Effect of uniform and gradient thermal loadings on cylindrical steel reservoirs (analytical investigation)

Similar documents
An Analytical Solution for Hoop Tension in Liquid Storage Cylindrical Tanks

The University of Melbourne Engineering Mechanics

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

2012 MECHANICS OF SOLIDS

Behavioral Study of Cylindrical Tanks by Beam on Elastic Foundation

Downloaded from Downloaded from / 1

COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS

Analytical Strip Method for Thin Isotropic Cylindrical Shells

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

Chapter 3. Load and Stress Analysis

Lecture 8. Stress Strain in Multi-dimension

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes)

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1

Advanced Structural Analysis EGF Cylinders Under Pressure

The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force

A *69>H>N6 #DJGC6A DG C<>C::G>C<,8>:C8:H /DA 'D 2:6G - ( - ) +"' ( + -"( (' (& -+" % '('%"' +"-2 ( -!"',- % )% -.C>K:GH>IN D; AF69>HH>6,-+

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES

FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS

Practice Final Examination. Please initial the statement below to show that you have read it

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

Parametric Identification of a Cable-stayed Bridge using Substructure Approach

Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee

FINITE GRID SOLUTION FOR NON-RECTANGULAR PLATES

Rigid pavement design

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

TABLE OF CONTENTS SECTION TITLE PAGE 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

Strength of Material. Shear Strain. Dr. Attaullah Shah

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:

Calculation of Thick-walled Shell Taking into Account Nonlinearity and Temperature Inhomogeneity of the Concrete at Subzero Temperatures

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE

Simulation of Geometrical Cross-Section for Practical Purposes

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads

ENG1001 Engineering Design 1

N = Shear stress / Shear strain

Analysis of thermal effects in grouped silos of grain elevators

Semi-Membrane and Effective Length Theory of Hybrid Anisotropic Materials

Lecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction

Aluminum shell. Brass core. 40 in

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

GATE SOLUTIONS E N G I N E E R I N G

SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE

PRESSURE VESSELS & PRESSURE CABINS FOR BLENDED WING BODIES

Generation of Biaxial Interaction Surfaces

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS

Vertical acceleration and torsional effects on the dynamic stability and design of C-bent columns

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Torsion - I

STATICALLY INDETERMINATE STRUCTURES

Longitudinal buckling of slender pressurised tubes

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

AEROELASTIC ANALYSIS OF COMBINED CONICAL - CYLINDRICAL SHELLS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

MATERIAL PROPERTIES. Material Properties Must Be Evaluated By Laboratory or Field Tests 1.1 INTRODUCTION 1.2 ANISOTROPIC MATERIALS

Analysis of Open Circular Reinforced Concrete Shell Roof with Curved Edge Simply Supported

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati

Back Calculation of Rock Mass Modulus using Finite Element Code (COMSOL)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

Analysis of a portal steel frame subject to fire by use of a truss model

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION

Unit I Stress and Strain

THERMOELASTIC ANALYSIS OF THICK-WALLED FINITE-LENGTH CYLINDERS OF FUNCTIONALLY GRADED MATERIALS

Evaluation of the behaviour of an arch-gravity dam. featuring a pre-existing crack

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL

MECHANICS OF MATERIALS

Self-weight loading of horizontal hydraulic cylinders with axial load

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1

Study of the transitional shift between plates and shallow shells

THEME A. Analysis of the elastic behaviour of La Aceña arch-gravity dam

Cone-shaped socket connections for cylindrical members

A new computational method for threaded connection stiffness

Structural Analysis I Chapter 4 - Torsion TORSION

Only for Reference Page 1 of 18

NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS

Members Subjected to Torsional Loads

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Large Thermal Deflections of a Simple Supported Beam with Temperature-Dependent Physical Properties

3-D Finite Element Modelling of a High Pressure Strain Gauge Pressure Transducer. M. H. Orhan*, Ç. Doğan*, H. Kocabaş**, G.

