St Andrew s Academy Mathematics Department Higher Mathematics VECTORS

Similar documents
St Andrew s Academy Mathematics Department Higher Mathematics

CfE Higher Mathematics Course Materials Topic 2: Vectors

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS

Regent College. Maths Department. Core Mathematics 4. Vectors

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

3.1 Vectors. Each correct answer in this section is worth two marks.

Downloaded from

CHAPTER TWO. 2.1 Vectors as ordered pairs and triples. The most common set of basic vectors in 3-space is i,j,k. where

SPTA Mathematics Higher Notes

Worksheet A VECTORS 1 G H I D E F A B C

y hsn.uk.net Straight Line Paper 1 Section A Each correct answer in this section is worth two marks.

For more information visit here:

Created by T. Madas 2D VECTORS. Created by T. Madas

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

Part (1) Second : Trigonometry. Tan

Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors.

Geometry Honors Review for Midterm Exam

COMMON UNITS OF PERIMITER ARE METRE

Visit: ImperialStudy.com For More Study Materials Class IX Chapter 12 Heron s Formula Maths

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 2

Year 9 Term 3 Homework

3D GEOMETRY. 3D-Geometry. If α, β, γ are angle made by a line with positive directions of x, y and z. axes respectively show that = 2.

VAISHALI EDUCATION POINT (QUALITY EDUCATION PROVIDER)

1.1 Exercises, Sample Solutions

CHAPTER 5 : THE STRAIGHT LINE

1. Matrices and Determinants

CHAPTER 10 VECTORS POINTS TO REMEMBER


TRIANGLES CHAPTER 7. (A) Main Concepts and Results. (B) Multiple Choice Questions

COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE. To find the length of a line segment joining two points A(x 1, y 1 ) and B(x 2, y 2 ), use

Day 1: Introduction to Vectors + Vector Arithmetic

Udaan School Of Mathematics Class X Chapter 10 Circles Maths

Vectors. Paper 1 Section A. Each correct answer in this section is worth two marks. 4. The point B has coordinates

Straight Line. SPTA Mathematics Higher Notes

Triangle Congruence and Similarity Review. Show all work for full credit. 5. In the drawing, what is the measure of angle y?

(b) the equation of the perpendicular bisector of AB. [3]

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8

Berkeley Math Circle, May

VECTORS ADDITIONS OF VECTORS

b UVW is a right-angled triangle, therefore VW is the diameter of the circle. Centre of circle = Midpoint of VW = (8 2) + ( 2 6) = 100

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

Circles. hsn.uk.net. Contents. Circles 1

UNIT 1 VECTORS INTRODUCTION 1.1 OBJECTIVES. Stucture

Starting with the base and moving counterclockwise, the measured side lengths are 5.5 cm, 2.4 cm, 2.9 cm, 2.5 cm, 1.3 cm, and 2.7 cm.

Definition 6.1. A vector is a quantity with both a magnitude (size) and direction. Figure 6.1: Some vectors.

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Core Mathematics 2 Coordinate Geometry

Class IX Chapter 8 Quadrilaterals Maths

Class IX Chapter 8 Quadrilaterals Maths

Welcome to IB Math - Standard Level Year 2

TABLE OF CONTENTS 2 CHAPTER 1

PAST QUESTIONS ON VECTORS P1

MATH 532, 736I: MODERN GEOMETRY

the coordinates of C (3) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places. (4)

Honors Geometry Mid-Term Exam Review

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

POINT. Preface. The concept of Point is very important for the study of coordinate

CHAPTER 4 VECTORS. Before we go any further, we must talk about vectors. They are such a useful tool for

International Examinations. Advanced Level Mathematics Pure Mathematics 1 Hugh Neill and Douglas Quadling

CBSE CLASS X MATH -SOLUTION Therefore, 0.6, 0.25 and 0.3 are greater than or equal to 0 and less than or equal to 1.

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

NAME: Date: HOMEWORK: C1. Question Obtained. Total/100 A 80 B 70 C 60 D 50 E 40 U 39

Day 66 Bellringer. 1. Construct a perpendicular bisector to the given lines. Page 1

CO-ORDINATE GEOMETRY. 1. Find the points on the y axis whose distances from the points (6, 7) and (4,-3) are in the. ratio 1:2.

