SOLUTIONS TO TRIAL EXAMINATION 3

Similar documents
Mathematical Foundations -1- Choice over Time. Choice over time. A. The model 2. B. Analysis of period 1 and period 2 3

MATH Non-Euclidean Geometry Exercise Set #8 Solutions

12 TH STD - MATHEMATICS

Three Dimensional Coordinate Geometry

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

The Fundamental Theorems of Calculus

3. Differential Equations

B Signals and Systems I Solutions to Midterm Test 2. xt ()

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a

Chapter Three Systems of Linear Differential Equations

The numbers inside a matrix are called the elements or entries of the matrix.

Kinematics in two Dimensions

ME 391 Mechanical Engineering Analysis

Section 5: Chain Rule

Math 10B: Mock Mid II. April 13, 2016

Chapter 3 Kinematics in Two Dimensions

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

ENGI 9420 Engineering Analysis Assignment 2 Solutions

Differential Equations

Linear Quadratic Regulator (LQR) - State Feedback Design

Some Basic Information about M-S-D Systems

The Special Theory of Relativity Chapter II

mywbut.com Lesson 11 Study of DC transients in R-L-C Circuits

( ) ( ) ( ) ( u) ( u) = are shown in Figure =, it is reasonable to speculate that. = cos u ) and the inside function ( ( t) du

Physics 101 Fall 2006: Exam #1- PROBLEM #1

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version):

Version 053 Midterm 1 OConnor (05141) 1

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

Midterm Exam Review Questions Free Response Non Calculator

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2

Practice Problems - Week #4 Higher-Order DEs, Applications Solutions

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Homework 2 Solutions

Topics in Combinatorial Optimization May 11, Lecture 22

Solutions to assignment 3

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

II. First variation of functionals

Physics 218 Exam 1. with Solutions Fall 2010, Sections Part 1 (15) Part 2 (20) Part 3 (20) Part 4 (20) Bonus (5)

Parametrics and Vectors (BC Only)

SOLUTIONS TO TOPIC 6: MENSURATION

1 Solutions to selected problems

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Problem Set 9 Due December, 7

Chapter 8 The Complete Response of RL and RC Circuits

Optimal Transform: The Karhunen-Loeve Transform (KLT)

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

SOME USEFUL MATHEMATICS

Chapter 6. Systems of First Order Linear Differential Equations

CS Homework Week 2 ( 2.25, 3.22, 4.9)

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

Direct Sequence Spread Spectrum II

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee

Logarithms Practice Exam - ANSWERS

6.2 Transforms of Derivatives and Integrals.

1 d Solving xy = 12 and. 2 a Solving xy = 9 and y= or x= 3 and y = 3 (point P)

THE SINE INTEGRAL. x dt t

Notes for Lecture 17-18

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

AP Calculus BC - Parametric equations and vectors Chapter 9- AP Exam Problems solutions

6.003 Homework #9 Solutions

Consequences of Using the Four-Vector Field of Velocity in Gravitation and Gravitomagnetism 1

Exam #2 PHYSICS 211 Monday July 6 th, 2009 Please write down your name also on the back page of this exam

Yimin Math Centre. 4 Unit Math Homework for Year 12 (Worked Answers) 4.1 Further Geometric Properties of the Ellipse and Hyperbola...

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

KINEMATICS IN ONE DIMENSION

Module MA1132 (Frolov), Advanced Calculus Tutorial Sheet 1. To be solved during the tutorial session Thursday/Friday, 21/22 January 2016

Unit Root Time Series. Univariate random walk

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

Mark Scheme (Results) January 2011

MARKSCHEME SPECIMEN MATHEMATICS

Chapter 2. First Order Scalar Equations

Dynamic System In Biology

UNIT # 01 (PART I) BASIC MATHEMATICS USED IN PHYSICS, UNIT & DIMENSIONS AND VECTORS. 8. Resultant = R P Q, R P 2Q

Nevertheless, there are well defined (and potentially useful) distributions for which σ 2

