Research Article On the Genus of the Zero-Divisor Graph of Z n

Similar documents
Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

0.1. Exercise 1: the distances between four points in a graph

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

1 Introduction to Modulo 7 Arithmetic

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Planar Upward Drawings

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Trees as operads. Lecture A formalism of trees

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

Constructive Geometric Constraint Solving

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Garnir Polynomial and their Properties

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Present state Next state Q + M N

Solutions to Homework 5

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Steinberg s Conjecture is false

Numbering Boundary Nodes

CS 241 Analysis of Algorithms

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

CS 461, Lecture 17. Today s Outline. Example Run

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

QUESTIONS BEGIN HERE!

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

Two Approaches to Analyzing the Permutations of the 15 Puzzle

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Section 10.4 Connectivity (up to paths and isomorphism, not including)

arxiv: v1 [math.co] 15 Dec 2015

Walk Like a Mathematician Learning Task:

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

arxiv: v1 [cs.ds] 20 Feb 2008

QUESTIONS BEGIN HERE!

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

Designing A Concrete Arch Bridge

Properties of Hexagonal Tile local and XYZ-local Series

Outline. Binary Tree

Discovering Pairwise Compatibility Graphs

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

CS September 2018

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Witness-Bar Visibility Graphs

Can transitive orientation make sandwich problems easier?

EE1000 Project 4 Digital Volt Meter

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

12. Traffic engineering

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

Seven-Segment Display Driver

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Uniform 2D-Monotone Minimum Spanning Graphs

Fundamental Algorithms for System Modeling, Analysis, and Optimization

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

Combinatorial Networks Week 1, March 11-12

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Treemaps for Directed Acyclic Graphs

TOPIC 5: INTEGRATION

Graph Contraction and Connectivity

The University of Sydney MATH 2009

A comparison of routing sets for robust network design

Section 3: Antiderivatives of Formulas

Formal Concept Analysis

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

(4, 2)-choosability of planar graphs with forbidden structures

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

Chapter 9. Graphs. 9.1 Graphs

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

Analysis for Balloon Modeling Structure based on Graph Theory

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

Transcription:

Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity, Nnning, Gungxi 023, Chin 2 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity, Nnning 023, Chin Corrsponn shoul rss to Huong Su; huongsu@sohu.om Riv 1 Frury 14; Apt July 14; Pulish 22 July 14 Ami Eitor: Lszlo A. Szkly Copyright 14 H. Su n P. Li. This is n opn ss rtil istriut unr th Crtiv Commons Attriution Lins, whih prmits unrstrit us, istriution, n rproution in ny mium, provi th originl work is proprly it. Lt R ommuttiv ring with intity. Th zro-ivisor grph o R, notγ(r), is th simpl grph whos vrtis r th nonzro zro-ivisors o R, n two istint vrtis x n y r link y n g i n only i xy=0. Th gnus o simpl grph G is th smllst intgr g suh tht G n m into n orintl sur S g. In this ppr, w trmin tht th gnusothzro-ivisorgrphoz n, th ring o intgrs moulo n,istwoorthr. 1. Introution This ppr onrns th zro-ivisor grphs o rings. For ommuttiv ring R, in simpl grph ll zro-ivisor grph, not y Γ(R), whos vrtis r th nonzro zroivisors o R, n two istint vrtis x n y r jnt i n only i xy = 0 in R. This inition ws irst introu y Bk in [1]. Howvr, h lt ll lmnts o R th vrtis o th grph n minly onsir th oloring o this grph. Hr our inition is th sm s in[2], whr som si proprtis o Γ(R) r stlish.th zro-ivisor grph,s wll s othr grphs o rings, is n tiv rsrh topi in th lst two s (s,.g., [3 11]). Lt us irst rll som n notions in grph thory. Lt G simpl grph, tht is, no loops n no multigs. Th gr o vrtx V G, not y g(v),isthnumr o gs o G inint with V. IV V(G), thng V is th sugrph o G otin y lting th vrtis in V n ll gs inint with thm. I V ={x V g(x) = 0 or 1}, thnwus G or th sugrph G V n ll it th rution o G.A omplt iprtit grph is iprtit grph (i.., st o grph vrtis ompos into two isjoint sts suh tht no two vrtis within th sm st r jnt) suh tht vry pir o vrtis in th two sts r jnt. Th omplt iprtit grph with prtitions o sizs m n n is not y K m,n.thomplt grph on n vrtis, not K n,isthgrphinwhihvrypiroistintvrtisis join y n g. A sur is si to o gnus g i it is topologilly homomorphi to sphr with g hnls. A grph G tht n rwn without rossings on ompt sur o gnus g, ut not on on o gnus g 1,isll grph o gnus g.wwritγ(g) orthgnusothgrphg. It is lr tht γ(g) = γ( G),whr G is th rution o G,n γ(h) γ(g) or ny sugrph H o G. Dtrmining th gnus o grph is on o th most unmntl prolms in topologil grph thory. It hs nshowntonp-ompltythomssnin[]. Svrl pprs ous on th gnr o zro-ivisor grphs. For instn, in [, 7, 13, 14], th uthors stui th plnr zroivisorgrphs(gnusqulsto0);wngtl.invstigtth gnus on zro-ivisor grphs in [11,, 1], rsptivly; n Bloomil n Wikhm trmin ll lol rings whos zro-ivisor grphs hv gnus two in [8]. In this ppr, w stuy th zro-ivisor grph o Z n, th ring o intgrs moulo n. In prtiulr, w trmin whn γ(γ(z n )) = 2 or 3. Hrwirstsummrizthrsultsoutthgnus o Γ(Z n ) rom [, Thorm.1()], [8, Thorm1],n[1, Stion ]. Thorm 1. Lt Γ(Z n ) not mpty. Thn th ollowing hol. (1) γ(γ(z n )) = 0 i n only i n {8,, 1,,,, 2p, 3p},whrp is prim. (2) γ(γ(z n )) = 1 i n only i n {,,,, 4}. (3) γ(γ(z p t)) = 2 inonlyip t =81.

