x (.1022) So we can write

Chapter 11 The Analysis of Variance

Analysis of Variance with Weibull Data

Lecture 3 Probability review (cont d)

CHAPTER VI Statistical Analysis of Experimental Data

Correlation and Simple Linear Regression

Bootstrap Method for Testing of Equality of Several Coefficients of Variation

Introduction to F-testing in linear regression models

Lecture 2: Linear Least Squares Regression

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

LINEAR REGRESSION ANALYSIS

Lecture Note to Rice Chapter 8

ε. Therefore, the estimate

i 2 σ ) i = 1,2,...,n , and = 3.01 = 4.01

Parameter, Statistic and Random Samples

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

UNIVERSITY OF EAST ANGLIA. Main Series UG Examination

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use.

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Functions of Random Variables

DISTURBANCE TERMS. is a scalar and x i

MEASURES OF DISPERSION

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

Continuous Distributions

Simple Linear Regression and Correlation. Applied Statistics and Probability for Engineers. Chapter 11 Simple Linear Regression and Correlation

Lecture 1: Introduction to Regression

1. The weight of six Golden Retrievers is 66, 61, 70, 67, 92 and 66 pounds. The weight of six Labrador Retrievers is 54, 60, 72, 78, 84 and 67.

Chapter 2 Simple Linear Regression

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

STK3100 and STK4100 Autumn 2017

Statistics. Correlational. Dr. Ayman Eldeib. Simple Linear Regression and Correlation. SBE 304: Linear Regression & Correlation 1/3/2018

STK3100 and STK4100 Autumn 2018

Handout #6. X\Y f(x) 0 1/16 1/ / /16 3/ / /16 3/16 0 3/ /16 1/16 1/8 g(y) 1/16 1/4 3/8 1/4 1/16 1

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

C. Statistics. X = n geometric the n th root of the product of numerical data ln X GM = or ln GM = X 2. X n X 1

Econ 388 R. Butler 2016 rev Lecture 5 Multivariate 2 I. Partitioned Regression and Partial Regression Table 1: Projections everywhere

Transcription:

//04 CDS M Phl Old Least Squares (OLS) Vjayamohaa Plla N CDS M Phl Vjayamoha CDS M Phl Vjayamoha Multple Regresso Aalyss y β 0 + β x + β x +... β x + u Multple Regresso Aalyss Geeral form of the multple lear regresso model: Defe colum vectors of observatos o y ad K varables. y f,..., x ) + u ( x, x y β + β x + β x +... + β x + u Ths ca be expressed as βj j y x + u j 4 Multple Regresso Aalyss Multple Regresso Aalyss y β + β x + β x +... + β x + u,, y + βx + βx + βx +... + βx u y + βx + βx + βx +... + βx u y + βx + βx + βx +... + βx u. y β x + β x + β x +... + β x + u y x y x y...... y x x x... x............ Xβ + u x s a colum of oes: x β u x β + u......... x β u K varables ad costat [ x L x ] T [ L ] T 5 6

//04 March 04 The Classcal Assumptos A. Learty Learty of the parameters (ad dsturbace) Sometmes models whch appear to be o-lear ca be estmated usg the least-squares squares procedure. y exp β β x exp u l(y) β + β l(x ) + u Vjayamoha: CDS MPhl: 7 The Classcal Assumptos A. E(u) 0 The dsturbace term has a zero expectato u u E(u) E M u 0 0 M 0 8 The Classcal Assumptos The Classcal Assumptos A. Nostochastc Regressors X s a o-stochastc x matrx. That s, t cossts of a set of fxed umbers. What does Nostochastc Mea? Assumpto A comes two forms: a wea verso ad a strog verso. Strog Verso: The explaatory varables should be o - stochastc. Wea Verso: The explaatory varables are radom but dstrbuted depedetly of the error term. 9 0 The Classcal Assumptos The Classcal Assumptos: Homoscedastcty What does Nostochastc Mea? Varace The term ostochastc essetally meas that the varables are determed outsde the cotext of the regresso (ths s aother reaso why we use the term depedet whe referrg to explaatory varables)

