CHAPTER 9 SUPPLEMENTARY SOLUTIONS 22 MONOPROTIC ACID-BASE EQUILIBRIA ] + [ + H 3 NCH 2 CO 2 H] = 0.05 M

Similar documents
CHAPTER 9: SUPPLEMENTARY PROBLEMS 17 MONOPROTIC ACID-BASE EQUILIBRIA

Polyprotic acid-base equilibria

2] What is the difference between the end point and equivalence point for a monobasicmonoacid

Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected.

1. What do a chemical indicator and a buffer solution typically both contain?

Titration a solution of known concentration, called a standard solution

mol of added base 36. Equal moles of which of the following chemicals could be used to make a basic (1 mark)

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Chapter 15. Acid-Base Equilibria

CHAPTER 5: SUPPLEMENTARY SOLUTIONS 10 QUALITY ASSURANCE AND CALIBRATION METHODS

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute)

Grade A buffer: is a solution that resists changes in its ph upon small additions of acid or base.sq1

Course Notes Chapter 9, 11, 12. Charge balance All solutions must be electrically neutral!!!!!!!! Which means they carry a no net charge.

Strong acids and bases

Dougherty Valley High School AP Chemistry Chapters 14 and 15 Test - Acid-Base Equilibria

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation

Chemistry Lab Equilibrium Practice Test

Problems -- Chapter Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following.

= ) = )

Advanced Placement Chemistry Chapters Syllabus

Chemistry 222. Start mol End mol

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution

CHM 112 Dr. Kevin Moore

Lecture #11-Buffers and Titrations The Common Ion Effect

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

SCH4U: Practice Exam

Unit 9: Acid and Base Multiple Choice Practice

Acids and Bases Written Response

Chapter 15. Titration Curves for Complex Acid/Base Systems

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations

Questions #4-5 The following two questions refer to the following system: A 1.0L solution contains 0.25M HF and 0.60M NaF (Ka for HF = 7.2 x 10-4 ).

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chemistry 1A Fall 2013 MWF 9:30 Final Test Form A

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Monoprotic Acid/Base Equilibria. Monoprotic Acid/Base Equilibria

Titration Curves equivalence point

Chemistry 102 Chapter 17 COMMON ION EFFECT

Problem 1. What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )?

AP Chapter 15 & 16: Acid-Base Equilibria Name

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006

Applications of Aqueous Equilibria Chapter 15. Titration Curves & Indicators Sections 4-5

Acids, Bases, and Salts Review for Sections

Completion of acid/base/buffer chemistry. Hanson Activity Clicker quiz 3/11/2013. Chs 7 8 of Zumdahl

CHEM 213 Chemical Analysis Exam 2 Tuesday May 11, 2004

Unit 4-1 Provincial Practice Questions Page 1

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base

Chem 1102 Semester 1, 2011 ACIDS AND BASES

CHM 1046 FINAL REVIEW

Ch 8 Practice Problems

CHAPTER FIFTEEN APPLICATIONS OF AQUEOUS EQUILIBRIA. For Review

Chem 222 #29 Review Apr 28, 2005

Additional Aspects of Aqueous Equilibria David A. Katz Department of Chemistry Pima Community College

I II III IV. Volume HCl added. 1. An equation representing the reaction of a weak acid with water is

ACID-BASE REACTIONS. Titrations Acid-Base Titrations

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x

ANSWER KEY CHEMISTRY F14O4 FIRST EXAM 2/16/00 PROFESSOR J. MORROW EACH QUESTION IS WORTH 1O POINTS O. 16.

AP Chemistry - Packet #1 - Equilibrium. 1) a) 5 points K p = (P NH3 ) (P H2S )

Understanding the shapes of acid-base titration curves AP Chemistry

Homework #7 Chapter 8 Applications of Aqueous Equilibrium

CHM 1046 Test #4 April 24, 2001

7-4 Systematic Treatment of Equilibrium

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates

Unit 2 Acids and Bases

Acids and Bases Written Response

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]=

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2.

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY

Worksheet 4.1 Conjugate Acid-Base Pairs

Quiz name: Equilibria + Acids/Bases

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chemistry 12. Resource Exam B. Exam Booklet

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Chapter 17 Homework Problem Solutions

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA

Acid Base Equilibria

CHAPTER 7 Acid Base Equilibria

Acids, Bases and Buffers

Acids, Bases and the Common Ion Effect. More quantitative. Continued [F - ] = M. Consider the following acid equilibrium of a weak acid:

CHEMISTRY Matter and Change

Chapter 15 Acid Base Equilibria

1. (3) The pressure on an equilibrium mixture of the three gases N 2, H 2 and NH 3

Studying the properties of substances and the reactions that transform substances into other substances.

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College

Acid-Base Equilibria and Solubility Equilibria

Edexcel Chemistry A-level Topic 12 - Acid-Base Equilibria

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base

Chem 115 POGIL Worksheet - Week #6 - Answers Oxidation Numbers, Redox Reactions, Solution Concentration, Titrations, First Law, and Enthalpy

SCH4U Chapter 8 review

More About Chemical Equilibria

( 1 ) Concept of acid / base

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form

Transcription:

CHAPTER 9 SUPPLEMENTARY SOLUTIONS MONOPROTIC ACIDBASE EQUILIBRIA S91. [H ] [ H 3 NCH CO H] [OH ] [H NCH CO ] S9. [H ] 3[Al 3 ] [AlOH ] [Al(OH) ] [K ] [OH ] [Al(OH ) 4 ] S93. [H NCH CO ] [ H 3 NCH CO ] [ H 3 NCH CO H] 0.05 M S94. [Al 3 ] [AlOH ] [Al(OH) ] [Al(OH) 3 (aq)] [Al(OH) 4 [K ] 0.45 M ] 0.005 0 M S95. 1. Pertinent reaction: (Hg ) 3 [Co(CN) 6 ] (s) 3Hg Co(CN) 3 6. Charge balance: [Hg ] 3[Co(CN) 3 6 ] 3. Mass balance: [Hg ] 3[Co(CN) 3 6 ] 4. Equilibrium constant: K sp 1.9 10 37 [Hg ] 3 [Co(CN) 3 6 ] Solve: If [Hg ] x, then [Co(CN) 3 6 ] 3 x. Putting these values into the solubility product gives (x) 3 ( 3 x) K sp x [Hg ] 5.3 10 8 M S96. (a) M t [M ] [ML ] (b) L t [L ] [ML ] [HL] (c) [M ] [H ] [ML ] [L ] [OH ] (d) K 1.0 10 8 K a 1.0 10 5 [ML ] [M ][L ] [H ][L ] [HL] (1) () Equation () gives [L ] [HL] when [H ] 1.0 10 5 M. Putting [L ] [HL] into the L t equation gives L t 0.1 M [L ] [ML ] [L ] 0.05 1 [ML ]. Substituting this last expression for [L ] and the expression [M ] M t [ML ] 0.1 [ML ] into Equation (1) gives 1.0 10 8 (0.10 [ML [ML ] ])(0.050 1 [ML Solve quadratic equation ]) [ML ] 0.10 M

Chapter 9: Supplementary Solutions 3 Equation (1) gives [M ] [ML ] K[L ] (1.0 0.10 10 8 )(0.050).0 10 8 M S97. (a) [HF][OH ] [F ] 1.5 10 11 ph 3.00 [HF] 1.5 [F ] [OH ] 10 11 M Mass balance: [F ] [HF].5 [F ] [Mg ] [F ] 0.80[Mg ] Substitution into solubility product gives [Mg ][F ] [Mg ](0.80[Mg ]) 6.6 10 9 [Mg ].1 8 10 3 M [F ] 0.80[Mg ] 1.7 4 10 3 M [HF] 1.5 [F ].6 1 10 3 M (b) [MgF ] [Mg ][F K 10.05 1.1 10 [MgF ] (1.1 10 )[Mg ][F ] ] (1.1 10 )[.1 8 10 3 ][1.7 4 10 3 ] 4. 10 4 M (c) Mass balance: total F (total Mg) [F ] [HF] [MgF ] [Mg ] [MgF ] [F ] [HF] [Mg ] [MgF ] S98. [A ] [HA(aq)][OH ] 6.3 10 5. Putting in [HA(aq)] 0.008 5 M and [OH ] 1.0 10 4 M [A ] 0.536 M [HA] [A ] 0.54 M. S99. (a) Mass balance: [Sr ] [SO 4 ] [HSO 4 ] (1) Charge balance: [Sr ] [H ] [SO 4 ] [HSO 4 ] [OH ] () (b) If ph.50, [OH ] 3.1 6 10 1 M [HSO 4 ][OH ] [SO 4 ] 9.8 10 13 [HSO 4 ] 0.31 0 [SO 4 ] Putting this expression for [HSO 4 ] into the mass balance gives [Sr ] [SO 4 ] 0.31 0 [SO 4 ] 1.31 0 [SO 4 ] Putting this expression for [SO 4 ] into the solubility product gives [Sr ][SO 4 ] [Sr ] [Sr ] 1.31 K sp [Sr ] 6.5 10 4 M. 0

Chapter 9: Supplementary Solutions 4 S910. (a) Mass balance: [Sr ] [SrSO 4 ] [SO 4 ] [HSO 4 ] [SrSO 4 ] The net mass balance is unchanged from the previous problem because [SrSO 4 ] cancels on both sides of the equation. (b) The procedure from the previous problem is still entirely valid because the mass balance and the equilibria are unchanged. The only addition is the ion pair whose concentration is [SrSO 4 ] K[Sr ][SO 4 ] K[Sr ] [Sr ] 1.31 5. 10 5 M 0 Fraction in ion pair [SrSO 4 ] [SrSO 4 ] [Sr ] 0.074 S911. (a) Mass balance: [Ca ] [C O 4 ] [HC O 4 ] [H C O 4 ] Charge balance: [Ca ] [H ] [C O 4 ] [HC O 4 ] [OH ] (b) If ph.30, [OH ].0 0 10 1 M [HC O 4 ][OH ] [C O 4 ] [H C O 4 ][OH ] [HC O 4 ] K b1 [HC O 4 ] 90. 0 [C O 4 ] K b [H C O 4 ] 0.090[HC O 4 ] 8.1[C O 4 ] Substituting into the mass balance gives [Ca ] [C O 4 ] 90. 0 [C O 4 ] 8.1[C O 4 ] 99.1[C O 4 ] Substituting into the solubility product gives [Ca ][C O 4 ] [Ca ] [Ca ] 99.1 1.3 10 8 [Ca ] 1.1 4 10 3 M S91. (a) Mass balance: [Zn ] 3{[AsO 4 3 ] [HAsO 4 ] [H AsO 4 ] [H 3 AsO 4 ]} Charge balance: [Zn ] [H ] 3[AsO 4 3 ] [HAsO 4 ] [H AsO 4 ] [OH ] (b) ph 6.00 [OH ] 1.0 10 8 [HAsO 4 ][OH ] [AsO 3 4 ] [H AsO 4 ][OH ] [HAsO 4 ] K b1 [HAsO 4 ] 3.1 10 5 [AsO 4 3 ] K b [H AsO 4 ] 9.1[HAsO 4 ].8 10 6 [AsO 4 3 ]