Advanced Integration Techniques: Integration by Parts We may differentiate the product of two functions by using the product rule:

1. (16 points) Answer the following derivative-related questions. dx tan sec x. dx tan u = du d. dx du tan u. du tan u d v.

and v y . The changes occur, respectively, because of the acceleration components a x and a y

Gravity and SHM Review Questions

P a g e 3 6 of R e p o r t P B 4 / 0 9

Chapter 7: Solving Trig Equations

New Oscillation Criteria For Second Order Nonlinear Differential Equations

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Exponential and Logarithmic Functions -- ANSWERS -- Logarithms Practice Diploma ANSWERS 1

Energy Momentum Tensor for Photonic System

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

SOLUTIONS TO CONCEPTS CHAPTER 3

Best test practice: Take the past test on the class website

6.003 Homework #9 Solutions

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*)

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

Authors Gregory Hartman, Ph.D. Brian Heinold, Ph.D. Troy Siemers, Ph.D. Dimplekumar Chalishajar, Ph.D. Editor Jennifer Bowen, Ph.D.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

Mass Transfer Coefficients (MTC) and Correlations I

Intermediate Differential Equations Review and Basic Ideas

Transcription:

à à n n, Á os sin Á f + Á 9 ± jn ² j ) sin Á jnjjj j+ 9j p p ++9 ++9 p p p 5 ) he anle eween he line an he plane Á 5:7 ±. X a i a X Hene j OX j jaj sin jaj ( os ) jaj jaj os jaj jaj jj os jj jaj (a ² ) jj ) j r OX j jaj (a ² ) jj Y Le e he anle eween O an. ) sin j OX j jaj Thus j OX j jaj sin The line wih equaions, y +, z +, R onains he à fie poin (,, ) an has ireion. à Thus, as a, r j OX j ( + + ) (++) (() + + ) q 6 q 6 unis ii P () + Q()+ ( a) ( a) ) P () Q()( a) + + P (a) Q(a) +a + ) P (a) a + P () Q ()( a) + Q()( a)+ ) P (a)++ iii Remainer + P (a) +(P (a) a) P (a) + P (a) ap (a) P (a)( a)+p (a) SOLUTIONS TO TRIL EXMINTION NO CLCULTOR SECTION a iv or P () 5 ivie y ( +), P () an P () 5 ) P () 5 6 8 ) remainer 8( +) 8 + 8 Le os so sin ) p 9 os p ( sin ) 9 9 os os ( sin ) sin os sin + p 9 + p 9 + Chek: ((9 ) + ) (9 ) ()+ p X 9 p() ( ) a + + a + ( ) ) p() (a + )( ) + a + ) p() (a + )[( ) + ] Thus p() (a + )( +) (a + )( )( ) ) ( ) an ( ) are faors of p(). Sine p() 7 an p() 9, ()() 7 an (a + )()() 9 ) 7 an a +7 ) a 6 ) a Thus, p() ( + 7)( +) 6 +5 8 +7 a a a Sine ln k, ek. Likewise, sine ln, a a e. Thus a e k an a e ) a 6 e k an a 6 e ) e e k ) e k+ fvalues for a 6 ~`9# -` # r Mahemais HL Eam Preparaion & Praie Guie ( eiion)

