Stichwortverzeichnis. Peter Kennedy, Rong Zheng. Flow Analysis of Injection Molds. ISBN (Buch): ISBN (E-Book):

Similar documents
Autodesk Moldflow Insight AMI Fiber Orientation Analysis

3D Compression Molding

Modeling the Rheology and Orientation Distribution of Short Glass Fibers Suspended in Polymeric Fluids: Simple Shear Flow

J. Non-Newtonian Fluid Mech. 84 (1999) 159±190

An Introduction to Polymer Physics

PROPERTY CALCULATION SYSTEM FOR INJECTION MOLDING AND COMPRESSION MOLDING OF FIBER-FILLED POLYMER COMPOSITES

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Material Testing Overview (THERMOPLASTICS)

Polymer Injection Molding: Flow-induced Crystallization

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226

Index. Boundary integral method, 27 Boundary location method, 255 Brinkman number, 14, 158

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Chapter 1 Introduction

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Material Testing Report SN 7131 ISOFIL HK 30 TTH0 WT0822

Lecture 2: Constitutive Relations

Using Transient Shear Rheology to Determine Material Parameters in Fiber. Suspension Theory

VISCOELASTIC PROPERTIES OF POLYMERS

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

(Refer Slide Time: 00:58)

Plastics Testing and Characterization Industrial Applications

SIMULATING ORIENTATION OF LONG, SEMI-FLEXIBLE GLASS FIBERS IN THREE-DIMENSIONAL INJECTION MOLDED THERMOPLASTIC COMPOSITES

Polymer engineering syllabus (BSc)

ABSTRACT. Keywords: Birefringence, injection molding, simulation, plastic, viscoelasticity, residual stress, prediction, finite element

Plastics Testing and Characterization Industrial Applications

Modelling the Rheology of Semi-Concentrated Polymeric Composites

Using transient shear rheology to determine material parameters in fiber suspension theory

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Guideline for Rheological Measurements

Modeling Strong Extensional Flows of Polymer Solutions and Melts

THE MATRIX: EVOLUTIONS II

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

4. The Green Kubo Relations

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

MICROSTRUCTURAL AND ELASTIC PROPERTIES OF SHORT FIBER REINFORCED COMPOSITES

Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA

Moldflow Material Testing Report MAT2216 ISOFIL H 40 C2 F NAT

SCREW SWIRLING EFFECTS ON FIBER ORIENTATION DISTRIBUTION IN LARGE-SCALE POLYMER COMPOSITE ADDITIVE MANUFACTURING. Zhaogui Wang*, Douglas E.

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

Fiber orientation in 3-D injection molded features: prediction and experiment

PROPERTIES OF POLYMERS

STUDY OF RHEOLOGICAL BEHAVIOR OF REPROCESSING HIGH IMPACT POLYSTYRENE

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

Chapter 6 Molten State

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy

Continuum Mechanics and Theory of Materials

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston

Experimental Study of the Induced Residual Stresses During the Manufacturing Process of an Aeronautic Composite Material

ELASTOPLASTICITY THEORY by V. A. Lubarda

Improved stress prediction in adhesive bonded optical components

Quiz 1 Introduction to Polymers

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts

GAME PHYSICS SECOND EDITION. дяййтаййг 1 *

Coupled Thermomechanical Contact Problems

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Flow-induced anisotropic viscosity in short FRPs

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A Semianalytical Model for the Simulation of Polymers

COMPUTING MECHANICAL PROPERTIES FROM ORIENTATION TENSORS FOR FIBER FILLED POLYMERS IN AXISYMMETRIC FLOW AND PLANAR DEPOSITION FLOW

Finite Element Method in Geotechnical Engineering

NUMERICAL SIMULATION OF THE PLASTICS INJECTION MOULDING PROCESS

International Communications in Heat and Mass Transfer 36 (2009) Contents lists available at ScienceDirect

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Contents. Preface XIII. 1 General Introduction 1 References 6

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Quiz 1. Introduction to Polymers

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

DIVIDED SYLLABUS ( ) - CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL

PROGRESS IN SIMULATIONS FOR SHORT AND LONG GLASS FIBER THERMOPLASTIC COMPOSITES

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Theory at a Glance (for IES, GATE, PSU)

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA

OPTICAL PROPERTY INVESTIGATION IN SEQUENTIAL MULTI-COMPONENT MOLDING

Long glass fiber orientation in thermoplastic composites using a model that accounts for the flexibility of the fibers

Case study: molecular dynamics of solvent diffusion in polymers

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

The effect of melt compressibility on the mold filling of thin-walled parts

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

CHAPTER 4 MODELING OF MECHANICAL PROPERTIES OF POLYMER COMPOSITES

Constitutive Relations

A numerical method for steady and nonisothermal viscoelastic fluid flow for high Deborah and Péclet numbers

Madrid, 8-9 julio 2013

On Relationship between PVT and Rheological Measurements of Polymer Melts

Preface Chapter 1. Introduction to Heat Transfer During the Forming of Organic Matrix Composites