2 Intrntionl Journl o Comintoris All rings onsir in this ppr will ommuttiv rings with intity. Lt n lmnt o ring R.Thnthprinipl il gnrt y is not y. For st A, A mns th orr o A. 2. Th Gnus o Γ(Z n ) Th ollowing two lmms r rquntly us in th proos o our min rsults. Lmm 2 ([17,Thorm.38]). γ(k n ) = {(1/)(n 3)(n 4)}, whr {x} is th lst intgr tht is grtr thn or qul to x. Lmm 3 ([17,Thorm.37]). γ(k m,n ) = {(1/4)(m 2)(n 2)}, whr{x} isthlstintgrthtisgrtrthnorqul to x. Lmm 4 ([17, Corollry.]). Suppos simpl grph G is onnt with V 3vrtis n gs. I G hs no tringls, thn γ(g) (/4) (V/2) + 1. Lmm. Lt G grph with vrtx st {u 1,u 2,u 3,u 4 ; V 1,...,V 7 ;w 1,w 2,w 3,w 4 } n th g st {(u i, V j ) 1 i 4, 1 j 7} {(V i,w j ) 1 i 3,1 j 3}.Thnγ(G) 4. Proo. Not tht thr r no tringls in G.AsG hs gs n vrtis, γ(g) 4 y Lmm 4. W irst onsir th s tht n hs only on prim ivisor. Thorm. Lt n=p t,whrp is prim n t 2.Thn γ(γ(z n )) = 3 i n only i n=4. Proo. ( ). Lt I= p t 1 {0}.Thn I = p 1.Asnytwo vrtis in I r jnt, thr xists omplt sugrph K p 1 in Γ(Z n ).Itollowsthtip 11,thnγ(Γ(Z n )) γ(γ(k )) = 4 y Lmm 2. Thror, p 7.Wpro with thr ss. Cs 1 (p = or 7). By Thorm 1, γ(γ(z 2)) = 0 n γ(γ(z 7 2)) = 1. So w n urthr ssum t 3.LtI = p t 2 p t 1 n J= p t 1 {0}.ThnI Jis mpty n I = p 2 p, J = p 1 4. As h vrtx o I is jnt to vry vrtx o J, thr xists omplt iprtit sugrph K 4, in Γ(Z n ), whih implis tht γ(γ(z n )) γ(γ(k 4, )) = y Lmm 3. Cs 2 (p = 3). From Thorm 1, whvγ(γ(z 3 2)) = 0, γ(γ(z 3 3)) = 0, nγ(γ(z 81 )) = 2. Sowmyssumt. Lt I = 3 t 3 3 t 2 n J = 3 t 2 {0}.ThnI J is mpty n I = 3 3 3 2 =, J = 3 2 1 = 8. Sin h vrtx o I is jnt to vry vrtx o J, Γ(Z n ) ontins omplt iprtit sugrph K 8,, whih implis tht γ(γ(z n )) γ(γ(k 8, )) = y Lmm 3. Cs 3 (p =2). By Thorm 1, γ(γ(z 2 t)) = 0 i t = 2, 3, 4,n γ(γ(z 2 )) = 1. I n =4, w n ssum t 7.WltI= 2 t 4 2 t 3, J= 2 t 3 {0}.Thn I = 2 4 2 3 =8, J = 2 3 1 = 7. 48 4 44 0 1 2 48 4 44 8 1 2 Figur 1: Th rution o Γ(Z 4 ). 0 8 Not tht h vrtx o I is jnt to h vrtx o J n I Jis mpty, so thr xists omplt iprtit sugrph K 7,8 in Γ(Z n ), whih implis tht γ(γ(z n )) γ(k 7,8 )=8y Lmm 3. Thror, n=4. ( ). For n=4,lti = 4 1 n J = 1 {0}. Thn I =, J = 3, n I Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K 3, in Γ(Z 4 ), whih implis tht γ(γ(z 4 )) γ(k 3, ) = 3 y Lmm 3. On th othr hn,wnmthrutionoγ(z 4 ) into S 3 s shown in Figur 1. Thror, γ(γ(z 4 )) = 3. This omplts our proo. W now onsir th s tht n hs xtly two prim ivisors. Thorm 7. Lt n=p s q t,whrp<qr prims n s, t 1. Thnγ(Γ(Z n )) = 2 i n only i n {,, 44, 0}, n γ(γ(z n )) = 3 i n only i n {, 2, 4}. Proo. W irst prov tht i 2 γ(γ(z n )) 3 thn n {,, 44, 0,, 2, 4}. W thn trmin γ(γ(z n )) or h n {,, 44, 0,, 2, 4}. W pro with our sstogtthrsult. Cs 1 (s =t=1). It is lr tht Γ(Z n ) is omplt iprtit grph K p 1,q 1.Inthiss,ip=n q 11,thnK 4, is sugrph o Γ(Z n );itollowsthtγ(γ(z n )) γ(k 4, )= 4 y Lmm 3. Ip = 2 or p = 3,yThorm 1, whv γ(γ(z n )) = 0.Sop=, q=7;thtis,n=. Cs 2 (s =1n t 2). I t 3,stI= pq t 2 pq t 1 n J = q 2 {0}.ThnI Jis mpty n h vrtx in I is jnt to h vrtx in J. Iq,thn I = q 2 q, J = pq t 2 1, whih implis tht Γ(Z n ) ontins omplt iprtit sugrph K,. Thror γ(γ(z n )) γ(k, )=y Lmm 3. Iq=3n t 4,

