organic compounds Comment

Similar documents
Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

metal-organic compounds

metal-organic compounds

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

organic papers 2,6-Diamino-3,5-dinitro-1,4-pyrazine 1-oxide Comment

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

2-Methoxy-1-methyl-4-nitro-1H-imidazole

metal-organic compounds

metal-organic compounds

(+-)-3-Carboxy-2-(imidazol-3-ium-1-yl)- propanoate

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Sodium 3,5-dinitrobenzoate

organic papers Malonamide: an orthorhombic polymorph Comment

metal-organic compounds

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

metal-organic compounds

metal-organic compounds

Diammonium biphenyl-4,4'-disulfonate. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Link to published version

Experimental. Crystal data. C 18 H 22 N 4 O 6 M r = Monoclinic, P2=n a = (5) Å b = (4) Å c = (5) Å = 104.

metal-organic compounds

V = (14) Å 3 Z =8 Cu K radiation. Data collection. Refinement

metal-organic compounds

inorganic compounds Chromous hydrazine sulfate

= 0.09 mm 1 T = 294 (2) K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules.

organic papers 2-Iodo-4-nitro-N-(trifluoroacetyl)aniline: sheets built from iodo nitro and nitro nitro interactions

metal-organic compounds

metal-organic compounds

metal-organic compounds

electronic reprint 2-Hydroxy-3-methoxybenzaldehyde (o-vanillin) revisited David Shin and Peter Müller

addenda and errata [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j Corrigendum Reza Kia, a Hoong-Kun Fun a * and Hadi Kargar b

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

metal-organic compounds

metal-organic compounds

inorganic compounds Hexagonal ammonium zinc phosphate, (NH 4 )ZnPO 4,at10K

metal-organic compounds

metal-organic papers Bis[1,1,3,3-tetramethyl-1,3-bis(dichloroacetato)distannoxane]

metal-organic compounds

Prakash S Nayak, B. Narayana, Jerry P. Jasinski, H. S. Yathirajan and Manpreet Kaur

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 245 parameters 2 restraints

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

metal-organic compounds

Experimental. Crystal data

organic compounds Melaminium acetate acetic acid solvate monohydrate

metal-organic compounds

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

2. Experimental Crystal data

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

organic compounds 2-(3-Nitrophenylaminocarbonyl)- benzoic acid: hydrogen-bonded sheets of R 4 4 (22) rings Comment

metal-organic compounds

metal-organic compounds

organic compounds 2,4,6-Trimethylphenyl isocyanide

4-(4-Hydroxymethyl-1H-1,2,3-triazol-1-yl)benzoic acid

metal-organic compounds

Experimental. Crystal data. C 10 H 12 N 6 C 2 H 6 O M r = Monoclinic, C2=c a = (19) Å b = (2) Å c = (3) Å = 101.

metal-organic compounds

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 155 parameters 10 restraints

organic papers Zwitterionic 2-(methylamino)ethanesulfonic acid

Experimental. Crystal data. C 18 H 18 N 2 O 4 S M r = Monoclinic, P2 1 =n a = (3) Å b = (2) Å c = (5) Å = 104.

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic compounds

metal-organic papers Di-l-pyridyl-1:2j 2 N:C 2 ;2:1j 2 N:C 2 -l-tetrahydrofuran-j magnesium(ii)] tetrahydrofuran hemisolvate

metal-organic compounds

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 106 parameters 2 restraints

A two-dimensional Cd II coordination polymer: poly[diaqua[l 3-5,6-bis(pyridin-2-yl)pyrazine-2,3- dicarboxylato-j 5 O 2 :O 3 :O 3,N 4,N 5 ]cadmium]

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 184 parameters 1 restraint

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections. C3 H3Cg1 i

Z =4 Mo K radiation = 0.17 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 205 parameters

2. Experimental Crystal data

b = (2) Å c = (3) Å = (10) V = (2) Å 3 Z =2 Data collection Refinement

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

= mm 1 T = 298 K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 290 parameters 9 restraints

metal-organic papers Bis(acetato-O)diaqua(2,2 0 -bipyridyl-n,n 0 )cobalt(ii) (OC-13): a two-dimensional material Comment

organic compounds 3-Hydroxybenzaldehyde

metal-organic papers catena-[l 6-1,2,4,5-Benzenetetracarboxylatotetraaqua-dinickel(II)] Comment

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Tarek Ben Rhaiem* and Habib Boughzala

2-(3-Chloro-4-hydroxylphenyl)-N-(3,4- dimethyoxyphenethyl)acetamide. Author. Published. Journal Title DOI. Copyright Statement.

3-methoxyanilinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate.

electronic reprint (2,4,6-Trinitrophenyl)guanidine Graham Smith, Urs D. Wermuth and Jonathan M. White Editors: W. Clegg and D. G.

electronic papers catena-poly[[bis(nitrato)(pyrimidine)copper(ii)]-l-pyrimidine-n:n 0 ] Ivonne Riggio et al.

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Jimmy U. Franco, Marilyn M. Olmstead and Justin C. Hammons

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Tris{2-[(2,6-dimethylphenyl)amino]ethyl}amine

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Crystal structure of DL-Tryptophan at 173K

research papers V 2 O 2 F 4 (H 2 O) 2 H 2 O: a new V 4+ layer structure related to VOF 3 publcif Cameron Black and Philip Lightfoot* Abstract

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

organic compounds Hydrogen-bonding adducts of benzenepolycarboxylic acids with N,N-dimethylformamide: benzene-

metal-organic compounds

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

electronic reprint Masanari Hirahara, Shigeyuki Masaoka and Ken Sakai Crystallography Journals Online is available from journals.iucr.

electronic reprint 5,12-Bis(4-tert-butylphenyl)-6,11-diphenylnaphthacene

Transcription:

