BROCK UNIVERSITY. Page 1 of 10

Similar documents
BROCK UNIVERSITY. Test 1: June 2016 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of students: 360

ASTR 1P02 Test 1, February 2019 Page 1 BROCK UNIVERSITY

ASTR 1P02 Test 1, February 2017 Page 1 BROCK UNIVERSITY

ASTR 1P02 Test 1, February 2018 Page 1 BROCK UNIVERSITY

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015

Physics HW Set 3 Spring 2015

Comparing a Supergiant to the Sun

Stellar Astronomy Sample Questions for Exam 4

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy 104: Second Exam

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

Physics Homework Set 2 Sp 2015

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Stellar Evolution Notes

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

LIFE CYCLE OF A STAR

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

BROCK UNIVERSITY. Test 2: June 2016 Number of pages: 10 Course: ASTR 1P02, Section 2 Number of students: 359

The Universe. is space and everything in it.

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture.

1. What is the primary difference between the evolution of a low-mass star and that of a high-mass star?

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Recall what you know about the Big Bang.

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Stellar Evolution: Outline

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe

Beyond Our Solar System Chapter 24

Review Questions for the new topics that will be on the Final Exam

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY. Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193

Stars & Galaxies. Chapter 27 Modern Earth Science

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

LIFE CYCLE OF A STAR

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

The Formation of Stars

Atoms and Star Formation

Clicker Question: Clicker Question: Clicker Question: Clicker Question: What is the remnant left over from a Type Ia (carbon detonation) supernova:

The Life Cycles of Stars. Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC

Protostars evolve into main-sequence stars

Name Date Period. 10. convection zone 11. radiation zone 12. core

ASTR 1P02 Test 1, June 2018 Page 1 BROCK UNIVERSITY. Test 1: June 2018 Number of pages: 9 Course: ASTR 1P02 Number of students: 325

Why Do Stars Leave the Main Sequence? Running out of fuel

Galaxies Galore. Types of Galaxies: Star Clusters. Spiral spinning wit arms Elliptical roundish Irregular no set pattern

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Neutron Stars. Chapter 14: Neutron Stars and Black Holes. Neutron Stars. What s holding it up? The Lighthouse Model of Pulsars

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

The Deaths of Stars 1

Life Cycle of a Star - Activities

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19

High Mass Stars. Dr Ken Rice. Discovering Astronomy G

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

The Milky Way Galaxy and Interstellar Medium

The Electromagnetic Spectrum

Guiding Questions. The Birth of Stars

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

Earth Science, 13e Tarbuck & Lutgens

SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

NSCI 314 LIFE IN THE COSMOS

A Star is born: The Sun. SNC1D7-Space

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

Our goals for learning: 2014 Pearson Education, Inc. We see our galaxy edge-on. Primary features: disk, bulge, halo, globular clusters All-Sky View

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

Prentice Hall EARTH SCIENCE

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left

1 The Life Cycle of a Star

Chapter 28 Stars and Their Characteristics

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula.

Chapter 19: Our Galaxy

Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Stars and Galaxies 1

Evolution of Stars Population III: Population II: Population I:

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

The Bizarre Stellar Graveyard

Ch. 29 The Stars Stellar Evolution

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

Transcription:

BROCK UNIVERSITY Test 1: February 2015 Number of pages: 10 Course: ASTR 1P02, Section 2 Number of students: 958 Examination date: 6 February 2015 Time limit: 50 min Time of Examination: 20:30 21:20 Instructor: S. D Agostino Page 1 of 10 Answer all questions on the scantron sheet provided. No aids permitted except for a non-programmable calculator. Each question is worth 1 mark. Total number of marks: 50. 1. If the mass of Star A is greater than the mass of Star B, then the lifetime of Star A is the lifetime of Star B. (a) less than (b) about the same as (c) greater than (d) [There is not enough information given; the lifetime of a star also depends on its spectral nebulosity.] 2. Most medium-mass stars begin their lifetimes as and end their lifetimes as. (a) led zeppelins, green giants (b) protostars, white dwarfs (c) white dwarfs, red dwarfs (d) red giants, white dwarfs 3. Giant molecular clouds (a) are clouds that contain mainly giant dust flakes composed of molecules, with only a little gas. (b) are clouds that contain mainly gas, with only a few giant molecular dust mites. (c) are clouds of gas and dust that are relatively large in size and contain ordinary sized molecules. (d) are clouds of gas and dust that could be any size and contain giant molecules. 4. Reflection nebulae appear (a) red, because they scatter red light more effectively than blue light. (b) blue, because they scatter blue light more effectively than red light. (c) blurry, because astronomers who observe them tend to drink Molson Canadian more often than Blue Light. (d) shiny, because they contain a high density of flakes of dust that have been coated with nearly-pure metals.