Chapter 9: Supplementary Solutions 5 [H 3 AsO 4 ][OH ] [H AsO 4 ] K b3 [H 3 AsO 4 ] 1.7 10 4 [H AsO 4 ] 480[AsO 4 3 ] Putting these expressions into the mass balance gives [Zn ] 3[AsO 3 4 ](1 3.1 10 5.8 10 6 480) 9.39 10 6 [AsO 3 4 ] [AsO 3 4 ].13 10 7 [Zn ] Substituting into the solubility product gives [Zn ]: [Zn ] 3 {.13 10 7 [Zn ]} K sp [Zn ] 0.001 8 6 M S913. Concentrations in ML solution A B C D E F G H 1 K ph [H] b [M] [L] [ML] [HL] 1.0E08 0 1E00 1.0E05 9.5E03 9.5E08 9.0E0 9.5E03 3 Ka 1E0 1.0E03 1.0E03 9.9E07 9.9E0 9.9E04 4 1.0E05 5 1E05.0E00 4.5E05.E05 1.0E01.E05 5 M(total) 6 1E06 1.1E00 3.3E05 3.0E05 1.0E01 3.0E06 6 0.1 8 1E08 1.0E00 3.E05 3.E05 1.0E01 3.E08 7 L(total) 10 1E10 1.0E00 3.E05 3.E05 1.0E01 3.E10 8 0.1 1 1E1 1.0E00 3.E05 3.E05 1.0E01 3.E1 9 14 1E14 1.0E00 3.E05 3.E05 1.0E01 3.E14 10 C 10^B 11 D 1$A$*$A$8$A$*$A$6(C/$A$4) 1 E(DSqrt(D^4*$A$*$A$6*(1C/$A$4)))/(*$A$) 13 F ($A$6/E1)/$A$ 14 G $A$*E*F 15 H F*C/$A$4

CHAPTER 10: SUPPLEMENTARY SOLUTIONS 6 POLYPROTIC ACIDBASE EQUILIBRIA S101. (a) ph log [H ] log (5.0 10 4 ) 3.30 (b) ph log (K w /[OH ]) log (1.0 10 14 ) / (5.0 10 4 ) 10.70 S10. [OH ] [H ] [(CH 3 ) 4 N ] [H ].0 10 7 [H ] [OH ] K w [H ] ([H ].0 10 7 ) [H ] 4.14 10 8 M ph log [H ] 7.38 [OH ] total K w /[H ].41 10 7 M Fraction of [OH ] from H O 8 4.1 10 M 7.41 10 M [OH ] from H O [H ] 4.1 10 8 M 0.17 S103. (a) For 0.050 M HBr, ph log [H ] γ H log[(0.050)(0.86)] 1.37 (b) For 0.050 M NaOH, ph log A H log( K w A OH ) log K w [OH ] γ OH log 14 1.0 10 1.61 (0.050)(0.81) S104. N: NH NO 3 pyridine pyridinium nitrate N: H O NH OH K b K w /K a 1.69 10 9 pk b 8.77 S105. Let x [H ] [A ] and 0.010 0 x [HA]. 0.010 0 x 1.00 10 4 x 9.51 10 4 M ph log x 3.0 α x 4 F 9.51 10 0. 0100 9.51 10

Chapter 10: Supplementary Solutions 7 S106. NH N H K a 5.90 10 6 F x x x 0.085 0 x K a x 7.05 10 4 ph 3.15 S107. BH B H K a.3 10 11 0.00 x x x 0.00 x.3 10 11 x 6.78 10 7 M ph log x 6.17 [B] x 6.8 10 7 M [BH ] 0.00 M S108. HA H A 0.100 10.36 10.36 10.36 K a (10.36 )(10.36 ) 0.100 10.36 1.99 104 pk a log K a 3.70 S109. (a) HA H A K a 4. 10 10 0.010 0 x x x 0.010 0 x 4. 10 10 x.05 10 6 M ph 5.69 α x F.05 104 (b) For F 10 9.00 M, the ph must be very close to 7.00. K a 4. 10 10 [H ][A ] F [A ] (107.00 )[A ] F [A ] [A ] 4.18 10 1 M α x F 4.18 101 10 9.00 0.004 S1010. A H O AOH H F x x x F x 10 5.4 x.8 10 4 M ph 3.55

Chapter 10: Supplementary Solutions 8 S1011. B H O BH OH K b 0.050 x x x 0.050 x 1.00 10 4 x.19 10 3 ph log (K w /x) 11.34 α x F 0.044 S101. B H O BH OH K b 0.030 x x x 0.030 x 4.7 10 10 x 3.75 10 6 ph log (K w /x) 8.57 [B] [(CH 3 CH ) NH] 0.030 M [BH ] 3.8 10 6 M S1013. OCl H O HOCl OH 0.06 x x x K b K w /K a K w /(3.0 10 8 ) 3.33 10 7 0.06 x K b x [OH ] 9.3 10 5 M ph log (K w /[OH ]) 9.97 α x F S1014. HCO H O HCO H OH F x x x K b K w /K a 5.56 10 11 9.3 105 0.06 0.003 6 For F 10 1 and 10 M, we solve the equation / (F x) K b. The fraction of association is α x F. This gives x.36 10 6 M for F 10 1 M ( α.36 10 5 ) and x 7.46 10 7 M for F 10 ( α 7.46 10 5 ). For F 10 1 M, ph 7.00 and [OH ] 10 7 M. K b [BH ][OH ] [B] [BH ] 10 7 [B] [BH ] 10 7 K b [B] Putting this relation between [BH ] and [B] into the definition of fraction of association gives α [BH ] [BH ] [B] 10 7 K b [B] 10 7 K b [B] [B] 10 7 K b 10 7 K b 1 5.56 104