//04 The Classcal Assumptos The Classcal Assumptos: Sphercal dsturbaces A4. Sphercal Dsturbaces Var(u) E(u) T E(u u ) E(uu ) M E(u u ) T E(uu ) σ I E(uu ) E(u) M E(u u ) L E(u u) L E(uu) O M L E(u ) σ 0 M 0 0 σ M 0 L L O L 0 0 M σ T Var(u) E(uu ) σ I E(u ) E(uu ) L E(uu ) T E(u u ) E(u ) E(u u ) E(uu ) L M M O M E(u u ) E(u u ) L E(u ) Sphercal dsturbaces () ad Var(u) E(u ) σ,..., σ 0 0 σ M M 0 0 L 0 L 0 O M L σ σ I homosedastcty σ I () Cov(u,u j) E(u,u j) 0 j No autocorrelato 4 The Classcal Assumptos: Homoscedastcty The Classcal Assumptos: Homoscedastcty f(y x) y f(y x).. E(y x) β 0 + β x Homoscedastcty... E(y x) β0 + β x Heteroscedastcty x x x x x x x 5 6 The Classcal Assumptos The Classcal Assumptos A5. Idetfablty A5. Idetfablty No exact lear relatoshps amog the varables (o perfect multcollearty). No exact lear relatoshps amog the varables (o perfect multcollearty). Specfcally, X s x K wth ra K. (X has full (colum) ra) the colums of X are learly depedet. Implct wth ths assumpto are the requremets of more observatos tha varables (mcroumerosty) ad suffcet varablty the values of the regressors. No-sgular X 7 8

//04 The Classcal Assumptos A6. Normalty Fal assumpto: the dsturbaces are ormally dstrbuted. u ~ N (0, σ I ) useful for the purposes of statstcal ferece The Classcal / Old / Ordary Least squares (OLS) Sample couterpart of the -varable regresso model: y X + û Where βˆ ad û are the sample couterparts of β ad u. OLS ams to mmse the dfferece betwee a observed value of y ad ts predcted value. but ot ecessary for aalysg the propertes of the estmators. the error û y ŷ be the least. ŷ X 9 0 The Classcal / Old / Ordary Least squares (OLS) The Classcal / Old / Ordary Least squares (OLS) Specfcally, the problem s to fd a estmator that mmses the error sum of squares: û û (y ŷ)(y ŷ) y y + ˆXXˆ β β ˆXy β A ecessary codto for a mmum s that the frstorder codtos equal zero. ûû XXˆ β Xy 0 β ˆ Therefore, rearrage to gve the ormal equato ( XX)ˆ β Xy ˆ (XX) β Xy The Classcal / Old / Ordary Least squares (OLS) The Classcal / Old / Ordary Least squares (OLS) ˆ β (XX) Xy For a -varable model, ˆ Cov(X, y) β ; Var(X) > 0 Var(X) X T X s vertble provded X has full ra. (Why?) ûû XX β β ˆ ˆ X T X s postve defte for a mmum. 4 4

//04 Statstcal Propertes of Least Squares Estmator Mea of βˆ (XX) Xy β + (XX) Xu E (ˆ) β β Property of ubasedess Statstcal Propertes of Least Squares Estmator Varace of βˆ Var (ˆ) β E(ˆ [ β β)( β) ] Notg that ˆ β β (XX) Xu the Var(ˆ) β E[(XX) XuuX(XX) ] Var(ˆ) β σ (XX) [ey assumptos: E(u) 0 ad o-stochastc regressors] 5 [ey assumptos: Var(u) E(u σ ad ) Cov(u,u j) E(u,u j) 0 for all, j. 6 Statstcal Propertes of Least Squares Estmator Varace of βˆ Var(ˆ) β σ (XX) I the scalar case Var(ˆ β) Mmum Varace (best) property σ x Statstcal Propertes of Least Squares Estmator Ubased Estmator of σ Var(ˆ) β σ (XX) For statstcal ferece we requre a estmate of Varace of βˆ ad therefore, σ. A ubased estmator of σ s: û ˆσ s Its square root the stadard error of the regresso 7 8 ( y y) ( ŷ y) û s s OLS: Goodess of Ft What proporto of the total varato of y s accouted for by the varato X? I terms of sums of squares TSS RSS + ESS ( y y) ( ŷ y) + the totalsumof squares(tss) the(explaed) regresso sum of squares(rss) s the errorsumof squares(ess) û 9 OLS: Measure of Goodess of Ft Coeffcet of determato: or ESS R TSS RSS R TSS R ever decreases whe a ew X varable s added to the model Ths ca be a dsadvatage whe comparg models What s the et effect of addg a ew varable? 0 5