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0

Year 11 Math Homework

0610ge. Geometry Regents Exam The diagram below shows a right pentagonal prism.

Definition: A vector is a directed line segment which represents a displacement from one point P to another point Q.

Triangles. Example: In the given figure, S and T are points on PQ and PR respectively of PQR such that ST QR. Determine the length of PR.

Unit 2 VCE Specialist Maths. AT 2.1 Vectors Test Date: Friday 29 June 2018 Start Time: Finish Time: Total Time Allowed for Task: 75 min

SURA's Guides for 3rd to 12th Std for all Subjects in TM & EM Available. MARCH Public Exam Question Paper with Answers MATHEMATICS


Welcome to IB Math - Standard Level Year 2.

0114ge. Geometry Regents Exam 0114

P1 Vector Past Paper Questions

Triangles. 3.In the following fig. AB = AC and BD = DC, then ADC = (A) 60 (B) 120 (C) 90 (D) none 4.In the Fig. given below, find Z.

Question 1 ( 1.0 marks) places of decimals? Solution: Now, on dividing by 2, we obtain =

Chapter 1 Coordinates, points and lines

9.2. Length of Line Segments. Lesson Objectives. Find the lengths of line segments on the x-axis and y-axis.

MEP Pupil Text 13-19, Additional Material. Gradients of Perpendicular Lines

iii (a, c), (a, e), (c, e), (b, d), (b, f), (d, f), (l, h), (l, j), (h, j), (g, i), (g, k), (i, k)

"Full Coverage": Vectors

1 k. cos tan? Higher Maths Non Calculator Practice Practice Paper A. 1. A sequence is defined by the recurrence relation u 2u 1, u 3.

VECTORS Contents Page 7.0 Conceptual Map Introduction to Vector Practice Multiplication of Vector y Scalar Practice Practice 7.2

Paper2Practice [303 marks]

2, find the value of a.

Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Ismailia Road Branch

1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT.

LESSON 2 5 CHAPTER 2 OBJECTIVES

Vectors Practice [296 marks]

Thursday 11 June 2015 Afternoon

QUESTION BANK ON STRAIGHT LINE AND CIRCLE

Mathematical Olympiad for Girls

0112ge. Geometry Regents Exam Line n intersects lines l and m, forming the angles shown in the diagram below.

Worksheet 1.1: Introduction to Vectors

SL Vector Practice The points P( 2, 4), Q (3, 1) and R (1, 6) are shown in the diagram below.

1 What is the solution of the system of equations graphed below? y = 2x + 1


0110ge. Geometry Regents Exam Which expression best describes the transformation shown in the diagram below?

Transcription:

St Andrew s Academy Mathematics Department Higher Mathematics VECTORS

hsn.uk.net Higher Mathematics Vectors Contents Vectors 1 1 Vectors and Scalars EF 1 Components EF 1 Magnitude EF 4 Equal Vectors EF 4 5 Addition and Subtraction of Vectors EF 5 6 Multiplication by a Scalar EF 7 7 Position Vectors EF 8 8 Basis Vectors EF 9 9 Collinearity EF 10 10 Dividing Lines in a Ratio EF 11 11 The Scalar Product EF 14 1 The Angle Between Vectors EF 17 1 Perpendicular Vectors EF 0 14 Properties of the Scalar Product EF 1 CfE Edition This document was produced specially for the HSN.uk.net website, and we require that any copies or derivative works attribute the work to Higher Still Notes. For more details about the copyright on these notes, please see http://creativecommons.org/licenses/by-nc-sa/.5/scotland/