Chapter 10: Supplementary Solutions 9 S1015. B H O BH OH 0.030 x x x F α 10 1.36 10 5 10 7.46 10 5 10 1 5.56 10 4 ph 10.50 [OH ] 10 3.50 3.16 10 4 M K b 0.030 x (3.16 10 0.030 3.16 4 ) 10 4 3.3 6 10 6 S1016. α x F 0.00 7. Since F 0.030 M, x 8.10 105 M. K b F x (8.10 10 0.030 8.10 5 ) 10 5. 10 7 S1017. B H O BH OH 10.00 x x x K b K w /K a.38 10 5 10.00 x α x F 0.048 K b x 4.76 10 4 ph log (K w /x) 10.68 S1018. The pk a values are (a) 10.774, (b) 9.44, (c) 5.96 and (d) 8.39. Since pk a for 3nitrophenol is closest to 8.5, buffer (d) will have the greatest buffer capacity at ph 8.5. S1019. ph pk a log [A ] [HA] 3.46 log (5.13 g)/(11.16 g/mol) (.53 g)/(74.036 g/mol) 3.59 S100. ph 10.64 log [CH 3NH ] [CH 3 NH 3 ] ph [CH 3 NH ]/[CH 3 NH 3 ] 4.00.3 10 7 10.64 1.00 1.00 3 S101. pk a 14.00 pk b 0.17 ph 0.17 log [IO 3 ] [HIO 3 ]

Chapter 10: Supplementary Solutions 30 ph [HIO 3 ]/[IO 3 7.00 1.5 10 7 1.00 0.15 ] S10. (a) ph pk a log [tris] [trish ] 8.075 log (10.0 g)/(11.136 g/mol) (10.0 g)/(157.597 g/mol) 8.19 (b) trish OH tris H O Initial mmol: 63.45 5.5 8.55 Final mmol: 58.0 87.80 ph 8.075 log 87.80 58.0 8.5 S103. B H BH Initial mmol: 0.699 5 x Final mmol: 0.699 5 x x 8.00 8.49 log 0.699 5 x x x 0.59 1 mmol ml required (0.59 1 mmol)/(0.113 mmol/ml) 4.68 ml S104. (a) 50.0 ml of 0.100 M buffer requires 0.05 0 mol NaOAc. H O.95 g OAc H HOAc Initial mol: 0.05 0 Final mol: 0.05 0 x 10 5.00 x ph pk a log [OAc ] [HOAc] 5.00 4.757 log 0.05 0 x x x 9.091 mmol 90.9 ml HCl (b) 1. Calibrate the ph electrode and meter at 5 C.. Dissolve.95 g NaOAc. H O in ~100 ml H O at 5 C. 3. While measuring the ph, add enough HCl to bring the ph to 5.00 at 5 C. 4. Dilute to exactly 50 ml at 5 C.

Chapter 10: Supplementary Solutions 31 S105. The solution will have a ph near pk a ( 10.566), so we can neglect [H ] relative to [OH ] in Equations 100 and 101: [HA] F HA [OH ] [A ] F A [OH ] B H O BH OH K b 3.68 10 4 K b [BH ][OH ] [B] (F BH [OH ])[OH ] F B [OH ] 3.68 10 4 (0.000 100 [OH ])[OH ] 0.000 100 [OH ] [OH ] 6.86 10 5 M [B] 0.000 100 [OH ] 3.14 10 5 M [BH ] 0.000 100 [OH ] 1.69 10 4 M S106. (a) Assume that the activity coefficients of neutral species are 1. Equilibria: B H O BH OH K b [BH ][OH ] [B] (a) H O H OH K w [H ][OH ] (b) Charge balance: [H ] [BH ] [OH ] (c) Mass balance: F [B] [BH ] (d) Substitute [BH ] [OH ] [H ] from the charge balance, and [B] F [BH ] F [OH ] [H ] from the mass and charge balances into the K b equilibrium. This gives K b ([OH ] [H ]) [OH ] F [OH ] [H. ] Now replace [H ] by K w /[OH ] to get K b ([OH ] K w /[OH ]) [OH ] F [OH ] K w /[OH. ] This equation can be rearranged to: K b F K b [OH ] K b K w /[OH ] [OH ] K w. Multiplying both sides by [OH ] and rearranging gives a cubic polynomial: [OH ] 3 K b [OH ] (K b F K w )[OH ] K b K w 0 (b) ph of 10 3 M B (K b 10 5 ) is 9.978; ph of 10 5 M B (K b 10 9 ) is 7.150.

Chapter 10: Supplementary Solutions 3 A B C D E 1 Solving cubic polynomial for ph of B 3 Kb Guess for ph [H] [OH] Value of polynomial 4 1.00E05 9 1E09 0.00001 9.8000E14 5 Kw 10 1E10 0.0001 9.99989E14 6 1.00E14 9.5 3.E10 3.E05.74605E13 7 F 9.9 1.3E10 7.9E05.30046E13 8 1.00E03 9.9783 1.1E10 9.5E05.675E17 9 10 E4 D4^3 $A$4*D4^ ($A$4*$A$8$A$6)*D4 $A$4*$A$6 S107. At 5 C, K a increases with increasing temperature, so the reaction must be endothermic, by Le Châtelier's principle. At 45 C, K a decreases with temperature, so the reaction must be exothermic. S108. Equilibria: HA H A K a [H ][A ] [HA] (a) H O H OH K w [H ][OH ] (b) Charge balance: [H ] [A ] [OH ] (c) Mass balance: F [A ] [HA] (d) Substitute [A ] [H ] [OH ] from the charge balance, and [HA] F [A ] F [H ] [OH ] from the mass and charge balances into the K a equilibrium. This gives K a [H ] ([H ] [OH ]) F [H ] [OH. ] Now replace [OH ] by K w /[H ] to get K a [H ] ([H ] K w /[H ]) F [H ] K w /[H ] This equation can be rearranged to: K a F K a [H ] K a K w /[H ] [H ] K w. Multiplying both sides by [H ] and rearranging gives a cubic polynomial: [H ] 3 K a [H ] (K a F K w )[H ] K a K w 0.