Intrntionl Journl o Comintoris 3 thn I = q 2 q =, J = pq t 2 1 17, whih implis tht thr xists omplt iprtit sugrph K,17 in Γ(Z n ). Thror γ(γ(z n )) γ(k,17 )=y Lmm 3. Hn,in this sitution, w hv n=2 3 3 =4. Consir now t=2;thtis,n=pq 2.LtI = q pq n J= pq {0}.ThnI Jis mpty n I = pq q, J = q 1. Noti tht h vrtx in I is jnt to h vrtx in J, so thr xists omplt iprtit sugrph K pq q,q 1 in Γ(Z n ).Iq=7,thnγ(Γ(Z n )) γ(k 7p 7, ).Iq=n p=3thn γ(γ(z n )) γ(k 4, )=4.ByThorm 1,wknow γ(γ(z )) = 0.Son=0. Cs 3 (s 2 n t = 1). Lt I = p s {0}n J = q {0}. Thn I = q 1, J = p s 1,nI Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K q 1,p s 1 in Γ(Z n ). Thror γ(γ(z n )) γ(k q 1,p s 1). Simply hking, w n s tht thr r only svn ss stisying th inqulity γ(k q 1,p s 1) 3;thtis,n {2 s 3,,,,, 44, 2}.By Thorm 1, whvγ(γ(z )) = 1 n γ(γ(z )) = 1. So n {2 s 3,,, 44, 2}. For n =, w st I = {8, 1,, }, J = {,,,,,, }, nk = {4,,, }. Nottht h vrtx in I is jnt to h vrtx in J,nthvrtis,, n r jnt to h vrtx in K,soyLmm, γ(γ(z )) 4. For th s n=2 s 3,yThorm 1,whvγ(Γ(Z )) = 0 n γ(γ(z )) = 1. Is = 4,thtis,n = 48,wst I = {8, 1,, }, J = {,,,,,, 42}, nk = {4,,, 44}. NotththvrtxinI is jnt to h vrtx in J, n th vrtis,, n r jnt to h vrtx in K, soylmm, γ(γ(z 48 )) 4. Is,wst I= 2 s 1 n J= {0}.Thn I = 4, J = 2 s 1 1 n I Jis mpty. Sin h vrtx in I is jnt to h vrtx in J,thrisompltiprtitsugrphK 4,2 s 1 1 in Γ(Z n ).Itthnollowsthtγ(Γ(Z n )) γ(k 4,2 s 1 1) 7 y Lmm 3. Cs 4 (s 2n t 2). W st I= p s 1 q t 1 {0}.Thn I = pq 1. Sin ny two vrtis in I r jnt, thr xists omplt sugrph K pq 1 in Γ(Z n ).Ipq 11, thn γ(γ(z n )) γ(k )=4y Lmm 2.Son=2 s 3 t or n=2 s t. I n=2 s 3 t,sti= 2 s {0} n J= 3 t {0};thn I = 3 t 1, J = 2 s 1,nI Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K 2 s 1,3 t 1 in Γ(Z n ).I 1 3or 2 3,thnγ(Γ(Z n )) 4.So s=2, t=2;thtisn=.in=2 s t,similrly,thrxists omplt iprtit sugrph K 2 s 1, t 1 in Γ(Z n ). Thror, γ(γ(z n )) γ(k 2 s 1, t 1) y Lmm 3. Nowwhvprovthti2 γ(γ(z n )) 3, thnn {,, 44, 0,, 2, 4}. In th ollowing, w trmin γ(γ(z n )) or h n {,, 44, 0,, 2, 4}. It is sy to s tht Γ(Z )=K 4,.Soγ(Γ(Z )) = 2 y Lmm 3. For n=,smntionincs4ov,γ(z ) ontins sugrphk 3,8.Soγ(Γ(Z )) γ(k 3,8 )=2. Γ(Z ) n m into S 2 s shown in Figur 2.Soγ(Γ(Z )) = 2. 4 8 1 1 4 8 3 33 Figur 2: Th rution o Γ(Z ). Sin th rutions o th grphs Γ(Z 44 ) n Γ(Z 2 ) r K 3, n K 3,,rsptivly,whvγ(Γ(Z 44 )) = γ(k 3, )=2 n γ(γ(z 2 )) = γ(k 3, )=3,rsptivly. For n = 0,smntioninCs2ov,whv γ(γ(z n )) γ(k 4, ) = 2 y Lmm 3. Wnmth rution o th grph Γ(Z 0 ) into S 2 s shown in Figur 3. Thus, γ(γ(z 0 )) = 2. For n=,wsti = {0} n J = {0}.Thn I = 4, J = 8,nI Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr is omplt iprtit sugrph K 4,8 in Γ(Z ).Itthnollowsthtγ(Γ(Z )) γ(k 4,8 )=3.Onth othr hn, w n m th rution o th grph Γ(Z ) into S 3 s shown in Figur 4.Thus,γ(Γ(Z )) = 3. For n=4,lti = n J= {0}.Thn I =, J =, ni Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K, in Γ(Z 4 ). Thror γ(γ(z 4 )) γ(k, )=3. On th othr hn, w n m th grph Γ(Z 4 ) into S 3 s shown in Figur. This omplts th proo. Th inl s is tht n hs mor thn two prim ivisors. Thorm 8. Lt n=p 1 1 p 2 2 p s s (s 3), whr p 1 <p 2 < < p s r prims. Thn γ(γ(z n )) = 2 i n only i n=, n γ(γ(z n )) = 3 i n only i n=42. Proo. Lt I = p 1 1 p 2 2 {0}n J = n/p 1 1 p 2 2 {0}. Thn I = p 3 3 p s s 1, J = p 1 1 p 2 2 1 n I Jis mpty; morovr, vry vrtx in I is jnt to h vrtx in J. Thus, thr xists omplt iprtit sugrph K I, J in Γ(Z n ).Itthnollowsthtp 3 3 p s s 7s γ(γ(z n )) 3.So ithr n=2 1 3 2 or n=2 1 3 2 7. For th ormr s, st I= 2 1 3 2 {0}n J = {0}; thn I = 4, J = 2 1 3 2 1n I Jis mpty. Not tht h vrtx in I is jnt to h vrtx in J, so thr xists