organic compounds Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701 4,6-Dimethylthio-1-[3-(4,6-dimethylthio-2H-pyrazolo[3,4-d]- pyrimidin-2-yl)propyl]-1h-pyrazolo[3,4-d]pyrimidine, (4), was prepared earlier as a co-product during the synthesis of (1). Disappearance of intramolecular stacking due to one-atom movement or increment of a `propylene linker' in pyrazolo[3,4-d]pyrimidine-based flexible models Prakas R. Maulik, a * Kamlakar Avasthi, b Sanjay Sarkhel, a Tilak Chandra, b Diwan S. Rawat, b Brad Logsdon c and Robert A. Jacobson c a Membrane Biology Division, Central Drug Research Institute, Lucknow 226 001, India, b Medicinal Chemistry Division, Central Drug Research Institute, Lucknow 226 001, India, and c Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA Correspondence e-mail: root@cscdri.ren.nic.in Received 2 June 2000 Accepted 31 July 2000 In the crystal structures of 4,6-dimethylthio-1-[3-(4,6-dimethylthio-2H-pyrazolo[3,4-d]pyrimidin-2-yl)propyl]-1H-pyrazolo[3,4-d]pyrimidine, C 17 H 20 N 8 S 4, and 1-[4-(4-methoxy-6- methylthio-1h-pyrazolo[3,4-d]pyrimidin-1-yl)butyl]-5-meth- yl-6-methylthio-4,5-dihydro-1h-pyrazolo[3,4-d]pyrimidin-4- one, C 18 H 22 N 8 O 2 S 2, only intermolecular stacking due to aromatic ± interactions between pyrazolo[3,4-d]pyrimidine rings is present. Comment Interactions between aromatic units play a signi cant role in chemistry and biology. The use of a `propylene linker' was rst documented by Brown et al. (1968) for the promotion of intramolecular aromatic ± interactions (APPI). Recently, we have reported convenient synthesis, high resolution 1 H NMR analysis (Avasthi et al., 1995; Avasthi, Rawat, Chandra & Bhakuni, 1998) and X-ray studies (Biswas et al., 1995; Maulik et al., 1998) of three novel `propylene linker' compounds: 1,3-bis(4,6-dimethylthio-1H-pyrazolo[3,4-d]pyrimidin-1-yl)propane, (1), 1,1 0 -(1,3-propanediyl)bis(5-methyl- 6-methylthio-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one, (2), and 1-[3-(4-methoxy-6-methylthio-1H-pyrazolo[3,4-d]- pyrimidin-1-yl)propyl]-5-methyl-6-methylthio-4,5-dihydro-1hpyrazolo[3,4-d]pyrimidin-4-one, (3). These three compounds show inter/intramolecular stacking due to APPI. In this communication, we report the crystal structures of two compounds, (4) and (5), which are very closely related to our earlier exible models (1)±(3). The conformation of (4) is shown in Fig. 1. The structure does not show any intramolecular stacking [N1 0 ÐN2 3.956 (3) A Ê ], although the angle at the centre of the bridge [C8ÐC9ÐC10 114.9 (3) ] is quite comparable to the corresponding angle in the structure of (1) (Biswas et al., 1995). This disappearance of intramolecular stacking compared with the structure of (1) may highlight the importance of speci c orientation for intramolecular stacking (Hobza & Sponer, 1999). Interestingly, intermolecular stacking due to APPI is still present (Fig. 2), as indicated by an average space of 3.67 (4) A Ê between two stacked rings [angle between the stacked rings: 6.32 (10) ]. The other compound, 1-[4-(4-methoxy-6-methyl- thio-1h-pyrazolo[3,4-d]pyrimidin-1-yl)butyl]-5-methyl-6- methylthio-4,5-dihydro-1h-pyrazolo[3,4-d]pyrimidin-4-one, (5), which differs from compound (3) in having an extra methylene group in its linker, has been synthesized by us recently (Avasthi, Rawat, Chandra & Bhakuni, 1998). The conformation of (5) is shown in Fig. 3. Once again, the crystal structure does not show any intramolecular stacking [N1ÐN1 0 5.249 (2) A Ê and torsion angle C8ÐC9ÐC10ÐC11 170.3 (2) ] con rming an earlier conclusion drawn on the basis of 1 H Figure 1 ORTEP (Johnson, 1965) diagram showing the molecular structure of (4) with labelling of the non-h atoms and displacement ellipsoids at the 50% probability level. Acta Cryst. (2000). C56, 1361±1363 # 2000 International Union of Crystallography Printed in Great Britain ± all rights reserved 1361

organic compounds We believe that the addition of these two new members, (4) and (5), to an already existing group of three pyrazolo- [3,4-d]pyrimidinyl compounds, (1)±(3), isomeric with biologically important purines, constitutes a unique family of ve compounds demonstrating very strong conformational (topological) preferences due mainly to APPI. Figure 2 View of the molecules of compound (4) showing the partial overlapping of the rings owing to intermolecular stacking. Experimental The synthesis of compound (4) was achieved by alkylation of 4,6- dimethylthio-1h-pyrazolo[3,4-d]pyrimidine with 1,3-dibromopropane in the presence of potassium carbonate in dimethylformamide (Avasthi et al., 1995). The synthesis of compound (5) was carried out by treatment of 1,4-bis(4,6-dimethylthio-1H-pyrazolo[3,4- d]pyrimidin-1-yl)butane with aqueous alkali followed by methylation (Avasthi, Rawat, Chandra & Bhakuni, 1998). Diffraction quality crystals of both compounds were obtained by slow evaporation of ethyl acetate/chloroform mixtures at room temperature. NMR data comparison (Avasthi, Rawat, Chandra & Bhakuni, 1998) with monomeric model compounds (Avasthi, Rawat & Bhakuni, 1998). Intermolecular stacking, due to APPI, however, is still present (Fig. 4), as revealed by the average intermolecular spacing of 3.64 (3) A Ê [angle between the stacked rings: 0.68 (12) ]. Thus, the crystal structures of (4) and (5) are stabilized mainly by intermolecular APPI and van der Waals forces. Figure 3 ORTEP (Johnson, 1965) diagram showing the molecular structure of (5) with labelling of the non-h atoms and displacement ellipsoids at the 50% probability level. Compound (4) Crystal data C 17 H 20 N 8 S 4 M r = 464.65 Monoclinic, P2 1 =n a = 7.620 (2) A Ê b = 10.411 (2) A Ê c = 26.813 (5) A Ê = 97.92 (2) V = 2106.8 (8) A Ê 3 Z =4 Data collection Siemens P4 diffractometer! scans Absorption correction: scan (local program; Karcher, 1981) T min = 0.749, T max = 0.778 3697 measured re ections 3697 independent re ections 2893 re ections with I > 2(I) Re nement Re nement on F 2 R[F 2 >2(F 2 )] = 0.052 wr(f 2 ) = 0.142 S = 0.804 3684 re ections 267 parameters H-atom parameters constrained w = 1/[ 2 (F 2 o ) + (0.1195P) 2 + 1.4563P] where P =(F 2 o +2F 2 c )/3 D x = 1.465 Mg m 3 Mo K radiation Cell parameters from 42 re ections = 4.7±13.1 = 0.473 mm 1 T = 293 (2) K Rhombohedral, colourless 0.5 0.5 0.5 mm max = 25.00 h =0! 9 k =0! 12 l = 31! 31 3 standard re ections every 97 re ections frequency: 60 min intensity decay: none (/) max < 0.001 max = 0.50 e A Ê 3 min = 0.24 e A Ê 3 Extinction correction: SHELXL93 (Sheldrick, 1993) Extinction coef cient: 0.0066 (12) Figure 4 View of the molecules of compound (5) showing the partial overlapping of the rings owing to intermolecular stacking. Compound (5) Crystal data C 18 H 22 N 8 O 2 S 2 M r = 446.56 Monoclinic, C2=c a = 31.736 (7) A Ê b = 8.308 (2) A Ê c = 17.467 (4) A Ê = 115.12 (2) V = 4169.8 (17) A Ê 3 Z =8 D x = 1.423 Mg m 3 Mo K radiation Cell parameters from 39 re ections = 4.9±12.8 = 0.289 mm 1 T = 293 (2) K Trapezoidal, colourless 0.8 0.6 0.5 mm 1362 Prakas R. Maulik et al. C 17 H 20 N 8 S 4 and C 18 H 22 N 8 O 2 S 2 Acta Cryst. (2000). C56, 1361±1363