Vectors Vectors 1 Vectors and Scalars EF A scalar is a quantity with magnitude (size) only for example, an amount of money or a length of time. Sometimes size alone is not enough to describe a quantity for example, directions to the nearest shop. For this we need to know a magnitude (i.e. how far), and a direction. Quantities with magnitude and direction are called vectors. A vector is named either by using the letters at the end of a directed line segment (e.g. AB represents a vector starting at point A and ending at point B) or by using a bold letter (e.g. u). You will see bold letters used in printed text, but in handwriting you should just underline the letter. B A Throughout these notes, we will show vectors in bold as well us underlining them (e.g. u). Components EF A vector may be represented by its components, which we write in a column. For example, is a vector in two dimensions. In this case, the first component is and this tells us to move units in the x-direction. The second component tells us to move units in the y-direction. So if the vector starts at the origin, it will look like: y u O x hsn.uk.net Page 1 CfE Edition

Vectors Note that we write the components in a column to avoid confusing them with coordinates. The following diagram also shows the vector, but in this case it does not start at the origin. y 1, 1, 1 O x Vectors in Three Dimensions In a vector with three components, the first two tell us ho many units to move in the x- and y-directions, as before. The third component specifies how far to move in the z-direction. z When looking at a pair of x, y -axes, the z-axis points out of the page from the origin. A set of D axes can be drawn on a page as shown to the right. z y O For example, 4 1 is a vector in three dimensions. This vector is shown in the diagram, starting from the origin. z O 4 y 1 x x Zero Vectors Any vector with all components zero is called a zero vector and can be written 0 as 0, e.g. 0 0. 0 hsn.uk.net Page CfE Edition

Vectors Magnitude EF The magnitude (or length) of a vector u is written as u. It can be calculated as follows. EXAMPLES 1. Given u If If 5 u 1, find u. 5 1 169 1 units.. Find the length of a 5 6 50 5 units. Unit Vectors a u b then u a b a u b then u a b c c 5 a 6. Any vector with a magnitude of one is called a unit vector. For example: if 1 0 u then u 1 0 So u is a unit vector. 4 4 1 unit. hsn.uk.net Page CfE Edition

Vectors Distance in Three Dimensions The distance between the points A and B is d AB AB units. For example, given 1 AB 5, we find d AB 1 5 0. In fact, there is a three-dimensional version of the distance formula. The distance d between the points EXAMPLE x y z and,, 1, 1, 1 1 1 1 x y z is 1 1 1 d x x y y z z units. Find the distance between the points 1, 4,1 and 0,5, 7. 1 1 1 The distance is x x y y z z 0 1 5 4 7 1 1 1 8 1164 66 units. 4 Equal Vectors EF Vectors with the same magnitude and direction are equal. For example, all the vectors shown to the right are equal. If vectors are equal to each other, then all of their components are equal, i.e. p r q s t a d if b e then a d, b e and c f. c f Conversely, two vectors are only equal if all of their components are equal. hsn.uk.net Page 4 CfE Edition

Vectors 5 Addition and Subtraction of Vectors EF Consider the following vectors: a b c Addition We can construct a b as follows: b a a b a b means a followed by b. Similarly, we can construct a b c as follows: a a b c means a followed by b followed by c. To add vectors, we position them nose-to-tail. Then the sum of the vectors is the vector between the first tail and the last nose. Subtraction Now consider we can use vector addition to obtain b a b c c a b. This can be written as a b. a b, so if we first find b, b b is just b but in the opposite direction. b b and b have the same magnitude, i.e. b b. Therefore we can construct b a b as follows: a b a a b means a followed by b. hsn.uk.net Page 5 CfE Edition

Vectors Using Components If we have the components of vectors, then things become much simpler. The following rules can be used for addition and subtraction. a d a d b e b e c f c f add the components a d a d b e b e c f c f subtract the components EXAMPLES 1. Given 1 u 5 and 1 1 u v 5 0 0 7. Given 4 p and 4 1 p q 6 5 5 1 5 1 v, calculate u v and u v. 0 1 1 u v 5 0. 1 q 6, calculate p q and q p. 5 1 4 q p 6 5 9. 9 5 hsn.uk.net Page 6 CfE Edition

Vectors 6 Multiplication by a Scalar EF A vector u which is multiplied by a scalar k 0 will give the result ku. This vector will be k times as long, i.e. the magnitude will be k u. Note that if k 0 this means that the vector ku will be in the opposite direction to u. For example: u u u 1 u a ka If u b then ku kb. c kc Each component is multiplied by the scalar. EXAMPLES 1. Given 1 v 5, find v. 1 v 5 15. 9. Given 6 r, find 4r. 1 6 4 4r 4 1. 1 4 hsn.uk.net Page 7 CfE Edition