Chapter 10: Supplementary Solutions 33 S109. A B C D 1 Solving cubic polynomial for ph of HA 3 Ka Guess for ph [H] Value of polynomial 4 1.00E04 4 0.0001 9.99998E13 5 Kw 4.1 7.9E05 3.37815E13 6 1.00E14 4. 6.3E05 1.83368E14 7 F 4.3 5E05 1.4108E13 8 1.00E04 4.08 6.E05 1.94858E15 9 10 D4 C4^3 $A$4*C4^ ($A$4*$A$8$A$6)*C4 $A$4*$A$6 S1030. We will assume that the activity coefficients of neutral species are 1. Equilibria: HA H A K a [H ]γ H [A ]γ A [HA] (a) H O H OH K w [H ]γ H [OH ]γ OH (b) Charge balance: [H ] [A ] [OH ] (c) Mass balance: F [A ] [HA] (d) Substitute [A ] [H ] [OH ] from the charge balance, and [HA] F [A ] F [H ] [OH ] from the mass and charge balances into the K a equilibrium. This gives K a [H ]γ H ([H ] [OH ])γ A F [H ] [OH ]. Now replace [OH ] by K w /[H ]γ H γ OH to get K a [H ]γ H ([H ] K w /[H ]γ H γ OH )γ A F [H ] K w /[H ]γ H γ OH. This equation can be rearranged to: K a F K a [H ] K a K w /[H ]γ H γ OH [H ] γ H K w γ A /γ OH. Multiplying both sides by [H ] and rearranging gives a cubic polynomial: [H ] 3 γ H K a [H ] K a F K wγ A γ OH [H ] K ak w γ H γ OH 0

CHAPTER 11: SUPPLEMENTARY SOLUTIONS 34 ACIDBASE TITRATIONS S111. CH OH CH OH H N C H C O H O H 3 N C HCO OH K b1 K w /K a 1.6 10 5 CH OH CH OH H 3 N C H CO H O H 3 N C HCO H OH K b K w /K a1 1.54 10 1 S11. (a) 0.100 x K 1 x 9.95 10 4 M [H ] [HA ] ph 3.00 [H A] 0.100 x 0.099 0 M [A ] K [HA ] [H ] 1.00 10 9 M (b) [H ] K 1 K F K 1 K w K 1 F 1.00 10 7 M ph 7.00 [HA ] 0.100 M [H A] [H ][HA ] K 1 1.00 10 3 M [A ] K [HA ] [H ] 1.00 10 3 M (c) 0.100 x K w K x [OH ] [HA ] 9.95 10 4 M ph 11.00 [A ] 0.100 x 0.099 0 M [H A] [H ][HA ] K 1 1.00 10 9 M ph [H A] [HA ] [A ] 0.100 M H A 3.00 9.90 10 9.95 10 4 1.00 10 9 0.100 M NaHA 7.00 1.00 10 3 0.100 1.00 10 3 0.100 M Na A 11.00 1.00 10 9 9.95 10 4 9.90 10 S113. N NH Cl (BH Cl ) (BH Cl ) is the intermediate form of a diprotic system, with F 0.150 M, K 1 4.65 10 6 and K 1.86 10 10. [H K 1 K F K 1 K w ] K 1 F.94 10 8 M ph 7.53 [BH ] 0.150 M [B] K [BH ] [H 9.49 10 ] 4 M

Chapter 11: Supplementary Solutions 35 [BH ] [BH ][H ] K 1 9.48 10 4 M S114. Charge balance: [H ] [Na ] [BH ] [Cl ] [HA ] [A ] [OH ] Mass balances: [Cl ] F 1 [Na ] F F [H A] [HA ] [A ] F 3 [B] [BH ] Equilibria : [H ]γ H [OH ] γ OH K w K 1 [H ]γ H [HA ] γ HA / [H A] γ H A K [H ] γ H [A ] γ A / [HA ] γ HA K b [BH ] γ BH [OH ] γ OH / [B]γ B S115. Tartaric acid: H A pk 1 3.036 pk 4.366 (a) At ph 3.00, there is a mixture of H A and HA. H A OH HA Initial mmol: 3.331 6 x Final mmol: 3.331 6 x x 3.00 3.036 log x 3.331 6 x x 1.597 mmol 3.77 ml KOH. (b) At ph 4.00, there is a mixture of HA and A. We must add 3.331 6 mmol ( 7.876 ml) of KOH to convert H A into HA. Then we need to add more KOH: HA OH A H O Initial mmol: 3.331 6 x Final mmol: 3.331 6 x x x 4.00 4.366 log 3.331 6 x x 1.003 mmol.370 ml KOH Total KOH 7.876.370 10.5 ml

Chapter 11: Supplementary Solutions 36 S116. Malonic acid H A pk 1.847 pk 5.696 (a) At ph 6.00, there is a mixture of A and HA. A H HA Initial mmol:.775 x Final mmol:.775 x x 6.00 5.696 log.775 x x x 0.90 8 mmol.19 ml HCl. (b) At ph 3.0, there is a mixture of H A and HA. We first add.775 mmol ( 6.591 ml) of HCl to convert A into HA. Then we need to add more HCl HA H H A Initial mmol:.775 x Final mmol:.775 x x 3.0.847 log.775 x x x 0.85 7 mmol.05 ml HCl Total HCl 6.591.05 8.6 ml S117. Oxalic acid H A pk 1 1.5 pk 4.66 At ph 3.0, there is a mixture of A and HA. We begin with 5.00 g 0.030 08 mol A. The reaction of H A with A creates moles of HA : H A A HA Initial mmol: x 0.030 08 Final mmol: 0.030 08 x 0.030 08 x 3.0 4.66 log x.31 g oxalic acid. x 0.05 67 mol S118. NH 3 NH 3 NH 3 NH CHCH CO H K 1 K CHCH CHCH CO CHCH CO CO H K 3 CO H CO CO CO Aspartic acid

