Features of the free and open source toolbox MTEX for texture analysis

Similar documents
Calculating anisotropic physical properties from texture data using the MTEX open source package

Geological Society, London, Special Publications

L3: Review of linear algebra and MATLAB

A Generalised Spherical Harmonic Deconvolution to Obtain Cubic Texture from Ultrasonic Wave Speed

Texture, Microstructure & Anisotropy A.D. (Tony) Rollett

Tensors and Anisotropic physical properties of rocks Part I : Tensor representation of the physical properties of single crystals

Exercise: concepts from chapter 8

Math 307 Learning Goals. March 23, 2010

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Image Compression Using the Haar Wavelet Transform

ECE521 W17 Tutorial 1. Renjie Liao & Min Bai

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Q. WANG, Q-K. XIA, S. Y. O REILLY, W. L. GRIFFIN, E. E. BEYER AND H. K. BRUECKNER

INTERSECTIONS OF PLANES

Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol ISSN

INTERSECTIONS OF PLANES

Applied Linear Algebra in Geoscience Using MATLAB

High-resolution finite volume methods for hyperbolic PDEs on manifolds

Inferential statistics of electron backscatter diffraction data from within individual crystalline grains

Constitutive Equations

Frequently Asked Questions

Chapter 1. Gaining Knowledge with Design of Experiments

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB

Spherical Wavelets with an Application in Preferred Crystallographic Orientation

Lecture 4 Implementing material models: using usermat.f. Implementing User-Programmable Features (UPFs) in ANSYS ANSYS, Inc.

Finite Element Simulations of Microbeam Bending Experiments

SuperMix2 features not available in HLM 7 Contents

Quadratic and cubic monocrystalline and polycrystalline materials: their stability and mechanical properties

Physics 584 Computational Methods

Rigid Geometric Transformations

IDENTIFICATION OF THE ELASTIC PROPERTIES ON COMPOSITE MATERIALS AS A FUNCTION OF TEMPERATURE

Image Compression. 1. Introduction. Greg Ames Dec 07, 2002

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f

Characterizations of Aluminum Alloy Sheet Materials Numisheet 2005

Experiment 1: Linear Regression

Module 10: Free Vibration of an Undampened 1D Cantilever Beam

CAAM 335 Matrix Analysis Planar Trusses

Introduction to Finite Element Analysis Using Pro/MECHANICA Wildfire 5.0

Fundamental principles

PHYSICAL PROPERTIES OF CRYSTALS

3D Stress Tensors. 3D Stress Tensors, Eigenvalues and Rotations

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA

Crystallographic Symmetry. Jeremy Karl Cockcroft

Piezo materials. Actuators Sensors Generators Transducers. Piezoelectric materials may be used to produce e.g.: Piezo materials Ver1404

Singular Value Decomposition and Digital Image Compression

Linear Inverse Problems. A MATLAB Tutorial Presented by Johnny Samuels

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

Multimedia & Computer Visualization. Exercise #5. JPEG compression

DAMOCO: MATLAB toolbox for multivariate data analysis, based on coupled oscillators approach Version 1.0

Lindgren CRYSTAL SYMMETRY AND ELASTIC CONSTANTS MICHAEL WANDZILAK. S.B., Massachusetts Institute of Technology (196'7)

Linear Algebra Review. Fei-Fei Li

Constitutive Relations

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06

Probabilistic Latent Semantic Analysis

Math 671: Tensor Train decomposition methods

Feb 21 and 25: Local weighted least squares: Quadratic loess smoother

Spectral Graph Theory

COSY INFINITY Version 7

Lab 2 Worksheet. Problems. Problem 1: Geometry and Linear Equations

Composite models 30 and 131: Ply types 0 and 8 calibration

CONVERSION OF COORDINATES BETWEEN FRAMES

Technische Universität Kaiserslautern WS 2016/17 Fachbereich Mathematik Prof. Dr. J. Franke 19. January 2017

(Linear equations) Applied Linear Algebra in Geoscience Using MATLAB

MOOSE Workshop MOOSE-PF/MARMOT Training Mechanics Part Nashville, February 14th Daniel Schwen

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Rigid body Rigid body approach

Computational Foundations of Cognitive Science

! EN! EU! NE! EE.! ij! NN! NU! UE! UN! UU

Physical properties in MTEX, current status and future developments

Linear Algebra Review. Fei-Fei Li

arxiv: v1 [physics.ins-det] 4 Jun 2018

Selecting protein fuzzy contact maps through information and structure measures

Deriving Principal Component Analysis (PCA)

A Brief Introduction To. GRTensor. On MAPLE Platform. A write-up for the presentation delivered on the same topic as a part of the course PHYS 601

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS

CraFT user s guide. Hervé Moulinec

Textures in experimentally deformed olivine aggregates: the effects of added water and melt.