Vectors Negative Vectors The negative of a vector is the vector multiplied by 1. If we write a vector as a directed line segment AB, then AB BA: AB A B A B AB BA 7 Position Vectors EF OA is called a position vector of point A relative to the origin O, and is written as a. OB is called the position vector of point B, written b. z y Given P x, yz,, the position vector OP or P x p has components y. z O x y O a A b B x To move from point A to point B we can move back along the vector a to the origin, and along vector b to point B. AB AO OB OA OB ab b a For the vector joining any two points P and Q, PQ q p. hsn.uk.net Page 8 CfE Edition

Vectors EXAMPLE R is the point,, From the coordinates, RS s r 4 6 1 8. 4 and S is the point 4, 6, 1 r and 4 s 6. 1. Find RS. 8 Basis Vectors EF A vector may also be defined in terms of the basis vectors i, j and k. These are three mutually perpendicular unit vectors (i.e. they are perpendicular to each other). These basis vectors can be written in component form as 1 i 0, 0 0 j 1 and 0 0 k 0. 1 Any vector can be written in basis form using i, j and k. For example: 1 0 0 0160i j 6k. 6 0 0 1 There is no need for the working above if the following is used: a ai bj ck b. c k i j hsn.uk.net Page 9 CfE Edition

Vectors 9 Collinearity EF In Straight Lines, we learned that points are collinear if they lie on the same straight line. The points A, B and C in D space are collinear if AB is parallel to BC, with B a common point. Note that we cannot find gradients in three dimensions instead we use the following. Non-zero vectors are parallel if they are scalar multiples of the same vector. For example: If If EXAMPLE u 1 and 4 15 5 p 9 and 6 6 v 1u then u and v are parallel. 1 4 0 5 q 1 4 then p and q are parallel. 8 A is the point 1,, 5, B8, 5,9 and C, 11,17. Show that A, B and C are collinear. AB b a BC c b 8 1 8 5 115 9 5 17 9 7 14 6 4 8 7. 4 BC AB, so AB and BC are parallel and since B is a common point, A, B and C are collinear. hsn.uk.net Page 10 CfE Edition

Vectors 10 Dividing Lines in a Ratio EF There is a simple process for finding the coordinates of a point which divides a line segment in a given ratio. EXAMPLE 1. P is the point, 4, 1 and R is the point 8, 1,19. The point T divides PR in the ratio :. Find the coordinates of T. Step 1 Make a sketch of the line, showing the ratio in which the point divides the line segment. Step Using the sketch, equate the ratio of the two lines with the given ratio. Step Cross multiply, then change directed line segments to position vectors. Step 4 Rearrange to give the position vector of the unknown point. Step 5 From the position vector, state the coordinates of the unknown point. R PT TR PT TR t p r t T t p r t t t r p 8 5t 1 4 19 1 16 6 5t 1 8 10 5t 10 5 t 7 So T is the point,, 7. P hsn.uk.net Page 11 CfE Edition

Vectors Using the Section Formula The previous method can be condensed into a formula as shown below. If the point P divides the line AB in the ratio m: n, then: na mb p, n m where is a, b and p are the position vectors of A, B and P respectively. It is not necessary to know this, since the approach explained above will always work. EXAMPLE. P is the point, 4, 1 and R is the point 8, 1,19. The point T divides PR in the ratio :. Find the coordinates of T. The ratio is :, so let m and n, then: np mr t n m p r 5 1 5 1 8 54 1 1 5 1 19 7 So T is the point,, 7. Note If you are confident with arithmetic, this step can be done mentally. hsn.uk.net Page 1 CfE Edition