ASTR 1P02 February 2015 Page 2 of 10 5. Dark nebulae can be observed because (a) they emit a significant amount of ultraviolet electromagnetic radiation. (b) they emit a significant amount of infrared electromagnetic radiation. (c) they emit red light because electrons recombine with protons and then make transitions to lower energy levels. (d) they contain a significant amount of dark matter that can be detected using dark matter CCDs attached to radio telescopes. 6. Emission nebulae appear (a) yellow, because they emit a significant amount of yellow electromagnetic radiation. (b) blue, because they emit a significant amount of blue and ultraviolet electromagnetic radiation. (c) red, because electrons recombine with protons and then make transitions to lower energy levels, emitting red light in the process. (d) dark, because they contain a significant amount of dark matter that can be detected using CCDs attached to radio telescopes. 7. Giant molecular clouds are (a) relatively cool, which allows hydrogen atoms to bind into molecules. (b) relatively hot, which allows hydrogen atoms to bind into molecules. (c) extremely hot, which allows giant molecules to form. (d) frigidly cold, which allows giant ice crystals to form. 8. Giant molecular clouds range in size (a) from about 15 AU to about 600 AU. (b) from about 15 million km to about 600 million km. (c) from about 15 billion km to about 600 billion km. (d) from about 15 light years to about 600 light years. (e) [It depends on the size of the molecules in the cloud.] 9. As a clump of gas contracts to form a protostar, its core heats up. If the core temperature reaches about then fusion of hydrogen into helium begins, and the protostar becomes a main sequence star. (a) 100,000 degrees K (b) 1 million degrees K (c) 10 million degrees K (d) 100 million degrees K

ASTR 1P02 February 2015 Page 3 of 10 10. The protostar phase of a star s life is (a) shorter for higher mass stars. (b) longer for higher mass stars. (c) [It depends on the size of the molecules comprising the star.] (d) [It depends on the whims of the head office of ProtoStar Inc.] 11. A brown dwarf is (a) a character in the Disney movie Snow White and the Dwarf Stars. (b) a white dwarf that has cooled near the end of its life. (c) a red dwarf that has cooled near the end of its life. (d) a protostar that never gets hot enough for hydrogen fusion to take place. 12. Low-mass stars fuse hydrogen into helium primarily through the (a) proton-proton chain. (b) CNO cycle. (c) Krebs cycle. (d) HH fusion mechanism. 13. The primary net result of Hydrogen fusion in the core of a star is that (a) four protons are fused into one Helium nucleus and energy is released. (b) four neutrons are fused into one Helium nucleus and energy is released. (c) four protons are fused into one Helium nucleus and energy is absorbed. (d) four neutrons are fused into one Helium nucleus and energy is absorbed. 14. Low-mass main-sequence stars are found in this part of the H-R diagram: (a) upper-left (b) upper-right (c) lower-left (d) lower-right 15. High-mass main-sequence stars are found in this part of the H-R diagram: (a) upper-left (b) upper-right (c) lower-left (d) lower-right