//04 OLS: Measure of Goodess of Ft What s the et effect of addg a ew varable? We lose a degree of freedom whe a ew X varable s added Dd the ew X varable add eough explaatory power to offset the loss of oe degree of freedom? OLS: Measure of Goodess of Ft Adjusted R Shows the proporto of varato Y explaed by all X varables adjusted for the umber of X varables used R adj ESS/( ) TSS/( ) ( R ) (where sample sze, umber of parameters) OLS: Measure of Goodess of Ft OLS: Measure of Goodess of Ft R adj Adjusted R ESS/( ) ( R ) TSS/( ) (where sample sze, umber of parameters) Pealze excessve use of umportat depedet varables Smaller tha r Useful comparg amog models The relatoshp betwee R ad R R ( R ) + R Two other measures of ft are the Schwartz crtero (SC) ESS SC l + l ad the Aae formato crtero (AIC) ESS AIC l + 4 we ow that the expected value s I order to mae meagful ferece the varable must be ormally dstrbuted. E (ˆ) β β Oe of the assumptos troduced above was: Ad we ow that a sutable estmate of the varace of the slope parameter s Var(ˆ) β σ (XX) Var(ˆ) β s (XX) u~n(0, σ I ) Ths meas that u has a multvarate ormal dstrbuto. û ˆ s σ (If t s ot, the must be large.e. becomes ormally dstrbuted by vrtue of the cetral lmt theorem. 5 6 6

//04 Ths mples that the samplg error ( βˆ - β) s related to u as follows: ˆ β (XX) β Xy β (XX) X(Xβ + u) β (XX) Xu I hypothess testg we are cocered about testg whether a partcular fdg s compatble wth some stated hypothess or ot. A commo hypothess test s formulated as whch mples that the samplg error s also multvarate ormally dstrbuted: (ˆ β β)~n(0, σ (XX) ) H 0 : β H : β β β 7 8 Usg our earler result, f we were loog at the th dagoal elemet of (X T X) - we obta ˆ ( β β)~n(0, σ ((XX) ) ) where ((XX) ) s the (,) elemet of (X T X) - If we do ot ow σ, t s atural to replace t wth the estmate s. Ths geerates the t-rato If we defe the rato z by dvdg z β β σ ((XX) ) where z ~N(0,) by ts stadard devato ˆ β β β t T s ((X X) ) SE(ˆ β) where SE( βˆ ) deotes the stadard error of βˆ. Ths s dstrbuted as t c α/;(-). 9 40 A Example: Ivestmet Fucto A Example: Ivestmet Fucto Theory of the behavour of vestors: They care oly about real terest rates. Hypothess: Real I f(real gdp, a terest rate (the 90-day T-bll rate), flato (chage the log of CPI), real dsposable persoal come, tred) Equal creases terest rates ad rate of flato would have o depedet effect o vestmet. The test statstc s: So the Ho : β + β 0. ˆ + β 0 t SE(ˆ β ˆ + β) 4 4 7

//04 A Example: Ivestmet Fucto Testg Lear Restrctos As well as testg restrctos o dvdual regresso coeffcets we may wsh to test lear combatos of them. For example SE(.) [0.009 + 0.004 +(.78 x 0 6 )] / 0.00866 0.0086 + 0.00 t.845 0.00866 95% crtcal value: t(0 5).96 (a) (b) (c) H0 : β + β H0 : H β : β β 4... β 0 β β4 0 4 44 Testg Lear Restrctos: The F Test The t-dstrbuto ca be used to test a sgle ull hypothess If we wat to coduct a jot test the we ca o loger use the t dstrbuto For example, suppose we wat to test whether all the explaatory varables the modelare sgfcatly dfferet from zero Testg Lear Restrctos: The F Test F-Test of Etre Equato ( Testg the Jot Sgfcace of the Explaatory Varables ) H 0 : β β β 0 Equvaletly: H 0 : R 0 H : H 0 ot true (at least oe of the β s ozero) Caot say: f the coeffcets are dvdually sgfcat ths meas they must be jotly sgfcat 45 46 Testg Lear Restrctos: The F Test F-Test of Etre Equato ( Testg the Jot Sgfcace of the Explaatory Varables ) H 0 : β β β 0 Equvaletly: H 0 : R 0 H : H 0 ot true (at least oe of the β s ozero) RSS F ESS or R F R 47 Testg Lear Restrctos: Multple Restrcto F Test Ths tme suppose we wsh to test whether a subset of regresso coeffcets are zero. I ths case y + X + û [ X X ] + û H 0 : β 0 X H : H 0 ot true 48 8