organic compounds Data collection Siemens P4 diffractometer! scans Absorption correction: scan (local program; Karcher, 1981) T min = 0.772, T max = 0.835 3616 measured re ections 3616 independent re ections 3189 re ections with I > 2(I) Re nement Re nement on F 2 R[F 2 >2(F 2 )] = 0.041 wr(f 2 ) = 0.121 S = 1.054 3616 re ections 276 parameters H-atom parameters constrained w = 1/[ 2 (F 2 o ) + (0.0685P) 2 + 1.3387P] where P =(F 2 o +2F 2 c )/3 max = 25.01 h =0! 37 k =0! 9 l = 20! 18 3 standard re ections every 97 re ections frequency: 60 min intensity decay: none (/) max < 0.001 max = 0.28 e A Ê 3 min = 0.22 e A Ê 3 Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coef cient: 0.0068 (5) For both compounds, data collection: XSCANS (Siemens, 1992); cell re nement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to re ne structure: SHELXL93 (Sheldrick, 1993) for compound (4), SHELXL97 (Sheldrick, 1997) for compound (5). For both compounds; molecular graphics: NRCVAX (Gabe et al., 1989); software used to prepare material for publication: SHELXL93 for compound (4), SHELXL97 for compound (5). SS thanks CSIR, India, for a Senior Research Fellowship. Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1110). Services for accessing these data are described at the back of the journal. References Avasthi, K., Chandra, T. & Bhakuni, D. S. (1995). Indian J. Chem. Ser. B, 34, 944±949. Avasthi, K., Rawat, D. S. & Bhakuni, D. S. (1998). Indian J. Chem. Ser. B, 37, 1228±1233. Avasthi, K., Rawat, D. S., Chandra, T. & Bhakuni, D. S. (1998). Indian J. Chem. Ser. B, 37, 754±759. Biswas, G., Chandra, T., Avasthi, K. & Maulik, P. R. (1995). Acta Cryst. C51, 2453±2455. Brown, D. T., Fisinger, J. & Leonard, N. J. (1968). J. Am. Chem. Soc. 90, 7300± 7323. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384±387. Hobza, P. & Sponer, J. (1999). Chem. Rev. 99, 3247±3276. Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. Karcher, B. (1981). PhD thesis, Iowa State University, USA, pp. 64±90. Maulik, P. R., Avasthi, K., Biswas, G., Biswas, S., Rawat, D. S., Sarkhel, S., Chandra, T. & Bhakuni, D. S. (1998). Acta Cryst. C54, 275±277. Sheldrick, G. M. (1990). Acta Cryst. A46, 467±473. Sheldrick, G. M. (1993). SHELXL93. University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of GoÈttingen, Germany. Siemens (1992). XSCANS User's Manual. Version 2.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Acta Cryst. (2000). C56, 1361±1363 Prakas R. Maulik et al. C 17 H 20 N 8 S 4 and C 18 H 22 N 8 O 2 S 2 1363

supporting information [https://doi.org/10.1107/s0108270100010775] Disappearance of intramolecular stacking due to one-atom movement or increment of a `propylene linker in pyrazolo[3,4-d]pyrimidine-based flexible models Prakas R. Maulik, Kamlakar Avasthi, Sanjay Sarkhel, Tilak Chandra, Diwan S. Rawat, Brad Logsdon and Robert A. Jacobson Computing details For both compounds, data collection: XSCANS (Siemens, 1992); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993) for (4); SHELXL97 (Sheldrick, 1997) for (5). For both compounds, molecular graphics: NRCVAX (Gabe et al., 1989). Software used to prepare material for publication: SHELXL93 for (4); SHELXL97 for (5). (4) 1-[4,6-dimethylthio-2H-pyrazolo[3,4-d]pyrimidin-2-yl]-4,6-dimethylthio-1H- pyrazolo[3,4-d]pyrimidine Crystal data C 17 H 20 N 8 S 4 M r = 464.65 Monoclinic, P2 1 /n a = 7.620 (2) Å b = 10.411 (2) Å c = 26.813 (5) Å β = 97.92 (2) V = 2106.8 (8) Å 3 Z = 4 F(000) = 968 Data collection Siemens P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: ψ scan (local program; Karcher, 1981) T min = 0.749, T max = 0.778 3697 measured reflections Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.052 wr(f 2 ) = 0.142 D x = 1.465 Mg m 3 Melting point: 180 K Mo Kα radiation, λ = 0.71073 Å Cell parameters from 42 reflections θ = 4.7 13.1 µ = 0.47 mm 1 T = 293 K Rhombehedral, colourless 0.5 0.5 0.5 mm 3697 independent reflections 2893 reflections with I > 2σ(I) R int = 0.000 θ max = 25.0, θ min = 2.1 h = 0 9 k = 0 12 l = 31 31 3 standard reflections every 97 reflections intensity decay: nil S = 0.84 3684 reflections 267 parameters 0 restraints sup-1