Course Syllabus: Continuum Mechanics - ME 212A

Effect of cooling channels position on the shrinkage of plastic material during injection molding

EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1*

Dynamic Behavior of Core-material Penetration in Multi-Cavity Co-Injection Molding

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

Lecture No. (1) Introduction of Polymers

Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011

Chapter 5. The Differential Forms of the Fundamental Laws

Transcription:

Stichwortverzeichnis Peter Kennedy, Rong Zheng Flow Analysis of Injection Molds ISBN (Buch): 978-1-56990-512-8 ISBN (E-Book): 978-1-56990-522-7 For further information and order see http://www.hanser-fachbuch.de/978-1-56990-512-8 or contact your bookseller. Carl Hanser Verlag, München

Index A AC Technology see C-Mold advancement of the flow front see flow front advancement affine motion 235 algebraic multigrid (AMG) method 310 amorphous polymers 20 Andrade equation see Arrhenius equation anisotropic rotary diffusion model 114, 115, 241, 242 ARD-RSC model 118 Arrhenius equation 25, 177 Autodesk 225 Avrami index 143 B Babuska-Brezzi stability condition 305 barycentric coordinates 285 body force 11, 39 boundary element method 79, 83, 211, 215, 216 Brownian configuration field method 121 Brownian dynamics simulation 120 bubble shape function 307, 308 conforming bubble 307 Bubnov-Galerkin method see Galerkin method C C-MOLD 215, 216, 220, 224 closure approximation 82 hybrid closure 82 linear closure 82 orthotropic closure 82, 83 quadratic closure 82 colorant 167 171, 173, 174 inorganic colorant 167 organic colorant 167 concurrent engineering 3 CONNFFESSIT 121 conservation laws conservation of energy 35, 40 43, 45, 46, 53, 68, 248 conservation of mass 35, 38, 46, 53, 66, 244, 250, 251 conservation of momentum 35, 38 40, 46, 53, 68, 245, 250 constitutive equation 15 Newtonian fluids 15, 22 non-newtonian fluids 16, 22 continuity equation see conservation of mass Cornell Injection Molding Program (CIMP) 206, 209 211, 215, 217, 218, 220 CRIMS 91 critical fiber aspect ratio 135 critical fiber length 135 crystallinity absolute crystallinity 143 relative crystallinity 143, 152 ultimate absolute crystallinity 159, 165 crystallization 4, 21, 27, 86, 141 flow-induced crystallization 149, 151 153, 169 quiescent crystallization 141, 146, 149, 169 D differential scanning calorimetry (DSC) 58, 59, 146, 152, 169 Dinh and Armstrong model 120 direct simulation 113, 116, 136 dual domain finite element analysis (DD/FEA) flow analysis 101 103 structural analysis 103 106

346 Index E eccentric shell elements 104 effective stiffness tensor 124 elastic modulus 32, 177 engineering method 205 ensemble average 80 equation of state 29 equilibrium melting temperature 141, 144 148 Eshelby model 125 Eshelby tensor 125 expansivity 29 coefficient of volume expansion 29 linear coefficients of expansion 32 F FENE-P model 150 fiber aspect ratio 50 equivalent ellipsoidal axis ratio 51 fiber concentration 50 concentrated regime 50 dilute regime 50 semi-concentrated regime 50 fiber length attrition model 134 fiber migration 132 fiber orientation averaging 130 fiber suspension 50 fiber volume fraction 32, 50 fiber weight fraction 31 finite difference method 253, 255, 257 explicit scheme 257 implicit scheme 258 finite element method 261, 262, 303 305, 308, 311 C k continuity 307 1D analysis 261 2.5D approximation 65, 66, 99, 100, 102, 109, 243, 251, 257, 283 3D analysis 100, 107, 303 application of boundary conditions 262, 264, 268, 280 assembly of element equations 262, 263, 268, 270, 271, 278, 279 constraint equation 268, 269 derivation of element equations 262, 263, 274 display of results 264 interpolation functions see shape function natural boundary condition 304 natural coordinate 305 nodal displacement vector 264 nodal flow rate vector 264 nodal flow values 267 nodal force vector 264 nodal pressure vector 264 nodal unknowns 277, 278 nodal values 267 shape functions 267, 268, 274, 278, 280, 305, 307 solution of system equations 262, 281 stiffness matrix 264, 269 system 261 system equations 263 weak formulation 304 finite volume method 107 flexible fibers 136 flow front advancement 298, 304, 310, 313 Fokker-Planck equation 51, 237, 238 Folgar-Tucker model 113 115, 117, 118, 140, 239 fountain flow 193 free energy 141, 145, 150 frozen layer 7, 72, 73, 77, 87, 91, 94, 206, 225 growth 87 thickness 72, 208, 215 G Galerkin method 268, 275, 278, 311 gate 5, 6 generalized Newtonian fluids 16 Carreau model 23 Cross model 23, 24 Cross-WLF model 25 definition 17, 23 power law model 23 generalized strain rate definition 16 glass transition temperature 20, 25, 26, 145

