Al- Mustansiriyah J. Sci. Vol. 24, No 5, 2013

Similar documents
International Journal of Mathematical Archive-5(7), 2014, Available online through ISSN

Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Minimax Estimation of the Parameter of Maxwell Distribution Under Different Loss Functions

Estimation of Gumbel Parameters under Ranked Set Sampling

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution

Record Values from T-X Family of. Pareto-Exponential Distribution with. Properties and Simulations

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

Bayes Estimators for the Shape Parameter of Pareto Type I. Distribution under Generalized Square Error Loss Function

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

Random Variables, Sampling and Estimation

Unbiased Estimation. February 7-12, 2008

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

Comparison of Methods for Estimation of Sample Sizes under the Weibull Distribution

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s)

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

Bayesian Methods: Introduction to Multi-parameter Models

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1

Surveying the Variance Reduction Methods

A Method of Proposing New Distribution and its Application to Bladder Cancer Patients Data

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

A New Distribution Using Sine Function- Its Application To Bladder Cancer Patients Data

Introducing a Novel Bivariate Generalized Skew-Symmetric Normal Distribution

A statistical method to determine sample size to estimate characteristic value of soil parameters

ESTIMATION AND PREDICTION BASED ON K-RECORD VALUES FROM NORMAL DISTRIBUTION

Lecture 19: Convergence

SYSTEMATIC SAMPLING FOR NON-LINEAR TREND IN MILK YIELD DATA

Lecture 33: Bootstrap

Parameter Estimation In Weighted Rayleigh Distribution

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

1.010 Uncertainty in Engineering Fall 2008

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

Modeling and Estimation of a Bivariate Pareto Distribution using the Principle of Maximum Entropy

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Expectation-Maximization Algorithm.

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

Approximate Confidence Interval for the Reciprocal of a Normal Mean with a Known Coefficient of Variation

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

On stratified randomized response sampling

Trimmed Mean as an Adaptive Robust Estimator of a Location Parameter for Weibull Distribution

The (P-A-L) Generalized Exponential Distribution: Properties and Estimation

On an Application of Bayesian Estimation

Discriminating between Generalized Exponential and Gamma Distributions

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

Estimating the Population Mean using Stratified Double Ranked Set Sample

ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

POWER AKASH DISTRIBUTION AND ITS APPLICATION

Exponential Families and Bayesian Inference

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

Estimation of the Mean and the ACVF

Stat 319 Theory of Statistics (2) Exercises

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Approximating the ruin probability of finite-time surplus process with Adaptive Moving Total Exponential Least Square

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation

A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution

Expectation and Variance of a random variable

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

Lecture 2: Monte Carlo Simulation

Because it tests for differences between multiple pairs of means in one test, it is called an omnibus test.

Estimating Confidence Interval of Mean Using. Classical, Bayesian, and Bootstrap Approaches

Department of Mathematics

Asymptotic distribution of products of sums of independent random variables

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

Estimation of Population Mean Using Co-Efficient of Variation and Median of an Auxiliary Variable

An Introduction to Randomized Algorithms

Estimation for Complete Data

A NEW METHOD FOR CONSTRUCTING APPROXIMATE CONFIDENCE INTERVALS FOR M-ESTU1ATES. Dennis D. Boos

Bayesian Control Charts for the Two-parameter Exponential Distribution

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

CHAPTER 4 BIVARIATE DISTRIBUTION EXTENSION

A proposed discrete distribution for the statistical modeling of

Estimation of a Mixture of Two Weibull Distributions under Generalized Order Statistics

The new class of Kummer beta generalized distributions

Testing Statistical Hypotheses for Compare. Means with Vague Data

Lecture 11 October 27

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling

CONTROL CHARTS FOR THE LOGNORMAL DISTRIBUTION

Lecture 11 and 12: Basic estimation theory

Basis for simulation techniques

Simulation. Two Rule For Inverting A Distribution Function

M-Estimators in Regression Models

Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

Chapter 6 Principles of Data Reduction


Confidence Intervals for the Coefficients of Variation with Bounded Parameters

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes

Control Charts for Mean for Non-Normally Correlated Data

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

Monte Carlo method and application to random processes

Provläsningsexemplar / Preview TECHNICAL REPORT INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Expected Number of Level Crossings of Legendre Polynomials

Non-Bayes, Bayes and Empirical Bayes Estimators for the Shape Parameter of Lomax Distribution