SYMBOLIC AND NUMERICAL COMPUTING FOR CHEMICAL KINETIC REACTION SCHEMES

The tensors useful for geophysics and estimation of anisotropic polycrystalline physical properties

GSI Geometric Science of Information, Paris, August Dimensionality reduction for classification of stochastic fibre radiographs

Transducer Design and Modeling 42 nd Annual UIA Symposium Orlando Florida Jay Sheehan JFS Engineering. 4/23/2013 JFS Engineering

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Three-Dimensional Electron Microscopy of Macromolecular Assemblies

Learning goals: students learn to use the SVD to find good approximations to matrices and to compute the pseudoinverse.

Math 671: Tensor Train decomposition methods II

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

EE Experiment 11 The Laplace Transform and Control System Characteristics

Elaboration on the Hexagonal Grid and Spiral Method for Data Collection Via Pole Figures

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Linear Neural Networks

TEMScripts Real-time Crystallography Manual. TEMScripts LLC. Last updated: 11/4/2016

Exploring Piezoelectric Properties of Wood and Related Issues in Mathematical Description. Igor Dobovšek

ECE 661: Homework 10 Fall 2014

Image Data Compression

Introduction to Matlab

January 18, 2008 Steve Gu. Reference: Eta Kappa Nu, UCLA Iota Gamma Chapter, Introduction to MATLAB,

03 - Basic Linear Algebra and 2D Transformations

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Introduction. How to use this book. Linear algebra. Mathematica. Mathematica cells

Maximal Entropy for Reconstruction of Back Projection Images

Transcription:

Features of the free and open source toolbox MTEX for texture analysis Ralf Hielscher 1 Florian Bachmann 2 Helmut Schaeben 3 David Mainprice 4 1 Applied Functional Analysis, Technische Universität Chemnitz, Germany 2 Geoscience Mathematics and Informatics, Technische Universität Bergakademie Freiberg, Germany 3 Géosciences Montpellier UMR 5242, Université Montpellier 2 & CNRS, France Internal MTEX Training Géosciences Montpellier, September 2012

Outline 1 Introduction MTEX project MATLAB environment 2 EBSD Data Analysis Importing EBSD Data 3 Visualization Grains Analysis EBSD - to - ODF Reconstruction

History of MTEX : A Texture Calculation Toolbox 1 Originally developed by Ralf Hielscher as part of this Ph.D. thesis The Radon Transform on the Rotation Group : Inversion and Application to Texture Analysis (2007) under the direction of Helmut Schaeben at Technische Universität Bergakademie Freiberg, Germany. 2 The toolbox has been extended to include the analysis of 2D and 3D EBSD data by Florian Bachmann and others. 3 The physical properties of 2 nd, 3 rd and 4 th rank tensors have been incorporated by David Mainprice and others.

Features of MTEX crystal geometry: all kind of symmetries, different Euler angle conventions, import from crystallographic information files (CIF); pole figure data analysis: 20 data formats, data correction; pole figure to ODF inversion: all symmetries, any sampling of pole figures including irregular grids, incomplete and non-normalized pole figures, ghost correction option, zero range option; EBSD data analysis: 5 data formats, data correction; grain detection: fabric analysis, misorientation analysis; ODF estimation from EBSD data: automized determination of kernel width, arbitrarily many individual orientations; ODF analysis: modal orientations, difference ODFs, volume portions, entropy, texture index, Fourier coefficients; ODF modeling: any composition of uniform, unimodal, fibre and Bingham ODFs, simulation of pole figure and individual orientation data; material property tensors: average tensors from EBSD data and ODFs; elasticity tensors: elastic stiffness tensor, elastic compliance tensor, Young s modulus, shear modulus, Poisson s ratio, linear compressibility, compressional and shear elastic wave velocities, velocity ratios.

MTEX : The Concept ODF Estimation EBSD Data Analysis Plotting MTEX Pole Figure Analysis Texture Characteristics ODF Modelling MATLAB toolbox Fourier and numerical methods on SO3 Pole figure inversion route to ODF Individual orientation route to ODF Spatially referenced data in 2D or 3D EBSD... > 1000 functions > 20 data formats imported Publication ready plots Batch processing FREE! for everyone

MTEX : Webpage an import source of information

MTEX : Not so frequently asked questions

MTEX : Issues - a contact with the development team

MTEX : Central role of Orientation Distribution Function (ODF)

MTEX : Analyzing and Visualizing ODFs

Overview of MATLAB 1 High-level (line by line interpreter) language for technical computing 2 A large number of mathematical functions integrated in the language for matrix algebra, statistics, Fourier analysis,... 3 2-D and 3-D graphics functions for visualizing data 4 Extensions using commercial or free open source toolboxes (e.g. MTEX ) 5 Functions for integrating MATLAB based algorithms with external languages, such as C, C++, FORTRAN...