ASTR 1P02 February 2015 Page 4 of 10 16. High-mass stars fuse hydrogen into helium primarily through the (a) proton-proton chain. (b) CNO cycle. (c) Krebs cycle. (d) HH fusion mechanism. 17. A planetary nebula forms from (a) the initial clumping in a giant molecular cloud, resulting in further collapse which forms a protostar. (b) material falling into a dwarf star from a neighbouring star in a binary system. (c) the stellar material ejected when the core of a medium-sized star collapses into a white dwarf. (d) the interstellar medium accreted around a large planet, eventually becoming the planet s rings. 18. The core of a white dwarf consists mainly of (a) hydrogen and helium, with a smattering of heavy elements. (b) an iron core, with concentric rings of lighter elements. (c) primarily neutrons, covered by a thin layer of heavy elements. (d) carbon and oxygen. 19. Nuclear fusion takes place in a white dwarf mainly in (a) its core. (b) the region just outside the core ( helium flash ). (c) near the surface, driven by electron degeneracy. (d) [Virtually no nuclear fusion occurs in a white dwarf.] 20. Planetary nebulae often appear approximately ring-like because (a) they are formed in much the same way that cigarette-smokers blow smoke rings. (b) strong magnetic fields cause jets of ejected material that align the nebulae into rings. (c) they form in the same way as other planetary ring systems, such as the rings around Saturn. (d) they are approximately spherical shells, and only appear ring-like because of our viewing perspective.

ASTR 1P02 February 2015 Page 5 of 10 21. The average density (i.e., mass density) of a white dwarf is (a) less than the average density of the Sun. (b) a little greater than the average density of the Sun. (c) a little greater than the average density of the Earth. (d) much, much greater than the average density of the Earth. 22. The main factor preventing the further collapse of a white dwarf is (a) extremely high core temperature. (b) extremely low core temperature. (c) electron degeneracy pressure. (d) neutron degeneracy pressure. (e) [White dwarfs have a tendency to expand, not contract.] 23. For a star made of degenerate matter, the pressure depends only on (a) density. (b) mass. (c) radius. (d) temperature. 24. For a star made of degenerate matter, the larger the mass (a) the larger the radius. (b) the smaller the radius. (c) the larger the temperature. (d) the smaller the temperature. 25. The Chandrasekhar limit is (a) the maximum number of pastries Mrs. Chandrasekhar allowed Mr. Chandrasekhar to eat after dinner. (b) the maximum mass for a degenerate stellar object. (c) the maximum density for a degenerate stellar object. (d) the maximum temperature for a degenerate stellar object. 26. The range of observed sizes for white dwarfs is approximately (a) between the size of a hippopotamus and the size of Donald Trump s ego. (b) between the heights of Grumpy and Bashful. (c) between the radius of the Earth and twice the radius of the Earth. (d) between the radius of the Sun and twice the radius of the Sun.

ASTR 1P02 February 2015 Page 6 of 10 27. White dwarfs dim and eventually become black dwarfs (a) after a few tens of thousands of years. (b) after a few tens of millions of years. (c) after a few hundreds of millions of years. (d) over a time scale similar to the current age of the universe. 28. A type Ia supernova occurs because of (a) the core collapse of a medium-mass star. (b) the core collapse of a high-mass star. (c) matter from a nearby star falling onto the surface of a white dwarf, becoming compressed and heated, and eventually resulting in an explosion. (d) matter from a nearby star falling onto the surface of a neutron star, becoming compressed and heated, and eventually resulting in an explosion. 29. A type II supernova occurs because of (a) the core collapse of a medium-mass star. (b) the core collapse of a high-mass star. (c) matter from a nearby star falling onto the surface of a white dwarf, becoming compressed and heated, and eventually resulting in an explosion. (d) matter from a nearby star falling onto the surface of a neutron star, becoming compressed and heated, and eventually resulting in an explosion. 30. Nucleosynthesis of very heavy elements occurs during the life cycle of (a) low-mass stars. (b) medium-mass stars. (c) high-mass stars. (d) all stars. 31. A mature supergiant star at the end of its red giant phase has (a) an apple core. (b) a carbon core. (c) an iron core. (d) an oxygen core. (e) a silicon core.