Transcription:

Al- Mustasiriyah J. Sci. Vol. 24, No 5, 23 Usig Etropy Loss Fuctio to Estimate the Scale Parameter for Laplace Distributio Huda A. Rasheed, Akbal J. Sulta ad Nadia J. Fazah Departmet of Mathematics, college of Sciece, AL Mustasiriya Uiversity Received 2/4/23 Accepted 5/9/23 الخالصة يهدف هذا البحث الى ايجاد أفضل مقدر لمعلمة القياس لتوزيع البالس باستخدام دالة Etropy للخسارة مع دوال اسبقية معلوماتية وغير معلوماتية. لقد تمت المقارنة بين أداء هذه المقدرات مع أداء مقدرات بيز تحت دالة الخسارة التربيعية المعدلة مع نفس دالتي األسبقية تبعا لمتوسط مربعات الخطأ (MSE's). أظهرت النتائج أن مقدر بيز تحت دالة Etropy للخسارة مع دالة اسبقية معكوس كاما كان األفضل عند احجام العينات المتوسطة والكبيرة بينما المقدر تحت التربيعية المعدلة مع دالة اسبقية كاما كان األفضل مع احجام العينات الصغيرة في حالة كون معلمة القياس ذات قيمة صغيرة. ABSTRACT The object of the preset paper is fidig the best estimator for the scale parameter of Laplace distributio usig Etropy loss fuctio with iformative ad oiformative priors are preseted ad compared with bayes estimators uder Modified quadratic loss fuctio with the same two priors. The compariso was made o the performace of these estimators with respect to the mea square error (MSE). The results showed that the Bayes' estimator uder Etropy loss fuctio with Iverted Gamma is the best estimator with a moderate ad large sample sizes while the estimator uder Modified quadratic loss fuctio was better with small sample sizes ad whe the scale parameter has a small value. INTRODUCTION I Bayesia aalysis the ukow parameter is regarded as beig the value of a radom variable from a give probability distributio, with the kowledge of some iformatio about the value of parameter prior to observig the data x, x 2 x. The object of the preset paper is to obtai Bayesia estimates of the scale parameter for Laplace distributio usig Etropy loss fuctio with iformative ad o-iformative priors. The compariso was based o a Mote Carlo study. The efficiecy for the estimators was compared accordig to the mea square error (MSE). Bayes' Estimators Let x, x 2,, x be a radom sample of size, the items have a idepedet ad idetically Laplace distributio, with probability desity fuctio give by [] : f(x a, b) = 2b x a exp [ ] < x < () b < a <, b > Where a is the locatio parameter ad b is the scale parameter. Bayes' estimators for the scale parameter b was cosidered with Etropy loss fuctio ad Modified quadratic loss fuctio with iformative loss 253

Usig Etropy Loss Fuctio To Estimate The Scale Parameter For Laplace Distributio Huda, Akbal ad Nadia fuctio represeted by Iverted Gamma prior ad o-iformative prior which represeted by Jeffrey prior.. Bayes estimator uder etropy loss fuctio Etropy loss fuctio was first itroduced by James ad Stei for the estimatio of the Variace-Covariace (i.e., Dispersio) matrix of the Multivariate ormal distributio. Dey et al. [3],[7] cosidered this loss fuctio for simultaeous estimatio of scale parameters ad their reciprocals, for p idepedet gamma distributios. Rukhi ad Aada cosidered the estimatio problem of the variace of a Multivariate Normal vector uder the Etropy loss ad Quadratic loss.[7] We cosider the etropy loss fuctio of the form:[6] L(b, b ) = w [( b ) l (b ) ], w > o (2) b The the Bayes estimator of b is:[6] b b = [E ( b X) ] (3) Where E ( b X) = b h(b X)db h(b X) is the posterior distributio. Now, accordig to Etropy loss fuctio we will estimate the scale parameter for Laplace distributio usig iformative ad o iformative priors as follows: (i) Posterior distributio usig Iverted Gamma prior (IG) Assumig that b has iformative prior as Iverted Gamma prior which takes the followig form [4] : g (b) = αβ. Γβ b β+ e-(α b), α, β, b> (4) So, the posterior distributio for the parameter b give the data (x, x 2, x ) is: f(x i b)g (b) h (b X) = ( = ( π i= π i= f(x i b)g (b)db b (+β+))e b i= b (+β+))e b i= x i a +α x i a +α db b i= = x i a +α +β. /b (+β+). e Γ( + tβ) x i a +α +β ( + β)b (+β+) e The the posterior distributio became as follows: b i= x i a +α x i a +α db 254