Sine a Le a e, a e ) a e6k+8 e ) a e 6k+6 ) a e 6k+6 ) a e k+, so r an s. a + + a( ) + ( +) ( + )( ) (a + ) +( a) ) a + an a fequain oeffiiens Solvin hese equaions simulaneously ives an a. + h ln j +j ln j j i ( ln ln ) ( ln ln 5) ln ln + ln 5 ln+ ln 5 is unefine when an lies in he omain of ineraion [, ]. Thus oes no eis. a Le u v sin u v os R ) sin uv R u v os R os os + ( sin )+ sin os + sin h sin i os ( sin os ) ( sin ) () unis sin h sin i os ( sin os ) ( sin os ) + + 5 a a D C ² OD ( a) ² ( a + ) a ² + ² a ² a a ² jj jaj as jaj jj fequal raii ) C an OD are perpeniular ) [C]? [OD]. C O + OC a + a OD O + D a + C a + ( a) a + a a + ( ± f)() (f()) ( p +) ( p +) ) ( ± f)() p (9 ) () f() + where 6 has inverse y where y +y where y 6 ) y +y p, y 6 ) y 6 ()(), y 6 p ) y ( + ), y 6 ) y p +, y 6 ) y p + ) f () p +, > 7 a + + 5 Le m ) m +m 5 ) (m )(m +5) ) m or 5 ) f > for all ) lo sin + os :5 ) os + os ) os os + ) os os + ) ( os ) O C We have jus prove ha he line from he enre of a irle o he mipoin of a hor, is perpeniular o he hor. 6 a () is efine when > ) > ) 6 unis ) ) os ) Qw r Mahemais HL Eam Preparaion & Praie Guie ( eiion)

8 f() os + sin a f() os + sin ) is(, ) f() os + sin ) His(, ) f () ( sin ) + os sin os + os os ( sin ) Qw f I z z z z P z +z R ) f (), os or sin, 6,, 5 6, ) is( 6, ), C is (, ), D is ( 5 6, ), an is(, ). The -oorinaes of E an G are he soluions of os + sin ) os + sin ) sin + sin ) sin sin ) sin p ()() p ) sin p u 6 sin 6, so sin p p E, arsin. p G, arsin +.. z is ) ar(z ) ) ar(z + z) ar(z ) If z + z is purely imainary, hen OP lies on he imainary ais ) + k, k ) + k, k ) f 6 6 a i f() an ) f () an se (se ) se se se ii Usin i, R ( se se ) an + SECTION 9 a i os( + ) + os( ) os os sin sin + os os + sin sin os os ii sin( + ) + sin( ) sin os + os sin + sin os os sin sin os i Usin aiwih, ) os( + ) + os( ) os os ) os + os os os ii Likewise usin aiiwih, sin + sin sin os z [is ] is an z [is ] is fde Moivre s heorem z + z is + is os + i sin + os + i sin [os + os ]+i[sin + sin ] os os + i sin os os [os + i sin ] os is e rom, z + z os an ar(z + z) ) R se R se an + ) R se an an + ) R se an + an + i y se os when os is unefine ) for he illusrae raph, a ii When, os ) se ) is(, ) Shae area se h i an an an Volume p unis y se h an + an i ( p + (p ) ) ( p + p ) p unis fusin a (, ) (, -) r Mahemais HL Eam Preparaion & Praie Guie ( eiion)

e a r Volume of yliner 9 ) volume require 9 Ã +5 Ã 9 When, r 5 9 y is he equaion of L. aros py y ) (9, 5, ) lies on L. Ã n an he plane has equaion y z () () () whih is y z 7 The line +5, y, z mees he plane when ( +5) ( ) 7 ) 6 +5+8 + 7 ) 6 ) Hene () + 5, y (), z The line mees he plane a (,, ). e y se_ y y se &"e, * ) se p y f se > ) os p y ) aros py "e (9,-5, ) N Line N has equaion 9+s, y 5 s, z s, s R. Ã 9+s or r 5 s s Line N mees P where (9 + s) (5 s) ( s) 7 ) 7 + 9s ++6s +s 7 ) 6s +57 ) 6s 5 ) s Hene 9+() y 5 () z () ) line N mees he plane a (,, ). f (9,-5, ) N (,, ) P '(a,, ) If is (a,, ), a +9 5 +,, ) a +96, 56, +8 ) a,, 6 ) is (,, 6) Given C(,, ) an (,, 6), Ã C 8 (i j k) 8 ) C is parallel o i j k. f C is a onsan muliple of i j k a P n is: n+ + n+ is ivisile y for all n +. Proof: (y he priniple of mahemaial inuion) () If n, n+ + n+ 7 + 8 + 8 9 9 ) P is rue. () If P k is rue hen k+ + k+ where +. Now (k+)+ + (k+)+ k++ + k++ k+ + k+ 6( k+ )+7 k+ 6 6 k+ +7 k+ 6 + k+ (6 + k+ ) where 6 + k+ + Thus P k+ is rue. So, P is rue, an P k+ is rue provie P k is rue for all k >. Hene, P n is rue. fpriniple of mahemaial inuion Sine a,, are onseuive erms in an arihmei sequene, a ) a + u a + +, so + ) ) Sine a, +, +9 are onseuive erms in a eomeri sequene, + a +9 + ) a +9 where a + r Mahemais HL Eam Preparaion & Praie Guie ( eiion)