Vectors Further Examples EXAMPLES. The cuboid OABCDEFG is shown in the diagram. E F H D A G B O C The point A has coordinates 0,0,5, C8,0,0 and G8,1,0. The point H divides BF in the ratio 4:1. Find the coordinates of H. From the diagram: OH OA AB 4 5 BF OA OC 4 5 CG h a c 4 5 g c a c 4 4 5 g 5c a 1 4 5c 5 g 0 8 8 0 1 4 5 0 5 1 5 0 5 8 48 5. 5 So H has coordinates 8, 48 5,5. 4. The points P6,1,, Q8,,1 and R9, 5, are collinear. Find the ratio in which Q divides PR. Since the points are collinear PQ kqr for some k. Working with the first components: 86k 98 k. Therefore PQ QR so Q divides PR in the ratio :1. Note BH 4 BF 5, so BH 4 5 BF. Note The ratio is :1 since PQ QR 1. hsn.uk.net Page 1 CfE Edition

Vectors 5. The points A 7, 4, 4, B1,5, 7 and C are collinear. Given that B divides AC in the ratio :, find the coordinates of C. AB 5 AC b a 5 c a to see this: b a 5c 5a 5c b 5a A 5 c b a 1 7 5 5 4 7 4 17 11. 9 So C has coordinates 17,11, 9. Note A sketch may help you B C 11 The Scalar Product EF So far we have added and subtracted vectors and multiplied a vector by a scalar. Now we will consider the scalar product, which is a form of vector multiplication. The scalar product is denoted by ab. (sometimes it is called the dot product) and can be calculated using the formula: ab. a b cosθ, where θ is the angle between the two vectors a and b. This formula is given in the exam. hsn.uk.net Page 14 CfE Edition

Vectors The definition above assumes that the vectors a and b are positioned so that they both point away from the angle, or both point into the angle. a θ b a θ b However, if one vector is pointing away from the angle, while the other points into the angle, a θ b a θ b we find that ab. a b cosθ. EXAMPLES 1. Two vectors, a and b have magnitudes 7 and units respectively and are at an angle of 60 to each other as shown below. b 60 What is the value of ab?. a ab. a bcosθ 7cos60 1 1 1.. The vector u has magnitude k and v is twice as long as u. The angle between u and v is 0, as shown below. v Find an expression for uv. in terms of k. uv. u vcosθ kkcos0 k. k 0 u Remember When one vector points in and one points out, uv. u v cosθ. hsn.uk.net Page 15 CfE Edition

Vectors The Component Form of the Scalar Product The scalar product can also be calculated as follows: ab. ab ab ab where This is given in the exam. 1 1 a1 a a and a b1 b b b EXAMPLES. Find pq,. given that pq. pq pq pq 1 1 1 p and 1 49 4. If A is the point AB.AC. q.,, 9, B1,4, and C 1,, 6, calculate C 1,, 6 We need to use the position vectors of the points: B1,4, AB b a AC c a 1 1 4 A,, 9 9 6 9 1 1 0. 11 15 AB.AC 1 10 11 15 0165 168. hsn.uk.net Page 16 CfE Edition

Vectors 1 The Angle Between Vectors EF The formulae for the scalar product can be rearranged to give the following equations, both of which can be used to calculate θ, the angle between two vectors.. cosθ ab ab ab ab ab cosθ ab or 1 1. Look back to the formulae for finding the scalar product, given on the previous pages. Notice that the first equation is simply a rearranged form of the one which can be used to find the scalar product. Also notice that the second simply replaces ab. with the component form of the scalar product. These formulae are not given in the exam but can both be easily derived from the formulae on the previous pages (which are given in the exam). EXAMPLES 1. Calculate the angle θ between vectors p i 4j k and q 4i j k. 4 p 4 and q 1 pq 1 1 pq pq cosθ pq 441 4 4 1 10 9 6 1 10 θ cos 9 6 68. 6 (to 1 d.p.) (or 1. 198 radians (to d.p.)) hsn.uk.net Page 17 CfE Edition

Vectors. K is the point 1, 7, Start with a sketch: L,,4 θ, L,,4 and M,5,1 M,5,1. Find KLM. K1, 7, Now find the vectors pointing away from the angle: 1 4 LK k l 7 10, 4 5 LM ml 5. 1 4 Use the scalar product to find the angle: LK.LM cosθ LK LM 4510 4 10 5 6 10 8 1 6 θ cos 10 8 84. 9 (to 1 d.p.) (or 1. 48 radians (to d.p.)) hsn.uk.net Page 18 CfE Edition