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained Calculated w = 1/[σ 2 (F o2 ) + (0.1195P) 2 + 1.4563P] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max < 0.001 Δρ max = 0.50 e Å 3 Δρ min = 0.24 e Å 3 Extinction correction: SHELXL93 (Sheldrick, 1993), Fc * =kfc[1+0.001xfc 2 λ 3 /sin(2θ)] -1/4 Extinction coefficient: 0.0066 (12) Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement on F 2 for ALL reflections except for 13 with very negative F 2 or flagged by the user for potential systematic errors. Weighted R-factors wr and all goodnesses of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The observed criterion of F 2 > σ(f 2 ) is used only for calculating _R_factor(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All the H atoms were placed in geometrical idealized positions and allowed to ride on their parent atoms, to which each was bonded for the final cycles of refinement. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq N1 0.6765 (3) 0.7323 (2) 0.27058 (10) 0.0567 (6) N2 0.6687 (3) 0.6147 (2) 0.24806 (9) 0.0546 (6) C3 0.6296 (4) 0.5188 (3) 0.27724 (11) 0.0552 (7) H3 0.6191 (4) 0.4323 (3) 0.26873 (11) 0.066* C3A 0.6076 (4) 0.5743 (3) 0.32313 (11) 0.0519 (6) C4 0.5678 (4) 0.5361 (3) 0.37090 (11) 0.0546 (7) S4 0.52861 (13) 0.37328 (8) 0.38199 (3) 0.0668 (3) CS4 0.5173 (7) 0.3728 (4) 0.44831 (14) 0.0915 (13) HS4A 0.476 (4) 0.2907 (12) 0.4580 (3) 0.137* HS4B 0.437 (4) 0.439 (2) 0.4561 (2) 0.137* HS4C 0.6330 (11) 0.389 (3) 0.46636 (14) 0.137* N5 0.5591 (4) 0.6212 (3) 0.40670 (9) 0.0586 (6) C6 0.5897 (4) 0.7470 (3) 0.39526 (12) 0.0571 (7) S6 0.57146 (15) 0.84538 (9) 0.44724 (3) 0.0769 (3) CS6 0.5919 (6) 1.0034 (4) 0.4224 (2) 0.0850 (11) HS6A 0.7103 (13) 1.0157 (11) 0.4148 (11) 0.128* HS6B 0.567 (4) 1.0659 (4) 0.4467 (5) 0.128* HS6C 0.509 (3) 1.0134 (11) 0.3921 (7) 0.128* N7 0.6293 (3) 0.7968 (2) 0.35316 (9) 0.0562 (6) C7A 0.6375 (4) 0.7067 (3) 0.31652 (11) 0.0517 (6) N1 0.3980 (3) 0.5145 (2) 0.11726 (9) 0.0553 (6) N2 0.4251 (4) 0.5241 (3) 0.06768 (9) 0.0641 (7) C3 0.4362 (5) 0.4053 (3) 0.05171 (11) 0.0626 (8) H3 0.4538 (5) 0.3832 (3) 0.01917 (11) 0.075* sup-2

C3 A 0.4178 (4) 0.3152 (3) 0.09027 (10) 0.0522 (6) C4 0.4195 (4) 0.1828 (3) 0.09828 (10) 0.0505 (6) S4 0.44824 (14) 0.08063 (8) 0.04922 (3) 0.0700 (3) CS4 0.4605 (6) 0.0718 (3) 0.07966 (14) 0.0786 (10) HS4D 0.5710 (18) 0.0788 (12) 0.1015 (9) 0.118* HS4E 0.453 (4) 0.1387 (3) 0.0548 (2) 0.118* HS4F 0.364 (2) 0.0802 (12) 0.0991 (9) 0.118* N5 0.3991 (3) 0.1360 (2) 0.14339 (8) 0.0519 (6) C6 0.3743 (4) 0.2208 (3) 0.18009 (10) 0.0506 (6) S6 0.34088 (11) 0.15980 (7) 0.23887 (3) 0.0592 (3) CS6 0.3691 (5) 0.0101 (3) 0.23178 (13) 0.0671 (8) HS6D 0.348 (4) 0.0531 (4) 0.2620 (4) 0.101* HS6E 0.4878 (11) 0.0275 (4) 0.2255 (10) 0.101* HS6F 0.287 (2) 0.0407 (5) 0.2040 (6) 0.101* N7 0.3715 (3) 0.3477 (2) 0.17775 (9) 0.0521 (6) C7 A 0.3946 (4) 0.3903 (3) 0.13179 (10) 0.0505 (6) C8 0.7079 (4) 0.6063 (3) 0.19635 (11) 0.0606 (7) H8A 0.7015 (4) 0.5172 (3) 0.18565 (11) 0.073* H8B 0.8277 (4) 0.6364 (3) 0.19510 (11) 0.073* C9 0.5800 (4) 0.6852 (3) 0.16051 (11) 0.0591 (7) H9A 0.5692 (4) 0.7696 (3) 0.17511 (11) 0.071* H9B 0.6297 (4) 0.6966 (3) 0.12940 (11) 0.071* C10 0.3986 (4) 0.6287 (3) 0.14827 (12) 0.0600 (8) H10A 0.3537 (4) 0.6070 (3) 0.17934 (12) 0.072* H10B 0.3200 (4) 0.6923 (3) 0.13074 (12) 0.072* Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 N1 0.078 (2) 0.0427 (12) 0.0505 (13) 0.0017 (11) 0.0118 (11) 0.0015 (10) N2 0.0745 (15) 0.0433 (12) 0.0470 (13) 0.0038 (11) 0.0115 (11) 0.0036 (10) C3 0.073 (2) 0.0432 (14) 0.0488 (15) 0.0018 (13) 0.0060 (13) 0.0006 (12) C3A 0.063 (2) 0.0458 (15) 0.0463 (14) 0.0005 (12) 0.0051 (12) 0.0002 (11) C4 0.063 (2) 0.050 (2) 0.050 (2) 0.0019 (13) 0.0050 (12) 0.0020 (12) S4 0.0962 (6) 0.0473 (5) 0.0581 (5) 0.0031 (4) 0.0150 (4) 0.0050 (3) CS4 0.142 (4) 0.079 (3) 0.055 (2) 0.008 (2) 0.016 (2) 0.016 (2) N5 0.074 (2) 0.0537 (14) 0.0487 (13) 0.0033 (12) 0.0112 (11) 0.0025 (11) C6 0.068 (2) 0.052 (2) 0.052 (2) 0.0037 (13) 0.0099 (13) 0.0053 (13) S6 0.1145 (8) 0.0630 (6) 0.0581 (5) 0.0143 (5) 0.0293 (5) 0.0147 (4) CS6 0.121 (3) 0.056 (2) 0.082 (2) 0.009 (2) 0.029 (2) 0.014 (2) N7 0.0728 (15) 0.0464 (13) 0.0503 (13) 0.0019 (11) 0.0118 (11) 0.0058 (11) C7A 0.060 (2) 0.0452 (15) 0.0499 (15) 0.0013 (12) 0.0082 (12) 0.0018 (12) N1 0.075 (2) 0.0464 (13) 0.0457 (12) 0.0013 (11) 0.0110 (11) 0.0057 (10) N2 0.098 (2) 0.0514 (14) 0.0431 (13) 0.0026 (13) 0.0110 (13) 0.0074 (11) C3 0.095 (2) 0.054 (2) 0.0391 (14) 0.006 (2) 0.0089 (14) 0.0025 (12) C3 A 0.070 (2) 0.0463 (15) 0.0404 (13) 0.0007 (12) 0.0081 (12) 0.0034 (11) C4 0.066 (2) 0.0481 (15) 0.0384 (13) 0.0036 (12) 0.0094 (11) 0.0003 (11) S4 0.1196 (8) 0.0501 (5) 0.0433 (4) 0.0001 (4) 0.0217 (4) 0.0020 (3) sup-3