Thus CLCULTOR SECTION a a +9 ) a 5 a ) 5a a ) a 5a + ) (a )(a 8) ) a or 8 ) a,, 9 or a 8,, 6 a i z r is z (ris ) r is fde Moivre s heorem ii p z z (ris ) r is + ai ( ai) fde Moivre s heorem (ai)+(ai) (ai) ai a + a i ( a )+(a a)i ) a an a a a fequain real an imainary pars ) a an a a ) a an a(a ) ) a ( a If f() e, 6 6, 6, oherwise is a well efine PD, hen e ff() > always h i ) e ) e e ) e + Usin ehnoloy, :56 ) :56 ¹ E(X) :6 e:56 Var(X) E(X ) fe(x) :77 fusin ehnoloy e:56 ¹ fusin ehnoloy a Usin he osine rule in C, C 6 +8 (6)(8) os ± ) C 6 +8 +6 8 ) C 8 Refle OC ± ) OC ± fanle a he enre heorem In OC, C r + r rr os ± fosine rule ) C r + r ) C r rom a an, r 8 ) r 9::::: ) r 7:8:::: ) r 7: os 7:8 ³ aros 7:8 7. 8 ) O 55: ± 8 a When no replaemen ours, we o no have a repeiion of n inepenen rials eah wih he same proailiy of suess. However, sine n is very lare, he proailiy of a suess eah ime will e almos he same. X» (, :) i P(X 6 ) P(X,, or) (:) (:968) + (:) (:968) 9 + (:) (:968) 8 :975 ii P(X > ) P(X 6 ) : 7 fusin ehnoloy 5 a 8 m 6 m C r r O ³ (n+ ln ) (n +) n ln + n+ (n +) n ln + n R Thus [(n +) n ln + n ] n+ ln + ) (n +) R n ln + n+ n + n+ ln + provie n 6 ) R n ln n+ ln n + n+ (n +) + n+ ((n +)ln ) + (n +) provie n 6 5 r Mahemais HL Eam Preparaion & Praie Guie ( eiion)