4 Intrntionl Journl o Comintoris 48 42 3 33 3 1 42 48 Figur 3: Th rution o Γ(Z 0 ). Figur : Th rution o Γ(Z 4 ). 3 33 3 42 Figur 4: Th rution o Γ(Z ). 3 Figur : Th rution o Γ(Z ). omplt iprtit sugrph K 4,2 1 3 2 1 in Γ(Z n ).I2 1 3 2 1, thnγ(γ(z n )) 4 y Lmm 3. So 1 = 2 =1;thtis, n=. Lt I = {0} n J= {0}.Thn I =, J = 4,n I Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K 4, in Γ(Z ). It thn ollows tht γ(γ(z )) γ(k 4, )=2. On th othr hn,wnmγ(z ) into S 2 s shown in Figur, so γ(γ(z )) = 2. For th lttr s, with similr rgumnt ov, w hv n=42.lti = 7 {0} n J= {0}.Thn I =, J =, ni Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K, in Γ(Z 42 ), whih implis tht γ(γ(z 42 )) γ(k, )=3. On th othr hn, w n m Γ(Z 42 ) into S 3 s shown in Figur 7,soγ(Γ(Z 42 )) = 3. This omplts our proo. Now w hv ompltly trmin whn γ(γ(z n )) = 2 or 3. W summriz th rsult y th ollowing thorm. Thorm. (1) γ(γ(z n )) = 2 i n only i n {,,, 44, 0, 81}. (2) γ(γ(z n )) = 3 i n only i n {42,, 2, 4, 4}.