//04 y Testg Lear Restrctos: Multple Restrcto F Test [ X X ] + û ˆ H β 0 : β 0 H : H 0 ot true X + X + û To fd the chage the ft of a multple regresso whe a addtoal varable x s added to a model that already cotas K varables: J lear restrcto Testg Lear Restrctos: Multple Restrcto F Test Thus the urestrcted regresso s: y [ X X ] y X Ad the restrcted regresso: + û + X + û y [ X X ] y X H 0 : β 0 H : H 0 ot true + û β ˆ + û 0 * * 49 50 Testg Lear Restrctos: Multple Restrcto F Test The resduals from the restrcted regresso: û y X * whereas the resduals from the urestrcted regresso: û y X X Essetally we wsh to see whether the reducto the ESS s 'large eough' to suggest that X s sgfcat. 5 Testg Lear Restrctos: Multple Restrcto F Test Resduals from the restrcted regresso: û* y Xˆ β Resduals from the urestrcted regresso: û y X The test statstc s T T (û* û* û û)/j F J ; K T û û/( ) or (R R* )/J F ( R )/( ) X 5 Testg Lear Restrctos: Multple Restrcto F Test A Example: Producto Fucto A Example: Producto Fucto Cobb-Douglas: ly α + β ll + βlk + u Traslog: Urestrcted model: K 6 ly α + β ll + βlk + β(ll) + β4(lk) + β5lllk + u Traslog fucto relaxes the CD assumpto of a utary elastcty of substtuto CD obtaed by the restrcto: β β β 0 4 5 J 5 54 9

//04 Estmated producto Fuctos A Example: Producto Fucto CD or Traslog? The F-statstc for the hypothess of CD model: Ho: CD model s approprate T T (û* û* û û)/j F T û û/( ) (0.856 0.6799)/ F.768 0.6799/ Crtcal value: F(,).07 Cocluso? March 04 Vjayamoha: CDS MPhl: 55 56 March 04 A Example: Producto Fucto CD fucto: Costat Returs to Scale? Hypothess of costat returs to scale: Equvalet to a restrcto that the two coeffcets of CD fucto sum to uty Ho: β + β F-test wth J ad K (0.60 + 0.757 ) F 0.57 t 0.0586 + 0.0078 (0.0096) Crtcal value: F(,4) 4.6 Vjayamoha: CDS MPhl: Cocluso? 57 A Example: Producto Fucto CD fucto: Costat Returs to Scale? Hypothess of costat returs to scale: Ho: β + β Ca have t-test: ˆ + β t SE(ˆ β ˆ + β ) (0.60 + 0.757 ) t 0.40 / [0.0586 + 0.0078 (0.0096)] (F / ) Crtcal value: rule of thumb Cocluso? 58 To test structural chage tme seres data Savgs 50 00 50 00 50 00 000 000 000 4000 5000 Icome Savgs ad persoal dsposable come (bllos of dollars) US, 970 995. 59 60 0

//04 Savgs 50 00 50 00 500 000 500 000 500 Icome 970 98 Savgs 50 00 50 00 Pot of structural brea: 98 (assumed) 000 000 4000 5000 6000 Icome Savgs 50 00 50 00 50 00 98 995 6 000 000 000 4000 5000 Icome Steps. Ru the two sub-perod regressos ad the fullperod regresso Full-perod: S t a 0 + b 0 Y t 6 ( + ) Sub-perod : S t a + b Y t Sub-perod : S t a + b Y t 4. The pooled regresso restrcted regresso, obtaed uder the restrctos that a a ( a 0 ) ad b b ( b 0 ).. Get the restrcted ESS from t (ESS R ): ( û* û* ) 6 Steps. Ru the two sub-perod regressos ad the fullperod regresso Full-perod: S t a 0 + b 0 Y t 6 ( + ) Sub-perod : S t a + b Y t Sub-perod : S t a + b Y t 4 4. The sub-perod regressos urestrcted regressos. 5. Get the urestrcted ESS from them: ( ûû) : ESS UR ESS + ESS. Steps Sub-perod : S t a + b Y t Sub-perod : S t a + b Y t 4 4. The sub-perod regressos urestrcted regressos. 5. Get the urestrcted ESS from them: ( ûû) : ESS UR ESS + ESS. T T (û* û* û û)/ F T j; ( ) + ( ) û û/( ) 6 64 Pooled Regresso Result: 970 995 Sub-perod : 970 98 Restrcted ESS: ( û* û* ) 48. Urestrcted ESS 785.0 65 66

//04 Sub-perod : 98 995 T T (û* û* û û)/ F T û û/( ) j; ( ) + ( ) (48. 790.54)/ F 0.69 790.54/ Crtcal value: F(,) at % α 5.7 Urestrcted ESS 0005. Urestrcted ESS ESS + ESS ( ûû) 785.0 + 0005. 790.54 H0 a a a 0 ad b b b 0 : Parameter stablty Cocluso? 67 68