Vectors. The diagram below shows the cube OPQRSTUV. The point R has coordinates 4,0,0. (a) Write down the coordinates of T and U. (b) Find the components of RT and RU. (c) Calculate the size of angle TRU. z S O (a) From the diagram, T0,4,4 and U4,4,4. P T V R U x Q y (b) 0 4 4 RT t r 40 4, 4 0 4 4 4 0 RU u r 40 4. 4 0 4 RT.RU (c) cos TRU RT RU 404444 1 cos 4 4 4 0 4 4 16 16 6 TRU 6 5. (to 1 d.p.) (or 0.615 radians (to d.p.)) hsn.uk.net Page 19 CfE Edition

Vectors 1 Perpendicular Vectors EF If a and b are perpendicular then ab. 0. This is because ab. a bcosθ abcos90 ( θ 90 since perpendicular) 0 (since cos900) Conversely, if ab. 0 then a and b are perpendicular. EXAMPLES 1. Two vectors are defined as a 4i j 5k and b i j k. Show that a and b are perpendicular. ab. ab 1 1ab ab 415 810 0 Since ab. 0, a and b are perpendicular.. 4 PQ a 7 and RS a and RS where a is a constant. Given that PQ Since PQ and RS are perpendicular, PQ.RS 0 4 a 7a 0 8a7a 0 84a 0 a. are perpendicular, find the value of a. hsn.uk.net Page 0 CfE Edition

Vectors 14 Properties of the Scalar Product EF Some properties of the scalar product are as follows: ab. ba. a. b c ab. ac. (Expanding brackets) aa. a Note that these are not given in the exam. EXAMPLES 1. In the diagram, Calculate p. q r. p, r 4 and q. p 45 15 q r p. q r p. q p. r pqcosθ1 prcosθ cos604cos45 6 1 1 1 6.. In the diagram below a c and b. a c 0 a a b c. Calculate. a. a b c aa. ab. ac. a a b cosθ1 a c cosθ cos0 cos10 1 44 4 46 1. b 0 Remember ac. a c cosθ since a points to θ and c points away. hsn.uk.net Page 1 CfE Edition

Vectors 1. a = 1-4 and b = 0. Calculate (a) b (b) a - b (c) ( a+ b). (a) Find the magnitude of the vector 1. (b) Find a vector parallel to the vector - 4 0 which has unit length.. A is (0,-,5), B is (7,-6,9) and C is (1,-1,17). Show that A, B and C are collinear stating the ratio AB:BC. 4. PQRS is a parallelogram with P(,4,0), Q(7,6,-) and R(8,5,). Find the coordinates of S. 5. (a) P is the point (-1,8,0) and Q is (4,-,5). B divides PQ in the ratio :. Find the coordinates of B. (b) A is (0,1,5) and C is (8,5,-). Show that A, B and C are collinear. 6. An aeroplane flies in a straight line at a constant speed. It takes hours to fly from A to B and 4 hours to fly from B to C. Relative to coordinate axes, A is (0,-1,6) and C is (7,6,-1). Find the coordinates of B. 7. u = i j + 4k and v = i + aj + 7 k. If u = v find the value of a. 8. Show that the vectors a = i 4j + 6k and b = 4i 7j 6k are perpendicular. 9. A triangle has vertices A(6,-1,9), B(,-,11) and C(7,-8,14). Show that this triangle is right-angled at B.

10. Three points A, B and D have coordinates as shown. A(-1,0,4) C D(1,-8,) B(5,-6,16) (a) Find the coordinates of C if AB is parallel and equal in length to CD. (b) The point E divides AB in the ratio :1, find the coordinates of E. (c) Prove that CE is perpendicular to AB. 11. Use the diagrams to find the value of a.b. (a) a (b) a 60 0 b π 6 b a = 6 b = 7 a = 4 b = 1. Write down the value of p.q. p = 8 q = 9 q p 1. A triangle is formed from R(0,4,-1), S(1,5,) and T(6,1,-). (a) Find the vectors RS and RT. (b) Evaluate RS. RT (c) What can you deduce about he lines RS and RT. 14. A, B, C and D are the points (-1,,1), (1,6,7), (0,,5) and (1,4,10) respectively. (a) Find the components of AB and CD. p (b) The vector q is perpendicular to both AB 1 and CD. Find p and q.