Chapter 11: Supplementary Solutions 37 N H 3 CHCH CH CH N HC CO H N H 3 N H N H K 1 CHCH CH CH N HC N H N H CO K N H CHCH CH CH N HC N H K 3 N H CHCH CH CH N HC N H CO Arginine N H CO N H S119. (a) H 3 His pk 1 1.7 H His pk 6.0 HHis Histidine pk 3 9.08 His For 0.050 0 M histidine, [H ] ph 7.55 7.55 6.0 log [HHis] [H His ] K K 3 F K K w K F [H His ] [HHis].8 10 8 M 0.09 5 (b) For 0.050 0 M H His Cl, [H ] K 1 K F K 1 K w K 1 F 1.17 10 4 M S1110. NH 3 ph 3.93 3.93 6.0 log [HHis] [H His ] CHCH CH CH NHC CO NH NH H Arg found in Arginine. HCl [H His ] [HHis] 13 For H 3 Arg pk 1 1.83 pk 8.991 pk 3 1.48 [H ] K 1 K (0.01 0) K 1 K w K 1 (0.01 0).61 10 6 M ph 5.58 [H Arg ][H ] [H 3 Arg ] K 1 [H 3 Arg ] 6 (0.01 0)(.61 10 ) 1.83 10.08 10 6 M [HArg][H ] [H Arg ] K [HArg] (10 8.991.61 )(0.01 0) 10 6 4.69 10 6 M

Chapter 11: Supplementary Solutions 38 [Arg ][H ] [HArg] K 3 [Arg ] (10 1.48.61 )(4.69 10 6 10 6 ) 5.95 10 13 M S1111. (a) Since pk 11.305, BH is predominant at ph 11 and B is predominant at ph 1. (b) 11.305 (c) 1.00 11.305 log.00 11.305 log [B] [BH ] [B] [BH ] [B] [BH ] [B] [BH ] 5.0 5.0 10 10 S111. (a) HSO 3 (b) HSO 3 (c) HSO 3 (d) SO 3 pk 1 3.18 S1113. H 3 Cit H Cit pk 4.761 HCit pk 3 6.396 Cit 3 At ph 5.00, HCit is dominant. S1114. Fraction in form HA α HA [H ] [H ] K a 10 8.00 10 8.00 107.00 0.090 9 Fraction in form A α A K a [H ] K a 0.909 1. [A ] [HA] 0.909 1 0.090 9 10.0. S1115. Fraction in form BH α BH [H ] [H ] [H ]K 1 K 1 K, where K 1 10 6.00 and K 10 1.00 α BH 9.98 10 4 S1116. K 1 3.8 10 5 K 3.8 10 6 ph 5.00 ph 6.00 α H A [H ] [H ] [H ]K 1 K 1 K 0.16 0.005 4 α HA α A [H ]K 1 [H ] [H ]K 1 K 1 K 0.61 0.1 K 1 K [H ] [H ]K 1 K 1 K 0.3 0.79

Chapter 11: Supplementary Solutions 39 S1117. K 1. 10 11 K 1 10 1 ph: 10.00 10.66 11.00 1.00 1.50 α H A 0.8 0.49 0.9 0.0 0.003 4 α HA 0.18 0.49 0.64 0.49 0.4 α A 0.001 8 0.0 0.064 0.49 0.76 S1118. Isoelectric ph pk 1 pk 7.36 Isoionic ph K 1 K (0.010) K 1 K w K 1 (0.010) 4.38 10 8 M ph 7.36 S1119. (a) K e ( S /R) ( H /RT) S R 3.3 (±0.53) and H 3 1.44 ( ± 0.15) 10 RT T J Using the value R 8.314 5 mol. K gives: S [ 3.3 (±0.53)][8.314 5] 7 (±4) J mol. K H [ 1.44 (±0.15) 10 3 ][8.314 5] 1 (±1) kj mol (b) K [SO 3H ] [HSO 3 ] e [3.3 (±0.53) 1.44 (±0.15) 103 (1/T)] For T 98 K, K e[3.3 (±0.53) (1 440 (±150)) / 98] e3.3 (±0.53) 4.83 (±0.50) K e 1.60 (±0.73) 4.953 (±?) For propagation of uncertainty, we consider K e x in Table 31: e K K e x e K Ke x (4.953)(±0.73) ±3.6 K 5.0 (±3.6)

CHAPTER 1: SUPPLEMENTARY SOLUTIONS 40 EDTA TITRATIONS S11. 0 ml: ph log (0.050 0) 1.30 1 ml: [H ] 11.5 1.5 5.0 6.0 0.044 M ph 1.35 5 ml: 1.60 10 ml:.15 1.4 ml: 3.57 1.5 ml: Equivalence point ph 7.00 1.6 ml: [OH ] 0.1 37.6.66 104 M ph 10.4 13 ml: 11.4 S1. 0 ml: HA H A 0.050 0 x 10 4 x.19 10 3 M ph.66 1 ml: ph pk a log [A ] [HA] 4.00 log 1 4 3.40.5 ml: ph 4.00 log.5.5 4.00 4 ml: ph 4.00 log 4 1 4.60 4.9 ml: ph 4.00 log 4.9 0.1 5.69 5 ml: A H O HA OH pk b 10.00 (0.050 0) x x x 55 0.045 5 x 1.00 10 10 x [OH ].13 10 6 ph 8.33 5.1 ml: [OH ] 0.1 55.1 (0.500 M ) 9.07 104 M ph 10.96 6 ml: [OH ] 1 56 (0.500 M ) 8.93 103 M ph 11.95 S13. V e 5.0 ml pk a 7.15 0 ml: HA A HA 0.050 0 x 7.1 10 8 x 5.95 10 5 M ph 4.3 To find the volume at which ph pk a 1, we set up a HendersonHasselbalch equation: pk a 1 pk a log [A ] [HA] [A ]/[HA] 0.1, or [A ] 1/11 and [HA] 10/11 of total.