CS4 0.123 (3) 0.053 (2) 0.066 (2) 0.002 (2) 0.034 (2) 0.002 (2) N5 0.0686 (14) 0.0491 (13) 0.0392 (12) 0.0038 (11) 0.0117 (10) 0.0003 (10) C6 0.0591 (15) 0.051 (2) 0.0419 (14) 0.0044 (12) 0.0099 (11) 0.0046 (11) S6 0.0832 (5) 0.0554 (5) 0.0419 (4) 0.0003 (4) 0.0195 (3) 0.0077 (3) CS6 0.093 (2) 0.053 (2) 0.059 (2) 0.001 (2) 0.022 (2) 0.0131 (14) N7 0.0699 (15) 0.0465 (13) 0.0418 (12) 0.0016 (11) 0.0145 (10) 0.0033 (9) C7 A 0.064 (2) 0.0465 (14) 0.0411 (13) 0.0025 (12) 0.0066 (11) 0.0034 (11) C8 0.079 (2) 0.057 (2) 0.047 (2) 0.0041 (15) 0.0140 (14) 0.0043 (13) C9 0.092 (2) 0.0400 (14) 0.048 (2) 0.0001 (14) 0.0184 (14) 0.0036 (12) C10 0.081 (2) 0.046 (2) 0.055 (2) 0.0105 (14) 0.0164 (14) 0.0041 (13) Geometric parameters (Å, º) N1 C7A 1.333 (4) C3 C3 A 1.417 (4) N1 N2 1.363 (3) C3 H3 0.93 N2 C3 1.327 (4) C3 A C4 1.395 (4) N2 C8 1.461 (4) C3 A C7 A 1.391 (4) C3 C3A 1.390 (4) C4 N5 1.333 (3) C3 H3 0.93 C4 S4 1.729 (3) C3A C7A 1.412 (4) S4 CS4 1.782 (4) C3A C4 1.413 (4) CS4 HS4D 0.96 C4 N5 1.315 (4) CS4 HS4E 0.96 C4 S4 1.754 (3) CS4 HS4F 0.96 S4 CS4 1.792 (4) N5 C6 1.355 (4) CS4 HS4A 0.96 C6 N7 1.323 (4) CS4 HS4B 0.96 C6 S6 1.750 (3) CS4 HS4C 0.96 S6 CS6 1.795 (3) N5 C6 1.372 (4) CS6 HS6D 0.96 C6 N7 1.314 (4) CS6 HS6E 0.96 C6 S6 1.750 (3) CS6 HS6F 0.96 S6 CS6 1.790 (4) N7 C7 A 1.344 (3) CS6 HS6A 0.96 C8 C9 1.513 (4) CS6 HS6B 0.96 C8 H8A 0.97 CS6 HS6C 0.96 C8 H8B 0.97 N7 C7A 1.366 (4) C9 C10 1.496 (5) N1 C7 A 1.352 (4) C9 H9A 0.97 N1 N2 1.377 (3) C9 H9B 0.97 N1 C10 1.450 (4) C10 H10A 0.97 N2 C3 1.315 (4) C10 H10B 0.97 C7A N1 N2 103.2 (2) C7 A C3 A C3 104.4 (3) C3 N2 N1 114.5 (2) N5 C4 C3 A 120.1 (3) C3 N2 C8 127.3 (2) N5 C4 S4 120.5 (2) N1 N2 C8 118.2 (2) C3 A C4 S4 119.4 (2) N2 C3 C3A 105.9 (3) C4 S4 CS4 101.8 (2) N2 C3 H3 127.1 (2) S4 CS4 HS4D 109.5 (2) C3A C3 H3 127.1 (2) S4 CS4 HS4E 109.47 (12) C3 C3A C7A 104.7 (3) HS4D CS4 HS4E 109.5 sup-4

C3 C3A C4 138.8 (3) S4 CS4 HS4F 109.47 (13) C7A C3A C4 116.5 (3) HS4D CS4 HS4F 109.5 N5 C4 C3A 120.7 (3) HS4E CS4 HS4F 109.5 N5 C4 S4 120.0 (2) C4 N5 C6 117.8 (2) C3A C4 S4 119.2 (2) N7 C6 N5 128.3 (3) C4 S4 CS4 101.7 (2) N7 C6 S6 113.7 (2) S4 CS4 HS4A 109.47 (14) N5 C6 S6 118.0 (2) S4 CS4 HS4B 109.5 (2) C6 S6 CS6 103.2 (2) HS4A CS4 HS4B 109.5 S6 CS6 HS6D 109.47 (11) S4 CS4 HS4C 109.5 (2) S6 CS6 HS6E 109.47 (12) HS4A CS4 HS4C 109.5 HS6D CS6 HS6E 109.5 HS4B CS4 HS4C 109.5 S6 CS6 HS6F 109.47 (12) C4 N5 C6 116.9 (3) HS6D CS6 HS6F 109.5 N7 C6 N5 129.4 (3) HS6E CS6 HS6F 109.5 N7 C6 S6 120.4 (2) C6 N7 C7 A 111.7 (2) N5 C6 S6 110.2 (2) N7 C7 A N1 126.2 (3) C6 S6 CS6 102.7 (2) N7 C7 A C3 A 126.5 (3) S6 CS6 HS6A 109.5 (2) N1 C7 A C3 A 107.3 (2) S6 CS6 HS6B 109.47 (13) N2 C8 C9 111.8 (2) HS6A CS6 HS6B 109.5 N2 C8 H8A 109.2 (2) S6 CS6 HS6C 109.47 (14) C9 C8 H8A 109.2 (2) HS6A CS6 HS6C 109.5 N2 C8 H8B 109.2 (2) HS6B CS6 HS6C 109.5 C9 C8 H8B 109.2 (2) C6 N7 C7A 112.7 (3) H8A C8 H8B 107.9 N1 C7A N7 124.4 (3) C10 C9 C8 114.9 (3) N1 C7A C3A 111.8 (2) C10 C9 H9A 108.6 (2) N7 C7A C3A 123.8 (3) C8 C9 H9A 108.6 (2) C7 A N1 N2 111.0 (2) C10 C9 H9B 108.6 (2) C7 A N1 C10 128.1 (2) C8 C9 H9B 108.6 (2) N2 N1 C10 120.4 (2) H9A C9 H9B 107.5 C3 N2 N1 105.7 (2) N1 C10 C9 112.2 (3) N2 C3 C3 A 111.6 (3) N1 C10 H10A 109.2 (2) N2 C3 H3 124.2 (2) C9 C10 H10A 109.2 (2) C3 A C3 H3 124.2 (2) N1 C10 H10B 109.2 (2) C4 C3 A C7 A 115.6 (3) C9 C10 H10B 109.2 (2) C4 C3 A C3 140.1 (3) H10A C10 H10B 107.9 C7A N1 N2 C3 0.7 (3) N2 C3 C3 A C7 A 0.1 (4) C7A N1 N2 C8 179.1 (2) C7 A C3 A C4 N5 0.2 (4) N1 N2 C3 C3A 0.4 (3) C3 C3 A C4 N5 178.6 (4) C8 N2 C3 C3A 178.6 (3) C7 A C3 A C4 S4 179.8 (2) N2 C3 C3A C7A 0.1 (3) C3 C3 A C4 S4 1.3 (6) N2 C3 C3A C4 179.3 (3) N5 C4 S4 CS4 5.0 (3) C3 C3A C4 N5 179.6 (3) C3 A C4 S4 CS4 174.9 (3) C7A C3A C4 N5 0.3 (4) C3 A C4 N5 C6 1.0 (4) C3 C3A C4 S4 0.8 (5) S4 C4 N5 C6 179.0 (2) C7A C3A C4 S4 179.9 (2) C4 N5 C6 N7 1.8 (4) N5 C4 S4 CS4 8.3 (3) C4 N5 C6 S6 178.1 (2) sup-5