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density

MECHANICS OF SOLIDS Credit Hours: 6

NAME: Given Formulae: Law of Cosines: Law of Sines:

Transcription:

Journal of Civil Engineering and Construction Technology Vol. (3), pp. 9-3, March 13 Available online at http://www.academicjournals.org/jcect DOI:.597/JCECT1.91 ISS 11-3 13 Academic Journals Full Length Research Paper Effect of uniform and gradient thermal loadings on cylindrical steel reservoirs (analytical investigation) Mohammad Ebrahim Karbaschi ational Iranian Oil Company (IOC), Iran. E-mail: karbaschi.mohammadeb@gmail.com. Accepted 5 February, 13 Circular steel reservoirs are used extensively for storing petroleum products, water and grains. Additional to uniform thermal loading, gradient thermal loading from sunshine varying angle during day and various seasons is one of important loadings that should be taken into account in design of these reservoirs. In this paper, using finite element modeling of cylindrical steel reservoirs with various height-to-diameter ratios with constant volume of reservoirs, thermal loading in two forms, uniform and gradient loads are applied, and, induced displacement and stresses are compared. Key words: Steel reservoirs, finite element modeling, thermal load, gradient load. ITRODUCTIO Circular reservoirs are extensively applied for storing liquids such as oil, water, wheat grains, etc. Usually these reservoirs are constructed from concrete or steel material and in circular or cubic forms. As interesting geometrical shape and wide application of cylindrical reservoirs, main researches on the storing reservoirs were focused on this form. In the field of effects of hydrostatic and seismic loads on reservoirs, numerous researches have been performed in previous researches/studies (Iranian building code 13, Iranian building code 31, ASI A5.1, ACI 31-39) and their results are rebounded in design codes (Salajegheh et al., 7; Fan and Jibin, 199; Tedesco and Landis, 19). Thermal loading defined in the form of temperature loading (ΔT) is one of the important loading types behind hydrostatic, soil pressure and seismic loads which is pointed out in building codes (Iranian building code 31, ASI A5.1, ACI 31-39). As some code recommendations, expansion joints and sliding restraint are suitable choices that would reduce thermal stresses considerably but, because of difficulties in water proofing joints of wall to foundation or walls together, applying these methods are becoming limited in practice. In circular reservoirs like other radial symmetric structures, in addition to uniform thermal loading, gradient thermal loading on wall- as a function of varying sunshine angle during day and various seasons- is one of the important loading types in design of these reservoirs whose importance is pointed out in some design codes (Iranian building code 13, Iranian building code 31). Although effects of uniform and gradient thermal loadings are investigated in some structural systems (Karbaschi et al., 11; Alinia and Kashizadeh, a, b), they are rarely studied for cylindrical reservoirs (Dehghan and Dehghani, 11; Hoff et al., 19). The main aim of this research is to analytically investigate effect of uniform and gradient thermal loadings on induced stresses and displacements of steel reservoirs and effect of height to diameter ratio is regarded as an important parameter on the results. In this way, finite element modeling of cylindrical steel reservoirs with various height to diameter ratios (H/D) with a constant volume of reservoir, is carried out and hydrostatic pressure and thermal loads in the forms of uniform and gradient are applied on the models as a function of radius-angle and results of analyses are compared with each other. METHODS OF STUDY Finite element modeling of steel reservoirs is carried out in SAP software. Four nodes, thin-shell element is applied for modeling wall and roof elements. Reservoirs were modeled in two forms; with and without roof. Their typical forms are shown in Figure 1. Volume of all reservoirs was assumed to be constantly 5 m 3. Height and diameter of four investigated models are shown in

Karbaschi 91 Figure 1. Finite element modeling of cylindrical reservoirs, without roof, with roof. Figure (1): finite element Table 1. Height and diameter of steel models. Model number Diameter (m) Height/Diameter 1 3 1.5 5.. 3.. 3..1 Table. Property of steel reservoir models. Module of F Y (yield stress) (Poisson (Thermal Thickness Restraint elasticity (/m ) /m Ratio) coefficient) (cm) condition 11 5.3 1.17-5 Simply support Table 1. Material property, thickness of elements and support conditions were assumed as presented in Table. Loading types For analyzing two thermal loading types the following procedures are regarded. Hydrostatic pressure To compare node displacements under thermal loadings with hydrostatic pressures, it is assumed in individual analyses that steel reservoirs are full of oil and the hydrostatic pressure is applied as P=γh where; P is hydrostatic pressure, γ is oil density ( kg/m 3 ) and h is height of oil above the reference point. Due to wide application of cylindrical reservoirs for storing oil and other petroleum products, this liquid is regarded for investigating effect of hydrostatic pressure. Uniform temperature This type of thermal loading is simplest and has a usual form for applying thermal loading. Its value is assumed to be similar for inner and outer layers of shell elements in the analyses. Schematically, state of reservoir in this state is illustrated in Figure a. Value of temperature is assumed to be C for on-ground reservoirs according to the report from Water Concrete structures, 5. This type of loading is applied for with and without roof models. Gradient temperature as a function of radius angle In building codes (Iranian building code 31), it was stated that effect of non-uniform sunshine (inclined sun-shine) must be regarded appropriately in design of cylindrical reservoirs. For applying thermal loading that is induced from inclination in radiation to the object (Figure ) gradient thermal model is defined as T Cos( ) equation. Thus, there is maximum T T 1 temperature in shining side and the minimum value in backside; this decrease in temperature would be in the form of a gradient function with increasing radial angle (β). Maximal and minimal temperatures in this case are supposed to be 5 and 35 C respectively that its average would be similar to uniform case of C. For simplification, this case only was regarded for without roof reservoirs. Though difference between front and backside of reservoir may be more than C or maximum temperature might exceed 5 C in the actual state (especially in the case that reservoir is empty), for comparing result of analyses under this type

