ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y

Similar documents
GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication

PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO THEN ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER

Properties and Formulas

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

PROGRESSION AND SERIES

PhysicsAndMathsTutor.com

AP Calculus AB AP Review

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

PhysicsAndMathsTutor.com

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

The formulae in this booklet have been arranged according to the unit in which they are first

Area. Ⅱ Rectangles. Ⅲ Parallelograms A. Ⅳ Triangles. ABCD=a 2 The area of a square of side a is a 2

Advanced Higher Maths: Formulae

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTERS 5-7 BOOKLET-2

Semiconductors materials

Advanced Higher Formula List

Negative Exponent a n = 1 a n, where a 0. Power of a Power Property ( a m ) n = a mn. Rational Exponents =

Divide-and-Conquer. Divide-and-Conquer 1

Summary: Binomial Expansion...! r. where

Thomas Whitham Sixth Form

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES fiziks

Physics 235 Final Examination December 4, 2006 Solutions

Riemann Integral Oct 31, such that

Lacunary Almost Summability in Certain Linear Topological Spaces

Things I Should Know In Calculus Class

If a is any non zero real or imaginary number and m is the positive integer, then a...

PhysicsAndMathsTutor.com

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

ME 501A Seminar in Engineering Analysis Page 1

Limits and an Introduction to Calculus

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

EXPONENTS AND LOGARITHMS

Using Difference Equations to Generalize Results for Periodic Nested Radicals

12.2 The Definite Integrals (5.2)

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

MA 1201 Engineering Mathematics MO/2017 Tutorial Sheet No. 2

LIMITS AND DERIVATIVES

( ) dx ; f ( x ) is height and Δx is

Technical Report: Bessel Filter Analysis

Sequences and series Mixed exercise 3

LIMITS AND DERIVATIVES NCERT

PhysicsAndMathsTutor.com

Advanced Higher Maths: Formulae

Numerical integration

Appendix D: Formulas, Properties and Measurements

Raytracing: Intersections. Backward Tracing. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method

POWER SERIES R. E. SHOWALTER

GEOMETRY Properties of lines

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers

PhysicsAndMathsTutor.com

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

MATH Midterm Solutions

CHAPTER 11 Limits and an Introduction to Calculus

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

P a g e 3 6 of R e p o r t P B 4 / 0 9

Important Facts You Need To Know/Review:

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

BINOMIAL THEOREM & ITS SIMPLE APPLICATION

ANSWER KEY PHYSICS. Workdone X

D Properties and Measurement

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

3.3 Rules for Differentiation Calculus. Drum Roll please [In a Deep Announcer Voice] And now the moment YOU VE ALL been waiting for

Mathematical Notation Math Calculus & Analytic Geometry I

The Discrete Fourier Transform

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

ME 501A Seminar in Engineering Analysis Page 1

Limit of a function:

Chapter 1 Functions and Graphs

MTH 146 Class 16 Notes

A Study on the Bases of Space of Vector Valued Entire Multiple Dirichlet Series

Continuous Functions

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Divide-and-Conquer

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

The Area of a Triangle

Chapter 23. Geometric Optics

PLANCESS RANK ACCELERATOR

Quantum Mechanics Lecture Notes 10 April 2007 Meg Noah

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

10.3 The Quadratic Formula

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1

LIMIT. f(a h). f(a + h). Lim x a. h 0. x 1. x 0. x 0. x 1. x 1. x 2. Lim f(x) 0 and. x 0

[Q. Booklet Number]

2002 Quarter 1 Math 172 Final Exam. Review

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

T h e C S E T I P r o j e c t

(Figure 2.9), we observe x. and we write. (b) as x, x 1. and we write. We say that the line y 0 is a horizontal asymptote of the graph of f.

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

EXERCISE - 01 CHECK YOUR GRASP

PhysicsAndMathsTutor.com

Lacunary Weak I-Statistical Convergence

CITY UNIVERSITY LONDON

Transcription:

ALGEBRA Popeties of Asoute Vue Fo e umes : 0, 0 + + Tige Iequity Popeties of Itege Epoets Ris Assume tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fute isussio. + ( ) m m m m m m m m m m m Spei Pout Fomus ( A B) ( A+ B) A B + + A+ B A AB B + A B A AB B ( A+ B) A + AB+ AB + B A B A A B AB B + Ftoig Spei Biomis A B A B A B ( + ) + + + A B A B A AB B A + B A+ B A AB B Quti Fomu Te soutios of te equtio + + 0 e: ± 4 Diste Fomu Te iste etwee two poits, y Mipoit Fomu + y + y, Sope of Lie y y m ( ) (, y) is: ( ) + ( ) y y Hoizot ies y ve sope 0. Veti ies ve uefie sope. Pe Pepeiu Lies Give ie wit sope m: sope of pe ie m sope of pepeiu ie m Foms of Equtios of Lie St Fom: + y Sope-Iteept Fom: y m +, wee m is te sope is te y-iteept ( ) is poit o te ie Poit-Sope Fom: y y m sope, y, wee m is te Popeties of Logitms Let,,, y e positive e umes wit, et e y e ume. See Appei B fo gps fute isussio. og y og 0 og og og ( ) og ( y) og + og y og og og y og ( ) og og og og y e equivet y Cge of se fomu

GEOMETRY A e, C iumfeee, SA sufe e o te e, V voume Retge Cie Tige A w A p C p A w Peogm Tpezoi A A + Heo, s Fomu: ( )( ) A s s s s wee s + + Retgu Pism Spee Retgu Pymi V w SA + w + w V 4 π SA 4p V w w w V Rigt Cyie Rigt Ciu Cyie Coe Ae of Bse V p SA p + p V π SA π + π + Tigoometi Hypeoi Futios: Defiitios, Gps, Ietities See Appei C.