C3A C4 S4 CS4 172.1 (3) N7 C6 S6 CS6 175.6 (2) C3A C4 N5 C6 0.1 (4) N5 C6 S6 CS6 4.4 (3) S4 C4 N5 C6 179.4 (2) N5 C6 N7 C7 A 1.0 (4) C4 N5 C6 N7 0.8 (5) S6 C6 N7 C7 A 178.9 (2) C4 N5 C6 S6 179.8 (2) C6 N7 C7 A N1 179.8 (3) N7 C6 S6 CS6 6.5 (3) C6 N7 C7 A C3 A 0.5 (4) N5 C6 S6 CS6 174.0 (2) N2 N1 C7 A N7 179.7 (3) N5 C6 N7 C7A 0.9 (5) C10 N1 C7 A N7 7.9 (5) S6 C6 N7 C7A 179.8 (2) N2 N1 C7 A C3 A 0.8 (3) N2 N1 C7A N7 179.9 (3) C10 N1 C7 A C3 A 172.7 (3) N2 N1 C7A C3A 0.7 (3) C4 C3 A C7 A N7 1.0 (5) C6 N7 C7A N1 179.5 (3) C3 C3 A C7 A N7 180.0 (3) C6 N7 C7A C3A 0.3 (4) C4 C3 A C7 A N1 179.5 (3) C3 C3A C7A N1 0.5 (3) C3 C3 A C7 A N1 0.5 (3) C4 C3A C7A N1 179.0 (3) C3 N2 C8 C9 120.9 (3) C3 C3A C7A N7 179.7 (3) N1 N2 C8 C9 60.9 (4) C4 C3A C7A N7 0.2 (4) N2 C8 C9 C10 74.3 (3) C7 A N1 N2 C3 0.7 (4) C7 A N1 C10 C9 100.5 (4) C10 N1 N2 C3 173.3 (3) N2 N1 C10 C9 70.6 (4) N1 N2 C3 C3 A 0.4 (4) C8 C9 C10 N1 69.9 (3) N2 C3 C3 A C4 178.7 (4) (5) 1-[4-(4-methoxy-6-methylthio-1H-pyrazolo[3,4-d]pyrimidin-1-yl)butyl]- 5-methyl-6-methylthio-4,5- dihydro-1h-pyrazolo[3,4-d]pyrimidin-4-one Crystal data C 18 H 22 N 8 O 2 S 2 M r = 446.56 Monoclinic, C2/c a = 31.736 (7) Å b = 8.308 (2) Å c = 17.467 (4) Å β = 115.12 (2) V = 4169.8 (17) Å 3 Z = 8 F(000) = 1872 Data collection Siemens P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: ψ scan (local program; Karcher, 1981) T min = 0.772, T max = 0.835 3616 measured reflections D x = 1.423 Mg m 3 Melting point: 150 K Mo Kα radiation, λ = 0.71073 Å Cell parameters from 39 reflections θ = 4.9 12.8 µ = 0.29 mm 1 T = 293 K Trapezoidal, colourless 0.8 0.6 0.5 mm 3616 independent reflections 3189 reflections with I > 2σ(I) R int = 0.000 θ max = 25.0, θ min = 2.4 h = 0 37 k = 0 9 l = 20 18 3 standard reflections every 97 reflections intensity decay: nil sup-6

Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.041 wr(f 2 ) = 0.121 S = 1.05 3616 reflections 276 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ 2 (F o2 ) + (0.0685P) 2 + 1.3387P] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max < 0.001 Δρ max = 0.28 e Å 3 Δρ min = 0.22 e Å 3 Extinction correction: SHELXL97 (Sheldrick, 1997), Fc * =kfc[1+0.001xfc 2 λ 3 /sin(2θ)] -1/4 Extinction coefficient: 0.0068 (5) Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wr and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ(f 2 ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq N1 0.08564 (6) 0.62969 (18) 0.28542 (10) 0.0591 (4) N2 0.09756 (6) 0.7441 (2) 0.32902 (11) 0.0705 (4) C3 0.09214 (8) 0.8831 (3) 0.29923 (14) 0.0688 (5) H3 0.0979 0.9821 0.3177 0.083* C3A 0.07636 (6) 0.8636 (2) 0.23533 (12) 0.0568 (4) C4 0.06206 (6) 0.9544 (2) 0.18356 (12) 0.0549 (4) O4 0.06165 (5) 1.11449 (15) 0.19000 (10) 0.0693 (4) CO4 0.04383 (8) 1.2044 (3) 0.13974 (15) 0.0752 (6) HO4A 0.0432 1.3168 0.1528 0.113* HO4B 0.0635 1.1877 0.0809 0.113* HO4C 0.0129 1.1686 0.1520 0.113* N5 0.04876 (5) 0.88416 (17) 0.12953 (10) 0.0551 (4) C6 0.04910 (6) 0.7220 (2) 0.12731 (11) 0.0542 (4) S6 0.03384 (2) 0.62550 (6) 0.05308 (4) 0.0699 (2) CS6 0.01876 (9) 0.7890 (3) 0.00360 (16) 0.0864 (7) HS6A 0.0093 0.7481 0.0381 0.130* HS6B 0.0064 0.8488 0.0454 0.130* HS6C 0.0452 0.8582 0.0232 0.130* N7 0.05989 (5) 0.62061 (18) 0.17441 (10) 0.0574 (4) C7A 0.07327 (6) 0.6979 (2) 0.22805 (11) 0.0540 (4) N1 0.21661 (5) 0.19233 (19) 0.16005 (9) 0.0570 (4) N2 0.22763 (6) 0.0909 (2) 0.21125 (10) 0.0673 (4) C3 0.22196 (7) 0.0549 (3) 0.18828 (12) 0.0678 (5) sup-7