9 J. Civ. Eng. Constr. Technol. Figure. Schematic figure for shining direction and induced thermal loadings in uniform and gradient cases. of loading with uniform thermal loading case, it was assumed that average of temperature is C just as the uniform case. As thin thickness of walls in the steel reservoirs, effect of gradient thermal loading in the thickness is ignorable. AALYSIS Analyses are carried out statically under various forms of loading types as aforementioned loading types. To investigate effect of thermal loading, various parameters are studied as follows: Radial base shear Radial base shear value for unit length of wall restraints for various H/D was the same in both states including with and without roof cases under uniform thermal load. Value of radial base shear for various models for unit length of wall restraints are 5,., 3.9 and 39 (k/m) for height/diameters as.5,.,. and.1. Results of analyses show that with decrease in H/D and the constant volume of reservoir, base shear will decrease in unit length of restraint. Displacements Wall node displacements under hydrostatic oil pressures, uniform and gradient thermal loadings are compared for various models in Figure. Uniform thermal load was applied on with and without roof reservoirs but two other loading types were applied only for without-roof state. Applying gradient thermal loading for with-roof reservoirs with defined equation in Figure 3 may take unrealistic thermal load distribution, and, in order to simplify this case, the respective loading was only applied for withoutroof reservoirs. In the cases such as hydrostatic and uniform thermal loadings in the cylindrical reservoirs where geometrical and loading symmetry exist, wall node displacements have direct relation with induced hoop stress in the wall elements. So, general form of wall deformation would conduct us to hoop stresses directly. But in gradient thermal loading case loading is not symmetrical and there would be inducing asymmetric stresses and moments. General form of reservoir deformation is shown in Figure. Schematic deformation under uniform and gradient thermal loading is illustrated in Figure 5. As asymmetrical gradient case, displacements and stresses are compared for A and B axes as Figure displays. Condition of node and element numbering were as shown in Figure 7. By comparing (9 and 1) diagrams, following conclusions can be inferred; 1) With increase in H/D, displacements of wall nodes will increase. Maximum of node displacements are in the height near to one meter from wall restraint for various H/D. ) As a general rule, with increasing H/D, displacements will decrease in uniform and gradient thermal loading cases. Maximum wall node displacements in all analyses were near to wall restraint and in a constant height for various H/D ratios. 3) In the gradient thermal loading case, displacement of nodes in A-axis is about 1.5 times greater than B-axis. Stresses o stress would be induced in cylindrical reservoirs with sliding restraints under uniform thermal loading. General relation for thermal strain is as (1). Schematic figure for positive directions of moment and axial stresses in a shell element is shown in Figure 9. Therefore, delta (Figure )

Karbaschi 93 Figure 3. Defined function for applying gradient thermal loading. Figure. Deformation of number () model under gradient thermal loading.

9 J. Civ. Eng. Constr. Technol. Figure 5. Deformed shape of cylindrical reservoirs under uniform and gradient thermal loadings. Figure. A and B axes in gradient loading case. Figure 7. ode and element numbering of reservoirs. for sliding support condition would be calculated using relation (). If cylinder is confined against radial deformations, induced stresses would be evaluated using relation (3). Meanwhile, under hydrostatic pressures with sliding restraints condition, ST-11 stresses will be induced in shell elements whose value would be determined via relation (). As shown in Figure 11, induced ST-11 stresses in cylindrical reservoirs under uniform loadings have direct relation with its deformations. L T (1) D T delta () delta E ST 11 D P D ST 11 () T (3)