Al- Mustasiriyah J. Sci. Vol. 24, No 5, 23 h (b X) = ( x i a + α) +β. e b i= x i a +α b (+β+) Γ( + β) Now, otice that b~ig( + β, ( x i a ) + α ) Let T = b Thus T~ G( + β, /( x i a ) + α ) ad E(T X) = [ (5) +β ] ( i= x i a )+α Accordig to the Etropy loss fuctio, the correspodig Bayes' estimator for b is such that: b = [E(T X)] = [ b = i= x i a + +β ] ( i= x i a ) = i= x i a + +β + β (ii) posterior distributio usig Jeffery prior. Followig the form of Jeffrey prior iformatio [] : g 2 (θ) = k θ c, with k a costat, c R+ (7) I the same way, the posterior distributio with Jeffrey prior iformatio will be as follows: h 2 (b X) = b +c e b ( i= x i a ) b +c e b ( i= x i a ) db ( i= x i a ) +c. = b +c e b ( i= Γ( + c ) ( x i a ) +c Γ( + c )b+c. e ( i= x i a ) +c. h 2 (b X) = b +c e b ( i= Γ( + c ) b~ig( + c ), ( i= x i a ) Let T = b Thus, T~G ( + c, ) ( i= x i a ) (6) x i a ) b ( i= x i a ) db x i a ) Hece, accordig to the Etropy Loss Fuctio we get: b 2 = ( i= x i a ) (9) + c 2. Bayes estimator uder Modified Quadratic Loss Fuctio For the estimatio of the scale parameter of Laplace distributio, a modified form of this loss fuctio may be defied as follows:[] L(θ, θ ) = ( θ θ θ )2 () (8) 255

Usig Etropy Loss Fuctio To Estimate The Scale Parameter For Laplace Distributio Huda, Akbal ad Nadia b = E ( b X) E ( b 2 X) () (i) Posterior distributio usig Iverted Gamma prior (IG) To estimate the scale parameter for Laplace distributio usig Iverted Gamma prior uder modified quadratic loss fuctio we use h (b X) where: b~ig( + β, ( x i a ) + α ) Ad we foud that: T~G ( + β, ), where T = b i= x i a + β E(T) = (2) ( x i a )+ + β var(t) = ( i= x i a + ) 2 Hece: E(T 2 + β ) = x i a + ) 2 + ( + β) 2 x i a + ) 2 (3) ( i= ( i= ( E(T 2 + β)( + + β) ) = ( i= x i a + ) 2 Accordig to (): b 3 = E(T) E(T 2 (4) ) Substitutig (2) ad (3) i (4), we get: + β b 3 = i= x i a + ( + β)( + + β) x i a + ) 2 ( i= b 3 = i= x i a + (5) + β + (ii) Posterior distributio usig Jeffery prior. The correspodig Bayes estimator for b with posterior distributio h 2 (b x) comes out as: T~G ( + c, ( ), where T = b i= x i a ) + c E(T) = ( (6) i= x i a ) + c var(t) = ( i= x i a ) 2 Thus: E(T 2 ) = (+c )(+c) ( i= x i a ) 2 (7) Substitutig (6) ad (7) i (3), we fid: 256