H3 0.2271 0.1484 0.2124 0.081* C3 A 0.20724 (6) 0.0533 (2) 0.12306 (11) 0.0581 (4) C4 0.19595 (7) 0.1701 (2) 0.07508 (12) 0.0619 (5) O4 0.19753 (6) 0.31573 (18) 0.07920 (11) 0.0862 (5) N5 0.18098 (5) 0.09753 (18) 0.01662 (9) 0.0574 (4) C5 0.17019 (9) 0.2054 (3) 0.03898 (15) 0.0774 (6) H5 1 0.1785 0.3136 0.0318 0.116* H5 2 0.1375 0.2002 0.0248 0.116* H5 3 0.1875 0.1729 0.0967 0.116* C6 0.17761 (6) 0.0666 (2) 0.01024 (10) 0.0511 (4) S6 0.154665 (17) 0.13194 (6) 0.06014 (3) 0.06088 (19) CS6 0.15532 (8) 0.3456 (3) 0.04607 (14) 0.0684 (5) HS6D 0.1412 0.3981 0.0784 0.103* HS6E 0.1382 0.3714 0.0127 0.103* HS6F 0.1869 0.3818 0.0650 0.103* N7 0.18896 (5) 0.17353 (18) 0.05219 (9) 0.0532 (3) C7 A 0.20397 (6) 0.1076 (2) 0.10772 (10) 0.0519 (4) C8 0.08687 (7) 0.4594 (2) 0.30225 (13) 0.0657 (5) H8A 0.0862 0.4455 0.3579 0.079* H8B 0.0594 0.4080 0.3023 0.079* C9 0.12961 (7) 0.3788 (2) 0.23766 (12) 0.0611 (5) H9A 0.1258 0.2631 0.2446 0.073* H9B 0.1323 0.4052 0.1817 0.073* C10 0.17456 (6) 0.4267 (2) 0.24342 (11) 0.0597 (4) H10A 0.1744 0.3835 0.2951 0.072* H10B 0.1761 0.5431 0.2459 0.072* C11 0.21670 (6) 0.3659 (2) 0.16919 (12) 0.0587 (4) H11A 0.2444 0.3975 0.1758 0.070* H11B 0.2181 0.4160 0.1180 0.070* Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 N1 0.0683 (9) 0.0549 (9) 0.0614 (9) 0.0026 (7) 0.0346 (7) 0.0009 (7) N2 0.0866 (11) 0.0689 (11) 0.0694 (10) 0.0038 (8) 0.0460 (9) 0.0066 (8) C3 0.0837 (13) 0.0626 (12) 0.0735 (12) 0.0059 (9) 0.0464 (11) 0.0100 (9) C3A 0.0581 (9) 0.0518 (10) 0.0639 (10) 0.0047 (7) 0.0292 (8) 0.0068 (8) C4 0.0541 (9) 0.0475 (10) 0.0645 (10) 0.0018 (7) 0.0264 (8) 0.0032 (7) O4 0.0872 (9) 0.0456 (7) 0.0887 (10) 0.0050 (6) 0.0504 (8) 0.0072 (6) CO4 0.0965 (15) 0.0497 (11) 0.0857 (14) 0.0093 (10) 0.0446 (12) 0.0030 (10) N5 0.0574 (8) 0.0496 (8) 0.0620 (9) 0.0017 (6) 0.0289 (7) 0.0017 (6) C6 0.0540 (9) 0.0504 (10) 0.0604 (10) 0.0001 (7) 0.0265 (8) 0.0011 (7) S6 0.0917 (4) 0.0570 (3) 0.0802 (4) 0.0014 (2) 0.0549 (3) 0.0063 (2) CS6 0.1172 (18) 0.0799 (15) 0.0858 (14) 0.0203 (13) 0.0658 (14) 0.0088 (12) N7 0.0645 (9) 0.0490 (8) 0.0650 (9) 0.0012 (6) 0.0335 (7) 0.0003 (6) C7A 0.0532 (9) 0.0521 (10) 0.0590 (9) 0.0022 (7) 0.0260 (7) 0.0010 (7) N1 0.0695 (9) 0.0587 (9) 0.0528 (8) 0.0089 (7) 0.0356 (7) 0.0018 (7) N2 0.0825 (10) 0.0721 (11) 0.0604 (9) 0.0118 (8) 0.0429 (8) 0.0074 (8) sup-8