ASTR 1P02 February 2015 Page 7 of 10 32. The dense core of a supergiant star at the end of its red giant phase is supported against collapse by (a) electron degeneracy pressure. (b) neutron degeneracy pressure. (c) high pressure caused by the extremely high density and temperature of the core. (d) high pressure caused by intense gravity of the massive star. 33. Neutron stars have densities that are (a) about 10 times as dense as white dwarfs. (b) about 100 times as dense as white dwarfs. (c) about 1000 times as dense as white dwarfs. (d) much, much denser than any of the other alternatives listed here. 34. The Schwarzschild radius is (a) the smallest possible radius of a white dwarf. (b) the smallest possible radius of a neutron star. (c) the radius of the region around a neutron star within which X-ray bursts occur. (d) the radius of the region around a black hole within which not even light can escape. 35. Neutron stars with masses greater than about 3 solar masses do not exist because neutron degeneracy pressure is not strong enough to balance gravity, and so (a) the neutron star explodes into a Type II supernova. (b) the neutron star explodes into a Type Ib supernova. (c) the neutron star collapses into a black hole. (d) [No star is massive enough to produce such a massive stellar remnant.] 36. One type of indirect observational evidence for black holes is a binary system consisting of a normal star and (a) an invisible companion having a mass of at least 3M that is a strong source of X-rays. (b) an invisible companion having a mass of at least 3M that is a strong source of radio waves. (c) an invisible companion having a mass of at least 3M that is a strong source of microwaves. (d) an overdribbling ball-stopper who is a weak source of assists.

ASTR 1P02 February 2015 Page 8 of 10 37. The first astronomer to observe that the Milky Way consists of a very large number of faint stars was (a) Tycho Brahe. (b) Galileo Galilei. (c) Johannes Kepler. (d) Buzz Lightyear. (e) Isaac Newton. 38. The general shape of the Milky Way is (a) a disk with a central bulge and a spherical halo. (b) a cone with a central bulge and an ellipsoidal halo. (c) a cylinder with a central bulge and a conical halo. (d) a helix with a central bulge and a spiral halo. 39. Harlow Shapley determined our location in the Milky Way by measuring the distances to (a) globular clusters. (b) open clusters. (c) closed clusters. (d) zodiacal clusters. 40. Harlow Shapley determined our location in the Milky Way by measuring certain distances using the method of pioneered by Henrietta Swan Leavitt. (a) Cepheid variables (b) RR Lyrae variables (c) Mira variables (d) Type Ia supernovae 41. Leavitt s method is based on her observation that there is a relationship between for the variable stars that she studied. (a) period and luminosity (b) luminosity and mass (c) mass and temperature (d) temperature and radius

ASTR 1P02 February 2015 Page 9 of 10 42. The diameter of the Milky Way is approximately (a) 100 light years (b) 1,000 light years (c) 10,000 light years (d) 100,000 light years (e) 1,000,000 light years 43. Most of the Milky Way s gas and dust is found in its (a) cone. (b) cylinder. (c) disk. (d) halo. (e) helix. 44. Population I stars have a concentration of heavy elements than Population II stars. (a) lower (b) higher (c) [The concentrations are about equal.] (d) [Neither population has stars that contain any heavy elements.] 45. The Sun orbits around the centre of the Milky Way about once every (a) 230,000 years. (b) 2.3 million years. (c) 23 million years. (d) 230 million years. 46. Stars in the halo of the Milky Way move in (a) highly elliptical orbits, all in the same orientations, like a flock of birds. (b) highly elliptical orbits, with no apparent organization, like bees in a beehive. (c) helical orbits, like a submerging school of fish. (d) arc-like orbits, like a breaching pod of whales.

ASTR 1P02 February 2015 Page 10 of 10 47. Astronomers determine the masses of various parts of the Milky Way by (a) carefully measuring the motions of stars and then using Newton s formulation of Kepler s first law. (b) carefully measuring the motions of stars and then using Newton s formulation of Kepler s second law. (c) carefully measuring the motions of stars and then using Newton s formulation of Kepler s third law. (d) looking them up in Encyclopaedia Galactica. 48. Rotation curves for stars at various positions in the Milky Way, first measured by Vera Rubin, do not match observed luminous matter in the galaxy. This is strong evidence for the presence of (a) the LMC gyre, which contains an enormous number of discarded toasters and TV sets. (b) dark matter in the Milky Way. (c) a giant black hole at the centre of the Milky Way. (d) an enormous number of neutrinos streaming through the Milky Way. 49. The compression waves in the Milky Way s spiral arms move around the galaxy (a) more slowly than stars. (b) more rapidly than stars. (c) at about the same speed as stars. (d) [Compression waves in the Milky Way s spiral arms don t move.] 50. The average distance between stars in the Milky Way is about (a) a few light years. (b) a few hundred light years. (c) a few thousand light years. (d) a few million light years.