Al- Mustasiriyah J. Sci. Vol. 24, No 5, 23 b 4 = ( i= x i a ) + c (8) Simulatio Results I this sectio, Mote Carlo simulatio study is performed to compare the methods of estimatio by usig mea square Errors (MSE s) as follows: MSE(b ) = R (b i b) 2 i= R Where R is the umber of replicatios. We geerated R=3 samples of size =, 2, 5, ad 3 to represet small, moderate ad large sample sizes from Laplace distributio with the scale parameter b =, 2. I order to compare the Bayes' estimators uder two differet loss fuctios ad two priors, we chose the values of Jeffrey costats; (c =.5, 2, 3) ad for the Iverted Gamma prior (α=.5, 3) with β = 2. The results were summarized ad tabulated i the followig tables for each estimator ad for all sample sizes. Table-: Expected values ad MSE of the differet estimators for Laplace distributio whe b= ad β =2 criteria b b 2 b 3 b 4 α =.5 α = 3 c=.5 c=2 c =3 α =.5 α = 3 c=.5 c=2 c EXP. MSE.968.77.858.776.55.5 7.9.9 8.8358.972.8869.726.27.598.955.93 2.8358.972.7. 2 EXP..89.483.28.955 3.99.9375.27.978 7.99.8 MSE.432.452.55 8.48 3.56.43.392.49 6.56. 5 EXP..995.94. 3.989.967.978..99 8.967.9 MSE.87.89.2 2.9 5.2.87.79.9 2.28. 3 EXP..9989.39.2 6.997 7.9939.9956.5.998 8.9939.9 2 2 9 MSE.34.33.3.3.33.33.33.3.33. Table-2: Expected values 6 ad MSE 4 of the differet 3 estimators 9 for Laplace 3 4 distributio whe b=2 ad β =2 Criteria b b 2 b 3 b 4 α =.5 α = 3 c=.5 c=2 c =3 α =.5 α = 3 c=.5 c=2 2 5 3 EXP..7966.926 2.5.8235.676.6584.7738.94.676 MSE.3222.2869.464.3653.3886.3559.294.3748.3886 EXP..899.962 2.582.97.8238.897.8749.9573.8238 MSE.829.729.225.959.223.929.724.99.223 EXP..9522.98 2.25.96.9233.954.9437.985.9233 MSE.767.748.826.789.83.788.748.793.83 EXP..9928.9978 2.48.9944.9878.9862.992.9978.9878 MSE.34.34.36.35.36.35.34.35.35 257

Usig Etropy Loss Fuctio To Estimate The Scale Parameter For Laplace Distributio Huda, Akbal ad Nadia RESULTS AND DISCUSSIONS From table () It appears that i small samples ( =, 2) b 3 is the best estimator which represeted bayes estimator with iverted gamma prior uder modified quadratic loss fuctio wheα = 3, while b 3 ad b which represeted bayes estimator with iverted gamma prior uder Etropy loss fuctio, are closed i MSE's with small value of α (α =.5) also we ca say that the estimators uder Etropy loss fuctio with Iverted Gamma prior become the most efficiet with the moderate ad large sample sizes. The results i table (2) showig that MSE s icreases for all estimators whe the scale parameter (b) icrease. We ca see clearly that the bayes estimator with iverted gamma prior uder Etropy loss fuctio b became the best with all sample sizes. I geeral, we ca say that, the Bayes' estimator uder Etropy loss fuctio with Iverted Gamma is the best estimator with a moderate ad large sample sizes while the estimator uder Modified quadratic loss fuctio was better with small sample sizes ad whe the scale parameter has a small value. REFERENCES. Al- Noor. N. H. ad Rasheed, H. Abdullah(22)," Miimax Estimatio of the Scale Parameter of the Laplace Distributio uder Quadratic Loss Fuctio",Iteratioal Joural for Scieces ad Techology, Vol (7), No(3), pp. -7. 2. Abbasi, N. (2),"Compariso of Bayes' estimator ad Maximum Etropy estimator for discrete Laplace distributio" It. J. Cotemp. Math. Scieces: Vol.6, No. 9, pp 447-452. 3. Dey, D.K.; Ghosh, M. ad Sriivasa, C. (987). Simultaeous estimatio of parameters uder etropy loss, J. Statist. Pla. Iferece, 5, 347 363. 4. Esfahai, M. Nasr, Nematollahi, N.(29), " Admissible ad Miimax Estimators of a Lower Bouded Scale Parameter of a Gamma Distributio uder the Etropy Loss Fuctio", Joural of Mathematical Extesio: Vol. 4, No. (29), 9-3. 5. Julia,O. ad Vives-Rego, J. (28), "A microbiology applicatio of the skew-laplace distributio". SORT Vol. 32, No. 2, pp.4 5. 6. Padey, H., & Rao, A. K. (29). Bayesia estimatio of the shape parameter of a geeralized Pareto distributio uder asymmetric loss fuctios. Hacettepe Joural of Mathematics ad Statistics. Vol, 38 (), pp. 69-83. 7. Sigh, S. Kumar, Sigh, U. Ad Kumar, D. (2)," BAYESIAN ESTIMATION OF THE EXPONENTIATED GAMMA PARAMETER AND RELIABILITY FUNCTION UNDER ASYMMETRIC LOSS FUNCTION", REVSTAT Statistical Joural: Vol. 9, No. 3, pp247 26. 258