- 1 15. u = and v = 5. k -1 (a) Write down the vectors u + v and u v. (b) Given that u + v and u v are perpendicular find k. 16. In the square based pyramid opposite all eight edges are of length 5 units. V Evaluate p.(q + r). C D B A 17. Shown opposite is a right-angled isosceles triangle. The two equal sides of the triangle have length 4 units. Find the value of k.(h + k + l). k h l T 18. In the diagram opposite TOPQR is a pyramid whose base OPQR is a rhombus of length 1 unit. OPT and ORT are equilateral triangles. R t (a) Evaluate t.r. (b) Given X is the midpoint of PQ, evaluate t.x. r O p 19. The diagram shows two vectors a and b with = and b =. (a) Evaluate (a) a.a (b) b.b (c) a.b a (b) Given p = a + b evaluate p.p. x P X Q 45 0 b

0. In the trapezium AB = DC and AB is paralle to DC. In terms of u and v, write down the vectors (a) AB (b) AC (c) BC (d) AN D u C _. N _ A B 1. ABCDEFGH is a parallelipiped. In terms of u, v and w find expressions for (a) DC (b) HC (c) AC (d) FD (e) CF u B C w A v D G H F E. (a) For the diagram opposite find AS and AT. (b) Hence calculate angle TAS. A(1,,-1) S(5,5,) T(4,0,) E(-1,0,-). Calculate the size of angle FEG in the diagram shown. F(1,1,0) G(0,,) 4. PA and PB are representatives of the vectors a and b. 4 - a = - 4 and b= and angle APB = θ. 1 a A 7 (a) Prove that cos θ = 9 P b B (b) Hence find the exact value of cos θ.

5. In the diagram AB = 15, BC = 6 and CF = 8 (a) Write down the coordinates of D and F (b) Calculate the size of angle DBF. z H E y G F D C A B x 6. The diagram shows three cuboids placed on top of each other. Two of the cuboids are equal in size 10 cm by cm by 5 cm. The third cuboid is centrally placed on the other two and has dimensions 6 cm by cm by 5 cm. z B 6 C y (a) Write down the coordinates of A, B and C. (b) Calculate the size of angle BAC. 5 10 A x

Vectors [SQA] 1. [SQA]. 1 4.Giventhatp = 5,q = 0 andr=,expressp q 1 rin 7 1 0 component form. 1 A. 9 15 1 B. 11 1 5 C. 9 1 5 D. 11 15 hsn.uk.net Page 1 Questions marked [SQA] c SQA All others c Higher Still Notes

1 4.Giventhatu= 0 andv=,findu vincomponentform. 1 4 4 A. 1 5 4 B. 4 11 8 C. 1 5 8 D. 4 5 [SQA] 5. [SQA] 6. PQRSisaparallelogramwithverticesP(1,,),Q(4,, )andr(,1,1). Find the coordinates of S. [SQA] 7. hsn.uk.net Page Questions marked [SQA] c SQA All others c Higher Still Notes

8.Thevectoruhascomponents 0. 4 Whichofthefollowingisaunitvectorparalleltou? A. 5 i +4 5 k B. i +4k C. 7 i + 4 7 k D. 1 i +1 4 k 9.Ifu =k 1,wherek >0anduisaunitvector,determinethevalueofk. 0 A. 1 B. 1 8 C. 1 D. 1 10 [SQA] 10. Calculatethelengthofthevectori j + k. hsn.uk.net Page Questions marked [SQA] c SQA All others c Higher Still Notes

11.Thediagramshowsasquare-basedpyramidP,QRST. TS, TQand TPrepresent f, g and h respectively. P R h Q S f T g Express RPintermsof f,gandh. A. f +g h B. f g+h C. f g h D. f +g+h [SQA] 1. Thevectorsp,qandraredefinedasfollows: p =i j +k,q =4i j+k,r=4i j +k. (a)findp q+rintermsofi,jandk. 1 (b)findthevalueof p q+r. [SQA] 1. hsn.uk.net Page 4 Questions marked [SQA] c SQA All others c Higher Still Notes