Intrntionl Journl o Comintoris 7 14 7 Conlit o Intrsts 3 33 3 14 Figur 7: Th rution o Γ(Z 42 ). Th uthors lr tht thr is no onlit o intrsts rgring th pulition o this ppr. [8] N. Bloomil n C. Wikhm, Lol rings with gnus two zro ivisor grph, Communitions in Algr, vol. 38, no. 8, pp. 2 0,. [] Q. Liu n T. Wu, On zro-ivisor grphs whos ors ontin no rtngls, Algr Colloquium, vol.,no.4,pp.7 84, 11. [] J. Skowronk-Kziów, Som igrphs rising rom numr thory n rmrks on th zro-ivisor grph o th ring Z n, Inormtion Prossing Lttrs,vol.8,no.3,pp.1 1,08. [11] H.-J. Wng, Zro-ivisor grphs o gnus on, Journl o Algr,vol.4,no.2,pp. 78,0. [] C. Thomssn, Th grph gnus prolm is NP-omplt, Journl o Algorithms, vol., no. 4, pp. 8 7, 18. [13] N. O. Smith, Plnr zro-ivisor grphs, Intrntionl Journl o Commuttiv Rings,vol.2,pp.177 8,03. [14] N. O. Smith, Ininit plnr zro-ivisor grphs, Communitions in Algr,vol.,no.1,pp.171 0,07. [] H. Ching-Hsih, N. O. Smith, n H. Wng, Commuttiv rings with toroil zro-ivisor grphs, Houston Journl o Mthmtis,vol.,no.1,pp.1 31,. [1] C. Wikhm, Clssiition o rings with gnus on zroivisor grphs, Communitions in Algr, vol.,no.2,pp. 3, 08. [17] A. T. Whit, Grphs, Groups n Surs, North-Holln Mthmtis Stuis, North-Holln, Amstrm, Th Nthrlns, 184. Aknowlgmnts Th uthors thnk th nonymous rrs or thir vry rul ring o th ppr n or thir mny vlul ommntswhihimprovthppr.thisworkwssupporty th Ntionl Nturl Sin Fountion o Chin (1110) n th Gungxi Eution Committ Rsrh Fountion (LX14223). Rrns [1] I. Bk, Coloring o ommuttiv rings, Journl o Algr, vol. 11, no. 1, pp. 8 22, 188. [2] D. F. Anrson n P. S. Livingston, Th zro-ivisor grph o ommuttivring, Journl o Algr,vol.7,no.2,pp.434 447, 1. [3] D. F. Anrson, M. C. Axtll, n J. A. Stikls Jr., Zro-ivisor grphs, in ommuttiv rings, in Commuttiv Algr, Nothrin n Non-Nothrin Prsptivs,pp.23,Springr,Nw York, NY, USA, 11. [4] M. C. Axtll, N. Bth, n J. A. Stikls, Cut vrtis in zroivisor grphs o init ommuttiv rings, Communitions in Algr,vol.3,no.,pp.7,11. [] D. F. Anrson, A. Frzir, A. Luv, n P. S. Livingston, Th zro-ivisor grph o ommuttiv ring, II, Ltur Nots in Pur n Appli Mthmtis, vol. 2, pp. 1 72, 01. [] S. Akri, H. R. Mimni, n S. Yssmi, Whn zroivisor grph is plnr or omplt r-prtit grph, Journl o Algr,vol.0,no.1,pp.1 0,03. [7] R. Blsho n J. Chpmn, Plnr zro-ivisor grphs, Journl o Algr,vol.31,no.1,pp.471 480,07.

Avns in Oprtions Rsrh Avns in Dision Sins Journl o Appli Mthmtis Algr Journl o Proility n Sttistis Th Sintii Worl Journl Intrntionl Journl o Dirntil Equtions Sumit your mnusripts t Intrntionl Journl o Avns in Comintoris Mthmtil Physis Journl o Complx Anlysis Intrntionl Journl o Mthmtis n Mthmtil Sins Mthmtil Prolms in Enginring Journl o Mthmtis Disrt Mthmtis Journl o Disrt Dynmis in Ntur n Soity Journl o Funtion Sps Astrt n Appli Anlysis Intrntionl Journl o Journl o Stohsti Anlysis Optimiztion