Eipse CONIC SECTIONS Po Hypeo Defiitio of Limit Let f e futio efie o ope itev otiig, eept possiy t itsef. We sy tt te imit of f s ppoes is L, wite im f L, if fo evey ume e > 0 tee is ume > 0 su tt f L < ε weeve stisfies 0 < < δ. Bsi Limit Lws Sum Lw: + + im f g im f im g Diffeee Lw: im f g im f im g Costt Mutipe Lw: im kf kim f Pout Lw: ( k, ) im f g im f im g Quotiet Lw: f im f im, im g g povie 0 im g Let, > 0 wit. Cete: ( k, ) Mjo is egt: Mio is egt: St fom of equtio:. ( ) y k + mjo is is oizot ( ) y k. + mjo is is veti Foi: o mjo is, uits wy fom te ete, wee - Dieti ( k, ) Let p 0. Vete: ( k, ) St fom of equtio: ( ). 4 p y k vetiy oiete : k, + p Dieti: y k p ( ). y k 4 p oizoty oiete : + p, k Dieti: p LIMITS Te Squeeze Teoem If g f otiig, eept possiy t itsef, if img im L, te im f L s we. fo i some ope itev Cotiuity t Poit Give futio f efie o ope itev otiig, we sy f is otiuous t if im f f. L Hôpit s Rue Suppose f g e iffeetie t poits of ope itev I otiig, tt g 0 fo I eept possiy t. Suppose fute tt eite im f 0 im g 0 o Te Vete ± ± im f im g. ( k, ) f f im im, g g Vete Let, > 0. Cete: ( k, ) St fom of equtio: ( ) ( y k). foi e ige oizoty Asymptotes: y k ± ( ) ( y k) ( ). foi e ige vetiy Asymptotes: y k ± ( ) Foi: uits wy fom te ete, wee + Veties: uits wy fom te ete ssumig te imit o te igt is e ume o o -.

DERIVATIVES Te Deivtive of Futio Te eivtive of f, eote f, is te futio wose vue t te poit is Eemety Diffeetitio Rues Costt Rue: k 0 Costt Mutipe Rue: kf k f ( ) Sum Rue: f + g f g + Diffeee Rue: f + f f im, 0 povie te imit eists. f g f g Deivtives of Epoeti Logitmi Futios e e Pout Rue: f g f g f + g ( ) Quotiet Rue: f g Powe Rue: Ci Rue: ( ) ( og ) g f g f g f ( g ) f g g Deivtives of Tigoometi Futios ( si) os ( s)s ot ( os)si ( se) se t ( t) se ( ot)s Deivtives of Ivese Tigoometi Futios si os ( t ) + s se ( ot ) + Deivtives of Hypeoi Futios ( si ) os ( s )s ot ( os ) si ( se )se t ( t ) se ( ot )s

Deivtives of Ivese Hypeoi Futios si + ( os ), > ( t ), < s + ( se ), 0< < ( ot ), > Te Deivtive Rue fo Ivese Futios If futio f is iffeetie o itev (, ), if f 0 fo (, ), te f ot eists is iffeetie o te imge of te itev (, ) ue f, eote s f ((, ) ) i te fomu eow. Fute, if,, te f f, f if f (, ), te f f f. ( ) Te Me Vue Teoem If f is otiuous o te ose itev, iffeetie o,,, fo wi [ ] te tee is t est oe poit f f f ( ). INTEGRATION Popeties of te Defiite Iteg Give te itege futios f g o te itev, [ ] y ostt k, te foowig popeties o.. f 0. f f. k k 4. kf ( ) k f ± ± 5. f g f g Te Fumet Teoem of Cuus Pt I Give otiuous futio f o itev I fie poit I, efie te futio F o I y F f () t t. Te F f ( ) fo I. Te Sustitutio Rue If u g te itev I, if f is otiuous o I, te is iffeetie futio wose ge is ( ) f g g f u u. Hee, if F is tieivtive of f o I, f ( g ) g ( ) F( g )+ C. +, ssumig 6. f f f e iteg eists o [, ], te 7. If f g f g. 8. If m mi f M m f, te ( ) m f M. Pt II If f is otiuous futio o te itev, if F is y tieivtive of f o,, [ ] [ ] te f F F. Itegtio y Pts Give iffeetie futios f g, f g f g g f. If we et u f v g, te u f v g esiy ememee iffeeti fom te equtio tkes o te moe uv uv vu.

SEQUENCES AND SERIES Summtio Fts Fomus Costt Rue fo Fiite Sums:,fo y ostt Costt Mutipe Rue fo Fiite Sums:,fo y ostt i i Sum/Diffeee Rue fo Fiite Sums: ( ± ) ± i i i i Sum of te Fist Positive Iteges: + i Sum of te Fist Sques: + i 6 ( + ) Sum of te Fist Cues: ( + ) i 4 Geometi Seies Fo geometi sequee Pti Sum: s Ifiite Sum:, if 0,, if < Biomi Seies Fo y e ume m - < <, { } wit ommo tio : m m ( + ) 0 mm ( ) mm ( ) ( m ) + m + +!! m( m) ( m + ) + +! wee m m m mm m 0,,,! m mm m +! fo + Tyo Seies Mui Seies Give futio f wit eivtives of oes tougout ope itev otiig, te powe seies f f f ( ) f + f ( )+ ( ) + (!!! 0 ) ( ) + is e te Tyo seies geete y f out. Te Tyo seies geete y f out 0 is so kow s te Mui seies geete y f.