Chapter 1: Supplementary Solutions 41 Volume of OH V e 11.7 ml Similarly, when ph pk a 1, volume of OH 10V e 11.73 ml When volume of OH 1 V e 1.5 ml, ph pk a V e 5.0 ml: HA is converted to A : A H O HA OH K b 1.4 10 7 50 75 (0.05) x x x 0.033 3 x 1.4 10 7 [OH ] 6.8 10 5 M ph 9.83 1.V e 30.0 ml: [OH ] 5 80 (0.100 M ) 6.5 103 M ph 11.80 S14. HA OH A H O Initial mmol:.345 0 1.044 Final mmol: 1.300 8 1.044 3.6 pk a log 1.044 1.300 8 pk a 3.7 S15. 0 ml: B H O BH OH 0.050 x x x 0.050 x [B] 1 ml: ph pk BH log [BH ].5 ml: ph pk BH 10.00 1.00 10 4 x [OH ].19 10 3 M ph 11.34 10.00 log 4 1 10.60 4 ml: ph 10.00 log 1 4 9.40 4.9 ml: ph 10.00 log 0.1 4.9 8.31 5 ml: BH H O B H 50 55 (0.050) x x x 0.045 5 x 1.00 10 10 x [H ].13 10 6 M ph 5.67 5.1 ml: [H ] 0.1 55.1 (0.500 M ) 9.07 104 M ph 3.04 6 ml: [H ] 1 56 (0.500 M ) 8.93 103 M ph.05

Chapter 1: Supplementary Solutions 4 S16. Titration reaction: CH 3 CH CO H CH 3 CH CO H At the equivalence point, moles of HCl moles of NaA V e 47.79 ml. 0 ml: A H O HA OH 0.040 0 x x x 0.040 0 x 1/4 V e : ph pk a log [A ] [HA] 1/ V e : ph pk a 4.87 K b K w K x 5.47 10 6 M ph log K w a x 4.874 log 3 1 5.35 8.74 3/4 V e : ph pk a log 1 3 4.40 V e : HA H A F x x x F HA 100.0 147.79 (0.040 0) 0.07 1 M 0.07 1 x K a x 5.96 10 4 M ph 3. 1.1 V e : [H ] V e /10 100.0 1.1V (0.083 7).6 10 3 M ph.58 e S17. V e1 5 ml V e 10 ml 0 ml: B H O BH OH 0.050 0 x x x 0.050 0 x 10 5.00 x [OH ] 7.0 10 4 M ph 10.85 [B] 1 ml: ph pk BH log [BH ].5 ml: ph pk BH 9.00 4 ml: ph pk BH log 1 4 8.40 4.8 ml: ph pk BH log 0. 4.8 7.6 5 ml: [H K 1 K F K 1 K w ] K 1 F 1.00 10 7 M ph 7.00 [B] 5. ml: ph pk BH log [BH ] log 1014 10 5 log 4 1 9.60 10 5 10 9 (0.045 5) 10 5 10 14 10 5 0.045 5 5.00 log 4.8 0. 6.38 6 ml: ph pk BH log 4 1 5.60

Chapter 1: Supplementary Solutions 43 7.5 ml: ph pk BH 5.00 9 ml: ph pk BH log 1 4 4.40 9.8 ml: ph pk BH log 0. 4.8 3.6 10 ml: BH BH H 0.041 7 x x x 0.041 7 x 10 5.00 x 6.41 10 4 M ph 3.19 10. ml: [H ] 0. 60. 1.66 103 M ph.78 11 ml: [H ] 1 61 8.0 103 M ph.09 1 ml: [H ] 6 1.61 10 M ph 1.79 S18. V e1 5 ml V e 10 ml 0 ml: H A H HA 0.050 0 x x x 0.050 0 x 10 5.00 x 7.0 10 4 M ph 3.15 1 ml: ph pk 1 log [HA ] [H A] 5.00 log 1 4 4.40.5 ml: ph pk 1 5.00 4 ml: ph pk 1 log 4 1 4.8 ml: ph pk 1 log 4.8 0. 5.60 6.38 5 ml: [H K 1 K (0.045 5) K 1 K w ] K 1 (0.045 5) 5. ml: ph pk log 0. 4.8 7.6 ph 7.00 6 ml: ph pk log 1 4 8.40 7.5 ml: ph pk 9.00 9 ml ph pk log 4 1 9.60 9.8 ml: ph pk log 4.8 0. 10.38

Chapter 1: Supplementary Solutions 44 10 ml: A H O HA OH 0.041 7 x x x K b1 K w K 10 5.00 0.041 7 x K x [OH ] 6.41 10 4 M ph 10.81 10. ml: [OH 0. ] (0.500 M) 1.66 10 3 M ph 11. 60. 11 ml: [OH ] 1 61 M ph 11.91 1 ml: [OH ] 6 M ph 1.1 S19. Titration reaction: NH H NH 3 0 ml: B H O BH OH 0.100 x x x 0.100 x ml: ph pk a log pk a 10.64 V e 10.0 ml K b K w K a 4.37 10 4 K b x [OH ] 6.40 10 3 M ph 11.81 [B] [BH ] 4 ml: ph 10.64 log 6 4 10.8 6 ml: ph 10.64 log 4 6 10.46 8 ml: ph 10.64 log 8 10.04 10.64 log 8 11.4 10 ml: BH B H K a 5 35 (0.100) x x x 0.071 4 x.3 10 11 M x 1.8 10 6 M ph 5.89 1 ml: [H ] 37 (0.50 M) 1.35 10 M ph 1.87 S110. (a) NH 3 CHCH OH OH CO (b) V ml of tyrosine will require 0.010 0 0.004 00 NH CHCH CO OH V.50 V ml of KOH. The formal