Height (m) Karbaschi 95 1 1 1 1 1 o.1 o.1 o. o. o.1 o. o. o. o. 1 o.1 o.1 o. o. o.1 o. o. o. o..1..3..5..1..3..5..1. odes displacements odes.3 displacements. (m) (m).5......1.....1. odes.displacements odes displacements. (m) (m)..1 1 1 1 o.1 o.1 o.1 o. o. o. o. 1 1 1 o.1 o.1 o.1 o. o. o. o. o. o..........1.1... odes (m)..1 (c) (c) (c).1.1..3..5...7.7...1. odes.3..5 displacements (m)..7. (d) (d) Figure. Displacement of wall nodes of without roof models, under oil pressure loading, wall nodes under uniform thermal loading, (c) A axe of wall nodes under gradient thermal loading (d) B axe of wall nodes under gradient thermal loading. Because of restraint confinement, we have M-11 resultant moments in all loading cases. In the case of gradient thermal loading, M- moment forces exist that are not present in two other forms of loading due to symmetry in the applied loads. Investigating results of analyses carried out have shown that in the cylindrical reservoirs, induced moments in two cases of thermal loadings are very small. Induced ST-11 and ST- stresses for various models as Table 1 under oil pressure, uniform and gradient thermal loadings are compared in Figures 1 and 13. In these figures, plus sign represents tension and minus indicates compression stresses. Because of error of programs in centralization of stresses in restraint elements, stresses are analyzed from node () of second element as shown in Figure 7. 1) Under hydrostatic oil pressure with increasing H/D ratio, induced ST-11 and ST- will also increase. ) As a general rule, there exist compressions ST- stresses in bottom pattern of wall in all loading cases that may cause local buckling in wall shell elements. 3) General form of ST-11 stresses under thermal loadings is same as in decreasing sinuses wave. Meanwhile, induced ST-11 compression values are not considerable. ) Maximum value of induced tension stresses in 1 and directions under two forms of thermal loadings for all analyzed models were similar. 5) In the case of the gradient thermal loading, induced ST- stresses in A and B axes were similar but, ST-11 stresses in A axe were much greater than B axe. ) Generally, induced ST-11 stresses under hydrostatic

9 J. Civ. Eng. Constr. Technol. oil pressure are much greater that thermal loadings but in the ST- case, they are similar. Effect of restraint condition Figure 9. Axial stresses and moment forces of shell elements. To investigate effect of wall restraint conditions on wall node displacements and induced stresses in element, analyses performed for number (1) and () models under uniform thermal loading with simple and clamped restraint conditions. In simply support condition, restraint nodes rotation were realized but their translations were fixed but in clamped state all rotations and translations were fixed. Results of analyses are observed in Figures 1 and 15. These analyses suggest that as a general rule, increase in rotation confinement in wall restraints will reduce wall nodes displacement, and in result, hoop tension stresses. Also, increase in confinement will increase M-11 value and will change its sign in the restraint pattern. Effect of temperature value To investigate effect of temperature value in thermal loading on results of analyses, four temperature loads as T=,, 3 and C were applied on number (1) and () models. Wall node displacements for two models are compared in Figures 1 and 17. These analyses reveal the fact that displacements and stresses have linear relationship with increase in temperature for various rise-to-span ratios. Consequently, if they are in hand for a certain temperature, they can be calculated for other temperature loading cases using linear interpolation. Effect of wall thickness Taking into account that higher price of steel plates and exceeding weight and expenditures are caused by increase in thickness of the plates used, choosing appropriate thickness in design of circular reservoirs is very important. Main factor in choosing thickness are strength against induced stresses and stability against buckling. Displacement of wall nodes and induced ST-11 stresses in number (1) and () models are compared for,, and centimeter wall thicknesses in Figure 1. Through comparing diagrams the following conclusions can be expressed: Figure. Deformation of wall under uniform thermal loading with sliding and simply restraint conditions. 1) As a general rule, decrease in wall thickness will increase wall nodes displacements in low height, and, increasing height will increase displacements under uniform thermal loading assuming constant volume of reservoir.

Karbaschi 97 Figure 11. Cylindrical reservoirs under uniform internal pressure. : hydrostatic pressure on walls : ST-11 stresses in wall.

9 J. Civ. Eng. Constr. Technol. Stress (kg/cm - ) Stress (kg/cm - ) 5 15 Stress (kg/cm - ) (c) Stress (kg/cm - ) (d) Figure 1. Wall nodes stresses under : ST ST-11 stresses under oil pressure, : ST- stresses under oil pressure, (c): ST- stresses uniform thermal loading, (d): ST-11 stresses under uniform thermal loading.

Karbaschi 99 Stress (kg/cm - ) Stress (kg/cm - ) Stress (kg/cm - ) (c) Stress (kg/cm - ) (d) Figure 13. Wall nodes stresses under gradient thermal loading ST-11 stresses of A axe, ST- stresses of A axe, (c) ST-11 stresses of B axe, (d) ST- stresses of B axe.