C3 0.0805 (12) 0.0679 (13) 0.0613 (10) 0.0129 (10) 0.0362 (9) 0.0135 (9) C3 A 0.0671 (10) 0.0550 (10) 0.0530 (9) 0.0097 (8) 0.0262 (8) 0.0061 (8) C4 0.0729 (11) 0.0510 (11) 0.0586 (10) 0.0082 (8) 0.0247 (9) 0.0055 (8) O4 0.1227 (12) 0.0478 (8) 0.0925 (11) 0.0073 (8) 0.0500 (10) 0.0075 (7) N5 0.0693 (9) 0.0488 (8) 0.0548 (8) 0.0050 (6) 0.0271 (7) 0.0030 (6) C5 0.1006 (15) 0.0556 (12) 0.0846 (14) 0.0015 (10) 0.0477 (12) 0.0127 (10) C6 0.0571 (9) 0.0493 (9) 0.0467 (8) 0.0044 (7) 0.0217 (7) 0.0008 (7) S6 0.0752 (3) 0.0635 (3) 0.0556 (3) 0.0044 (2) 0.0389 (2) 0.00198 (19) CS6 0.0860 (13) 0.0624 (11) 0.0710 (12) 0.0039 (9) 0.0471 (10) 0.0100 (9) N7 0.0690 (8) 0.0486 (8) 0.0491 (7) 0.0064 (6) 0.0318 (6) 0.0008 (6) C7 A 0.0585 (9) 0.0534 (10) 0.0465 (8) 0.0089 (7) 0.0249 (7) 0.0019 (7) C8 0.0713 (11) 0.0605 (11) 0.0701 (11) 0.0038 (9) 0.0347 (9) 0.0120 (9) C9 0.0747 (11) 0.0497 (10) 0.0686 (11) 0.0003 (8) 0.0399 (9) 0.0018 (8) C10 0.0731 (11) 0.0551 (10) 0.0593 (10) 0.0006 (8) 0.0360 (9) 0.0023 (8) C11 0.0676 (10) 0.0594 (11) 0.0589 (10) 0.0026 (8) 0.0364 (9) 0.0026 (8) Geometric parameters (Å, º) N1 C7A 1.347 (2) N1 C11 1.451 (2) N1 N2 1.368 (2) N2 C3 1.313 (3) N1 C8 1.449 (2) C3 C3 A 1.403 (3) N2 C3 1.307 (3) C3 A C7 A 1.375 (3) C3 C3A 1.413 (3) C3 A C4 1.424 (3) C3A C7A 1.390 (3) C4 O4 1.214 (3) C3A C4 1.393 (3) C4 N5 1.430 (2) C4 N5 1.322 (2) N5 C6 1.376 (2) C4 O4 1.334 (2) N5 C5 1.465 (3) O4 CO4 1.439 (2) C6 N7 1.296 (2) N5 C6 1.348 (2) C6 S6 1.7597 (17) C6 N7 1.320 (2) S6 CS6 1.794 (2) C6 S6 1.7582 (18) N7 C7 A 1.364 (2) S6 CS6 1.781 (2) C8 C9 1.504 (3) N7 C7A 1.345 (2) C9 C10 1.525 (2) N1 C7 A 1.343 (2) C10 C11 1.501 (3) N1 N2 1.378 (2) C7A N1 N2 111.02 (14) C3 N2 N1 105.11 (15) C7A N1 C8 127.11 (16) N2 C3 C3 A 112.04 (17) N2 N1 C8 121.87 (16) C7 A C3 A C3 104.26 (18) C3 N2 N1 106.13 (16) C7 A C3 A C4 119.27 (16) N2 C3 C3A 111.33 (18) C3 C3 A C4 136.47 (18) C7A C3A C4 114.96 (16) O4 C4 C3 A 128.11 (19) C7A C3A C3 104.37 (17) O4 C4 N5 119.82 (19) C4 C3A C3 140.60 (18) C3 A C4 N5 112.07 (16) N5 C4 O4 120.37 (16) C6 N5 C4 122.45 (16) N5 C4 C3A 120.99 (16) C6 N5 C5 120.29 (16) O4 C4 C3A 118.63 (16) C4 N5 C5 117.24 (16) C4 O4 CO4 117.27 (15) N7 C6 N5 125.72 (15) sup-9

C4 N5 C6 117.44 (16) N7 C6 S6 118.69 (13) N7 C6 N5 128.38 (16) N5 C6 S6 115.58 (13) N7 C6 S6 113.22 (13) C6 S6 CS6 100.22 (9) N5 C6 S6 118.40 (13) C6 N7 C7 A 113.03 (15) C6 S6 CS6 103.00 (10) N1 C7 A N7 124.65 (16) C6 N7 C7A 111.83 (15) N1 C7 A C3 A 107.94 (15) N7 C7A N1 126.56 (16) N7 C7 A C3 A 127.37 (17) N7 C7A C3A 126.31 (17) N1 C8 C9 112.09 (16) N1 C7A C3A 107.13 (15) C8 C9 C10 113.92 (16) C7 A N1 N2 110.64 (15) C11 C10 C9 111.76 (15) C7 A N1 C11 127.69 (14) N1 C11 C10 112.76 (15) N2 N1 C11 121.56 (15) C7A N1 N2 C3 0.6 (2) C7 A C3 A C4 O4 178.8 (2) C8 N1 N2 C3 179.28 (18) C3 C3 A C4 O4 1.7 (4) N1 N2 C3 C3A 0.2 (2) C7 A C3 A C4 N5 1.6 (2) N2 C3 C3A C7A 0.8 (2) C3 C3 A C4 N5 177.9 (2) N2 C3 C3A C4 175.7 (2) O4 C4 N5 C6 178.70 (18) C7A C3A C4 N5 2.9 (2) C3 A C4 N5 C6 1.0 (2) C3 C3A C4 N5 179.2 (2) O4 C4 N5 C5 2.8 (3) C7A C3A C4 O4 176.53 (16) C3 A C4 N5 C5 177.55 (16) C3 C3A C4 O4 0.3 (4) C4 N5 C6 N7 3.0 (3) N5 C4 O4 CO4 3.4 (3) C5 N5 C6 N7 175.49 (17) C3A C4 O4 CO4 176.02 (17) C4 N5 C6 S6 175.72 (13) O4 C4 N5 C6 178.70 (15) C5 N5 C6 S6 5.8 (2) C3A C4 N5 C6 0.7 (2) N7 C6 S6 CS6 0.22 (16) C4 N5 C6 N7 2.1 (3) N5 C6 S6 CS6 178.56 (14) C4 N5 C6 S6 177.46 (12) N5 C6 N7 C7 A 1.9 (2) N7 C6 S6 CS6 177.38 (14) S6 C6 N7 C7 A 176.75 (11) N5 C6 S6 CS6 2.95 (17) N2 N1 C7 A N7 176.75 (15) N5 C6 N7 C7A 2.2 (3) C11 N1 C7 A N7 0.5 (3) S6 C6 N7 C7A 177.39 (12) N2 N1 C7 A C3 A 0.9 (2) C6 N7 C7A N1 178.67 (16) C11 N1 C7 A C3 A 177.14 (16) C6 N7 C7A C3A 0.5 (3) C6 N7 C7 A N1 178.24 (15) N2 N1 C7A N7 179.61 (16) C6 N7 C7 A C3 A 1.0 (3) C8 N1 C7A N7 0.5 (3) C3 C3 A C7 A N1 0.7 (2) N2 N1 C7A C3A 1.1 (2) C4 C3 A C7 A N1 179.58 (15) C8 N1 C7A C3A 178.75 (17) C3 C3 A C7 A N7 176.84 (17) C4 C3A C7A N7 2.9 (3) C4 C3 A C7 A N7 2.8 (3) C3 C3A C7A N7 179.58 (17) C7A N1 C8 C9 78.9 (2) C4 C3A C7A N1 176.40 (14) N2 N1 C8 C9 101.3 (2) C3 C3A C7A N1 1.2 (2) N1 C8 C9 C10 70.2 (2) C7 A N1 N2 C3 0.7 (2) C8 C9 C10 C11 170.26 (16) C11 N1 N2 C3 177.18 (16) C7 A N1 C11 C10 99.0 (2) N1 N2 C3 C3 A 0.2 (2) N2 N1 C11 C10 76.9 (2) N2 C3 C3 A C7 A 0.3 (2) C9 C10 C11 N1 57.8 (2) N2 C3 C3 A C4 179.9 (2) sup-10