Index 347 growth 141, 142, 168 growth rate 143, 145, 148, 168, 169 spherulitic growth 143, 149 unrestricted 142 H half crystallization time 169 172 half-crystallization time 146, 152, 153 heat capacity 26 Hele-Shaw approximation 166 high pressure dilatometry 61 Hoffman-Lauritzen theory 145, 168 Hoffman-Weeks extrapolation method 147, 148 hydrodynamic interactions 116 long range interaction 116 short range interaction 116 I instantaneous nucleation 141 interaction coefficient 81, 83, 113, 114 interaction coefficient tensor 114, 115, 117 isothermal compressibility coefficient 30 J Jeffery s equation 50, 113, 237 Jeffery s orbit 51, 114 K Kolmogoroff-Avrami-Evans model 142, 168, 169 Kronecker delta 177 Linkam shearing hot stage 146, 148, 152, 170 long fibers 49, 131 M material volume 37 mean heat capacity 26 micro-injection molding 188 microcellular injection foaming molding 186 midplane approach 99, 100 MINI element 305, 308 modulus of rigidity see shear modulus mold 4 cavity side see fixed side fixed side 4, 5 moving side 4, 5 Moldex 221, 225 Moldflow 59, 85, 206, 207, 212, 215, 216, 218 220, 224, 225 Moldflow design principles 206 Mori-Tanaka model 123, 125 127, 319, 320 morphology 141, 142 N Newton-Raphson iteration scheme 309 no-flow temperature 59, 60, 72, 88, 155 no-slip condition 73 non-affine motion 236 non-fourier thermal conduction 161 number density of fibers 50 O orientation tensor 114 118, 120, 130, 238 Oseen tensor 137 L Langevin equation 235, 237, 238 latent heat 146 level set method 313 reinitialization 314 signed distance function 313 P Peclet number 119 Phan-Thien-Graham model 120, 133 Phan-Thien-Tanner (PTT) model 156 Picard iteration scheme 309 Poisson s ratio 33

348 Index polymers acrylonitrile-butadiene-styrene (ABS) 27, 28 isotactic polypropylene (ipp) 4, 27, 28, 144, 146, 162, 165, 167, 169 174 polyamide 66 (PA 66) 27, 28 polybutylene (PBT) 174 polycarbonate (PC) 27, 28 polyethylene (PE) 27, 28 polystyrene (PS) 27, 28 post-molding shrinkage 175 post-molding warpage 175 probability density function 51, 235, 237 Prony series 177 pseudo-time 177 PVT data 21, 29 31, 61 viscoelastic model 87 specific heat capacity 26 spherulites 141, 142 sporadic nucleation 141 stochastic equation 121, 237 stochastic process 120 strain concentration tensor 124, 125 stress relaxation 175 stress tensor 13, 39 components 13 normal stresses 12 shear stress 12, 22 stress vector (traction vector) 12, 13, 39 stress-thermal coefficient 162 surface force see surface traction surface traction 11, 12, 39 R rate-of-deformation tensor definition 15 reduced-strain closure model 117, 118 Reynolds transport theorem 42 Rosen-Hashin model 126 runner 6, 53, 91, 96, 97 cold runner 53 hot runner 5, 53 imbalanced filling 109, 110 S SAXS 152 semi-crystalline polymers 20, 141 shear heating 26, 48, 53, 92, 109, 110 shear modulus 33, 177 shear rate definition 22 shear thinning 22 shish-kebab 141, 142 short fibers 49, 131 shrinkage 52, 84, 171, 173 175 parallel shrinkage 85, 173, 174 perpendicular shrinkage 85, 173, 174 residual strain model 85 residual stress model 87 viscous-elastic model 88 T Tait equation 31 Taylor series expansion 253 tensile modulus see elastic modulus tensor del operator 233 Cartesian 228 components 228 double dot product 230 dummy index 228 dyadic product 230 eigenvalue 231 eigenvector 231 Einstein summation convention 228 free index 228 orthogonal matrix 231 orthogonal transformation 231 rotation matrix 231 single dot product 230 thermal conductivity 161 thermo-rheological simplicity 25, 177, 178 thermodynamic pressure 14 thermoplastics 19 thermosets 19 time-temperature shift factor 25, 177 time-temperature superposition 24 Timon 221 transition temperature 59, 60, 72

Index 349 transversely isotropic fluid (TIF) model 119 U uniaxial tensile strength model 135 upper convected derivative 156 V validation 9, 55 van den Brule s law 162 velocity gradient 14, 15 effective velocity gradient 51, 121, 236, 240 verification 9, 55 viscoelasticity 22 viscosity 17 dilatational viscosity 15 function definition 23 Voigt average 125 volume of fluid method (VOF) 304 vorticity tensor definition 15 W warpage 84, 175 WAXS 169 weighted residual method 268 Weissenberg number 194 weldline 102 Williams-Landel-Ferry (WLF) equation 25, 177 Y Young s modulus see elastic modulus