Height (m) Height (m) J. Civ. Eng. Constr. Technol. 1 1 1 1 1 1 1 1 1 o.1 o.1 o.1 o. o. o. o. 1 1 1 (b 1 1 o.1 o.1 o.1 o. o. o. o..1......3....5....1.1.1.1...3.1.....3.......5.....1..1...1.. odes (m) (m) odes d.1. odes displacements odes.3...1 odes displacements. (m).5.. (m) (m) odes displacements odes displacements (m) (m) Figure 1. Displacement of number 1 and model wall nodes with simply and clamped restraint condition under uniform thermal loading. (c) (c) (c) o.1 o.1 o. o. o.1 o. o. o. o. 1 1 1 1 1 1 1 1 1 1 o.1 o.1 o.1 o. o. o. o. o o.........1.1.....1 odes (m) Figure 15. M-11 of number 1 and model wall nodes with simply and clamped restraint condition under uniform thermal loading. (c) (c) (c).1.1...1

(m) (m) Karbaschi 1 1 T= T= T=3 T=.1..3..5..7 Figure 1. Displacement of number 1 model wall nodes under various value of uniform thermal loading. 5 T= T= 3 T=3 T= 1.....1 Figure 17. Displacement of number model wall nodes under various value of uniform thermal loading.

Element umber Element umber (m) (m) J. Civ. Eng. Constr. Technol. 1 Thickness=cm Thickness=cm Thickness=cm 5 Thickness=cm Thickness=cm Thickness=cm thickness=cm Thickness=cm 3 1.1..3..5..7.... 1 11 9 7 t=cm t=cm t=cm t=cm 5.5 5.5 t=cm t=cm t=cm t=cm 5 3.5 3 3.5-5 5 15 5 3-5 5 15 5 Stress stress (kg/cm (kg/cm^) - ) Stress stress (kg/cm (kg/cm^) - ) (c) (d) Figure 1. Displacement of wall nodes under uniform thermal loading with various wall thickness for model 1, model, (c) model 3, (d) model. wall elements. ISOC, for his supports. ACKOWLEDGMETS Author would like to thank ational Iranian oil company (IOC) and ational Iranian South Oil Company (ISOC) for their help and financial support and Mr. S. Taghavipour, the Geology Assistance Manager of the REFERECES Alinia MM, Kashizadeh S (a). "Effect of flexibility of substructures upon thermal behaviour of spherical double layer space truss domes. Part I: Uniform thermal loading". J. Constr. Steel Res. :359 3. Alinia MM, Kashizadeh S. "Effect of flexibility of substructures upon thermal behavior of spherical double layer space truss domes. Part II: Gradient & partial loading". J. Constr. Steel Res. :75 1.

Karbaschi 3 Dehghan AA, Dehghani AR (11). Experimental and theoretical investigation of thermal performance of underground cold-water reservoirs. Int. J. Therm. Sci. 5(5):1. Design and Calculations of On Ground Reservoirs (1995). Building code 13, th edition, management organization of country (IRA. Fan J, Jibin L (199). Dynamic stability of liquid storage cylindrical tanks subjected to horizontal seismic load excitation. J. Appl. Math. Model. 1(7):373-33. Hoff J, Chao CC, Madsen WA (19). Buckling of a thin-walled circular cylindrical shell heated along and axial strip. J. Appl. Mech. 31:53-5. Karbaschi ME, Goudarzizadeh R, Hedayat (11). "Efficiency of posttensioning method for seismic retrofitting of pre-cast cylindrical concrete reservoirs. Proc. 73 th World Academy of Science and Technology, AUS, Doubei, pp. 1-5. Minimum Design Loads for Buildings and Other Structures (ASI A5.119). American ational Standard. otes on ACI- 31-9 (199). Portland Cement Association. Salajegheh J, Fan J, Jibin L, Tedesco W, Landis W (7). Design of on ground water reservoirs. Kerman University Publications. Structural Analysis Program (SAP) (). onlinear version 1. Structural analysis program. Berkeley (CA): Computers and Structures Inc., 9. Tedesco, W, Landis W (19). Seismic analysis of cylindrical liquid storage tanks. J. Comput. Struct. 3(5):115-117. Ugural AC (1999). Stresses in plates and shells, Second Edition. Mc Graw-Hill. Water Concrete Structures (5). Building code 31, 9 th edition management organization of country (IRA).