[SQA] 14. [SQA] 15. [SQA] 16. ShowthatP(,,),Q(4,4,1)andR(5,5,0)arecollinearandfindtheratioin which Q divides PR. 4 [SQA] 17. Aisthepoint (, 5,6),Bis (6,,4)andCis (1,0,1).ShowthatA,BandC are collinear and determine the ratio in which B divides AC. 4 18.GiventhatthepointsS( 4,5,1),T( 16, 4,16)andU( 4, 10,6)are collinear, calculate the ratio in which T divides SU. A. : B. : C. :5 D. :5 [SQA] 19. Showthatthevectorsa =i +j kandb =i j+kareperpendicular. 1 0.Ifu = 1 andv= t are perpendicular, what is the value of t? t 1 A. B. C. D. 1 hsn.uk.net Page 5 Questions marked [SQA] c SQA All others c Higher Still Notes

1.Thevectorsxi +5j +7kand i +j kareperpendicular. Whatisthevalueofx? A. 0 B. 1 C. 4 D. 10 [SQA]. Forwhatvalueoftarethevectorsu = t andv= 10 perpendicular? t [SQA]. D,EandFhavecoordinates (10, 8, 15), (1,, )and (,0,1)respectively. (a) (i)showthatd,eandfarecollinear. (ii)findtheratioinwhichedividesdf. 4 (b)ghascoordinates (k,1,0). GiventhatDEisperpendiculartoGE,findthevalueofk. 4 [SQA] 4. hsn.uk.net Page 6 Questions marked [SQA] c SQA All others c Higher Still Notes

[SQA] 5. Acuboidmeasuring11cmby5cmby7cmisplacedcentrallyontopofanother cuboidmeasuring17cmby9cmby8cm. Coordinates axes are taken as shown. z 5 7 11 A B C 9 8 17 y x O (a)thepointahascoordinates (0,9,8)andChascoordinates (17,0,8). Write down the coordinates of B. 1 (b) Calculate the size of angle ABC. 6 [SQA] 6. hsn.uk.net Page 7 Questions marked [SQA] c SQA All others c Higher Still Notes

[SQA] 7. Vectors p, q and r are represented A B on the diagram shown where angle ADC =0. q r Itisalsogiventhat p =4and q =. 0 (a)evaluatep.(q +r)andr.(p q). D p C 6 (b)find q +r and p q. 4 [SQA] 8. hsn.uk.net Page 8 Questions marked [SQA] c SQA All others c Higher Still Notes

[SQA] 9. [SQA] 0. A box in the shape of a cuboid is designed with circles of different sizes on each face. The diagram shows three of the circles, where the origin represents oneofthecornersofthecuboid.the z centresofthecirclesarea(6,0,7), B(0,5,6)andC(4,5,0). B FindthesizeofangleABC. 7 A O y x C hsn.uk.net Page 9 Questions marked [SQA] c SQA All others c Higher Still Notes

[SQA] 1. [SQA]. hsn.uk.net Page 10 Questions marked [SQA] c SQA All others c Higher Still Notes

[SQA]. [SQA] 4. 5.Giventhata= 4 anda.(a +b) =7,whatisthevalueofa.b? 0 A. 7 5 B. 18 5 C. 6 D. 18 [END OF QUESTIONS] hsn.uk.net Page 11 Questions marked [SQA] c SQA All others c Higher Still Notes

Vectors Homework Expressions & Functions 1.4 1 A is the point (-,, 4) and B is (-1,, ). Find (a) the components of vector AB (b) the length of AB 1 Show that P(,, ), Q(4, 4, 1) and R(5, 5, 0) are collinear and find the ratio in which Q divides PR. 4 Show that the vectors a = i + j k and b = i j + k are perpendicular. 4 The point Q divides the line joining P( 1, 1, 0) to R(5,, ) in the ratio : 1. Find the coordinates of Q. 5 1 5 St Andrew s Academy Maths Dept 016-17 Higher E&F 1.4