Chapter 1: Supplementary Solutions 45 concentration of product will be V V.50 V (0.010 0) 0.00 86 M. [H ] K K 3 (0.00 86) K K w K 0.00 86 1.56 10 10 M ph 9.81 S111. Leucine is HL. The reaction is: HL OH L H O Initial mmol: 7.7 x Final mmol: 7.7 x x x ph 8.00 pk log 7.7 x x 0.18 mmol 0.18 mmol 0.043 1 mmol/ml.97 ml of NaOH S11. (a) NH 3 NH NH 3 NH NH 3 NH H H CHCH CHCH CHCH N N N CO CO H CO H H HA H H 3 A A (b) pk 1 1.7 pk 6.0 pk 3 9.08 H 3 A H A HA A ph 1 (1.7 6.0) 3.86 At ph 3.00, HA has been converted entirely to H A, and some H A has been converted to H 3 A. H A H H 3 A Initial mmol: 1.00 x Final mmol: 1.00 x x ph pk 1 log [H A ] [H 3 A ] 3.00 1.70 log 1 x x x 0.047 7 mmol We need 1.000 0.047 7 mmol HClO 4. Volume 1.047 7 mmol 0.050 0 mmol/ml 1.0 ml S113. The initial color will be blue. The color will change near the first equivalence point from blue to green. After the first equivalence point, the color will turn yellow and will remain yellow.

Chapter 1: Supplementary Solutions 46 S114. (a) red (b) yellow (c) yellow (d) purple S115. There is not an abrupt change in ph at V e. The color of the indicator would change very gradually. S116. NHBr pk a 5.9 K a 5.90 10 6 0.99 V e : ph pk a log 0.99 0.01 7. V e : This is a 0.050 M pyridine solution : N H O NH OH 0.050 x x x K b 5.90 K w 10 6 0.050 x x 9. 10 6 [H ] K w x ph 8.96 (0.01)(0.10 M ) V e 1.01 V e : This solution contains (.01) V 5.0 10 4 M [OH ] ph 10.70 e Two possibilities are cresol red (orange red) and phenophthalein (colorless red). S117. [B] [BH 3 (6.390 10 g) /(78.16 g/mol) ] 0.1000 L Absorbance ε B [B] ε BH [BH ].97 10 4 M 0.350 ( 860)[B] (937)(.97 10 4 [B]) [B] 7.007 10 5 M, [BH ] 1.596 10 4 M ph pk a log [B] [BH ] (14.00 14.79) log 7.007 1.596 10 10 5 4 1.15 S118. (a) First equivalence point : ph 1 (pk 1 pk ) 3.46 Second equivalence point : We need to estimate the formal concentration of A at this point. Volume of NaOH needed to react with 1 g of acid is (1 g/13.073 g/mol) 0.094 3 M 160.6 ml. [A ] 100 60.6 10 g/l 13.073 g/mol 0.09 1 M. A H O HA OH 0.09 1 x x x

Chapter 1: Supplementary Solutions 47 0.09 1 x K w 10 4.37 x.61 106 M ph 8.4 (b) nd. (There will be little break in the curve near the 1 st end point.) (c) Thymolphthalein first trace of blue. S119. One mole of borax reacts with two moles of H. [HNO 3 ](0.01 61 L) 0.61 9 g 381.367 g/mol [HNO 3 ] 0.063 56 M S10. Derivation of equation for titration of dibasic B with strong acid (HCl): Charge balance: [H ] [BH ] [BH ] [OH ] [Cl ] φ fraction of titration C av a C b V b Substitutions: [Cl C a V a ] V a V b [BH ] α BH C bv b V a V b [BH ] α C bv b BH V a V b Putting these expressions into the charge balance gives Now multiply by V a V b : [H ] α BH C b V b V a V b α BH C b V b V a V [OH ] b C a V a V a V b [H ]V a [H ]V b α BH C b V b α BH C b V b [OH ]V a [OH ]V b C a V a Collect V a and V b terms: V a ([H ] [OH ] C a ) V b ([OH ] [H ] α BH C b α BH C b ) V a V b (α BH α BH )C b [H ] [OH ] C a [H ] [OH ] Finally, multiply both sides by 1/C b 1/C a φ C av a C b V b α BH α BH [H ] [OH ] C b 1 [H ] [OH ] C a

Chapter 1: Supplementary Solutions 48 S11. Derivation of fractional composition equations with activity coefficients: K HA H A [H ]γ H [A a ]γ A K a [HA]γ HA Mass balance: F [HA] [A ] [A ] F [HA] Substitute for [A ] in the equilibrium expression: K a [H ]γ H (F [HA])γ A [HA]γ HA [HA] [H ]γ H γ A F [H ]γ H γ A K a γ HA α HA [HA] F [H ]γ H γ A [H]γ H γ A K a γ HA To derive an expression for α A, substitute [HA] F [A ] into the equilibrium expression: K a [H ]γ H [A ]γ A (F [A [A ] ])γ HA K a Fγ HA [H ]γ H γ A K a γ HA α A [A ] F K a γ HA [H ]γ H γ A K a γ HA S1. rate D m [T] r tanθ (.0 10 9 m mol 1 000 L 6 mol /s) 0.040 (0.0 10 m)(tan 3.0 ) 8.4 1016 L 3 s m 0.84 fmol/s In a year, the total volume delivered would be 16 mol s d day 8.4 10 3 600 4 365.6 10 8 mol. s h day year This much titrant is contained in 8.6 10 mol 6.6 10 7 L 0.66 µl. 0.040 mol/l The equivalent volumetric flow rate is 0.66 µl per year!