When n, R ln n ln ³ (ln ) This has he form R (f()) n f (), so R n (ln ) ln + 6 s sin + os meres a v s () sin + os + sin ) v sin + os sin ) v os ms The parile is a res when v ) os (, )»» " 8 7 " 8 7 " 8 7 # 5 9 9 9 9 8 # # R R R R $ R R R +R rom row, 8 ) 9 rom row, +99 ) 8 ) 6 rom row, 8a +7(6) + 9 ) 8a + 9 ) 8a 8 ) a ) a, 6, an 9 (, -) ) or + k, k ) or + k, os hanes sin. ) he parile reverses ireion a seons. Is posiion a his ime is s() m rih of O. a v os + sin ) a() os sin ) a os 6 sin 6 p p ms SECTION 9 Le X resul of a suen in he Siene eam. X» N(56:7, 8: ) a i P(resul eween 65 an 85 inlusive) P(65 6 X 6 85) :6 ii P(resul of a leas 7) P(X > 7) : i We nee o fin k where P(X 6 k) :9 7 a aran + aran 6 aran Le + where an, an 6, an. Now an( + ) an ) an + an an an an ) +6 (6) ) + 6 ( ) ) +89 8 ) 9 9 ) 9 9 y aran ) y + + 9 9+ 8 a If, y, 9+ +... () If, y, 5+a +... () If 8, y 7, + 8a +7 +... () ii.5 k 9. k. ) k 8 ) a resul of 8 or more reeives an. We nee o fin k where P(X 6 k) :5 ) k 7:8 ) a resul of 7 or less reeives an. Suen () () () There are si ifferen permuaions of s an s. ) P(wo s an wo s) 6 (:) (:5) : 5 () X X r Mahemais HL Eam Preparaion & Praie Guie ( eiion) 6

Y» (, :) i P(Y ) : a i f() y ii 6 f () + sin sin ii P(Y > ) P(Y 6 ) : os ( sin ) ( + sin )( os ) ( sin ) os sin os + os + sin os 6 os ( sin ) i h () ( os )( sin ) (a + sin )( os ) ( sin ) os sin os +aos +sin os ( sin ) os (a + ) ( sin ) ii h (),,, 5, 7 fas in ) M h a + () a + an m h a + () () a + iii H M m a + a + (a + )( +) (a )( ) ( )( +) a + a + + a + a + a + (a + ) iv When a,,, ( + 6) H 8 9 9 8 Now f + sin sin ( sin ) ) f (), os, + k, k, + k + () () 5 an 7 5 9, so he resul is verifie. (, ),,, 5, 7 ) he loal maimum a is (, 7) an he loal maimum a is ( 5, 7). "w Es" y f() (, -) a L : r L : s à + + à +¹ ¹ +¹ à + à à + ¹Ã The lines inerse if r s ) + +¹... () ¹... () + +¹... () rom (), ¹ So, in () +¹ +¹ ) ¹ an 5 However, in () + (5) 9 an +() 6 ) () is no saisfie y he soluions from () an (). ) L an L o no inerse. à à lso, is no a salar muliple of ) L an L are no parallel. Thus L an L are skew lines. veor perpeniular o L an L is à à i j k i j + k (+)i ( 6)j +(+)k i +j +k j + k * L L C Q r a+ * D R L is ranslae o L meein L a P. i is perpeniular o L an L,so is a normal o he shae plane onainin L an L. ii RC 9 ± fr is normal o he shae plane Le C R e he anle eween C an. ) os R C D j C j ) D j C j os j ajj j os j j j( a) ² ( )j j j D P L s +¹ 7 r Mahemais HL Eam Preparaion & Praie Guie ( eiion)

e or he oriinal lines L an L, à à a,, Ã, à à a à à à ffrom à à ² ) D p p ++ 5 unis a v v os ) R v os ) (v os ) + u when, ) ) (v os )... () Likewise, v y v sin ) y R (v sin ) v e Rane sin f The rane is maimise when sin ) 9 ± ) 5 ± ³ p i The maimum heih m 9:8 9 m ii Rane 9:8 97 m h Usin e, 95 sin ) sin :58 7 ) 5:6 ± ) 7:8 ± The anle is aou 7:8 ±. v sin meres. ) y (v sin ) + When, y ) ) y (v sin )... () rom (), v os ³ ³ ) y v sin v os v os ) y (an ) v ) y (an ) (se ) v The pah has equaion y a+ whih is a quarai in. ) he pah is paraoli. urhermore, sine <, he pah is onave. y an se v ) y sin, os v os, v sin os, v sin os, v sin The maimum heih is sin v sin os os v sin os v os v sin v sin v sin r Mahemais HL Eam Preparaion & Praie Guie ( eiion) 8