Vectors and Matrices Define vectors: v = [ 1 ; 2 ; 3 ; 4 ] ; % a v e r t i c a l v e c t o r h = [ 1 2 3 4 ] ; % a h o r i z o n t a l v e c t o r M = [ [ 1 ; 2 ] [ 3 ; 4 ] ] ; % a 2 by 2 Matrix s = 1 : 4 ; % the same as h i n l i n e 2 Calculate with vectors: u = 5 v % m u l t i p l y v e c t o r s by a s c a l a r w = u v % s u b t r a c t two v e c t o r s x = u. v % e l e m e n t w i s e m u l t i p l i c a t i o n u v, u v % i n n e r & o u t e r p roduct y = [ u v ] % c o n c a t e n a t i o n o f v e c t o r s Example: polar to Euclidean coordinates x = s i n ( t h e t a ). cos ( rho ) y = s i n ( t h e t a ). s i n ( rho )

Vectors Indexing by numbers: v ( 1 ) % the f i r s t element v ( 2 : end ) % the l a s t t h r e e e l e m e n t s M( 2, 1 ) % the bottom l e f t element M( :, 2 ) % the second column Indexing by conditions: v ( v > 1 ) % a l l e l e m e n t s t h a t a r e l a r g e r then 1 v ( u == v ) % a l l e l e m e n t s where u and v c o i n c i d e Changing elements v ( 1 : 3 ) = 1 % s e t the f i r s t t h r e e e l e m e n t s to 1 v ( v == 0 ) = [ ] % remove a l l z e r o s

MATLAB programming style - Orientation tensor 1 For a pole figure displaying one crystallographic direction h of number (N) individual orientation pixels or grains the orientation tensor is traditionally defined in the geological literature as: M ij = 1 N N i xi 2 N i x i y N i i x i z i N i x i y N i i yi 2 N i y i z i N i x i z N i i y i z N i i zi 2 where r = (x i y i z i ) are direction cosines of a crystallographic direction h in specimen coordinates r with Cartesian reference axes X, Y and Z.

MATLAB programming style - Orientation tensor 2 The same Orientation tensor can also be formulated as a symmetric matrix and the product of the multiplication of a vector containing all r by its transpose: M ij = M 11 M 12 M 13 M 12 M 22 M 23 M 13 M 23 M 33 = 1 N N r T i r i i where r = (x i y i z i ) are direction cosines of a crystallographic direction h in specimen coordinates r with Cartesian reference axes X, Y and Z.

MATLAB programming style - Orientation tensor 3 The two methods of calculation are illustrated by small MATLAB script. The method using the formation of covariance matrix from a column and row vector of r is 300 times faster. Efficient programming requires adapting to the MATLAB style.

MATLAB programming style - Orientation tensor 4 An example of c-axes pole figure of ice 1h at 1171m Talos Dome ice core, Antarctica. Eigen-vectors (red squares) : E1, E2, E3 Eigen-values (magnitudes) : EM1 > EM2 > EM3 G50 fabric analyser data courtesy of Maurine Montagnat LGGE UMR5183, CNRS / UJF Grenoble, France

Single Orientation Measurements in MTEX Parameters of a single EBSD phase in MTEX arbitrary as list: crystal symmetry specimen symmetry list of individual orientations phase example olivine spatial coordinates x y Band Contrast diffraction signal MAD Mean Angular Deviation... Olivine in torsion: EBSD map data courtesy of Sylvie Demouchy,Montpellier Colorcode for crystallographic directions parallel to shear direction

Importing EBSD Data with The MTEX Import Wizard Two ways to import EBSD data 1 From command window link Import EBSD data 2 Type in the command window import_wizard( EBSD ) Formats supported by MTEX : *.ang TSL-EDAX *.ctf HKL-Oxford *.csv Oxford *.sor LaboTEX *.txt (Generic ASCII files generated by user)

Importing EBSD Data - Using a script This script was generated by the EBSD import wizard: % C r y s t a l s y m m e t r i e s d e f i n e a, b, c, alpha, beta, gamma % and c r y s t a l d i r e c t i o n s used f o r E u l e r a n g l e C a r t e s i a n r e f e r e n c e frame CS = {... n o t I n d e x e d,... symmetry ( mmm, [ 4. 7 5 6 1 0.207 5. 9 8 ], m i n e r a l, O l i v i n e ),... symmetry ( mmm, [ 1 8. 2 4 0 6 8.8302 5. 1 8 5 2 ], m i n e r a l, E n s t a t i t e ),... symmetry ( 2/m, [ 9. 7 4 6 8. 9 9 5. 2 5 1 ], [ 9 0. 0 0, 1 0 5. 6 3, 9 0. 0 0 ] degree,... X a, Y b, Z c, m i n e r a l, D i o p s i d e ),... symmetry ( m 3m, m i n e r a l, Magnetite ),... symmetry ( m 3m, m i n e r a l, Chromite ) } ; % Specimen symmetry SS = symmetry ( 1 ) ; % path to f i l e s pname = / MatLab Programs / % which f i l e s to be i m p o r t e d fname = {[ pname 920D 13. c t f ], } % c r e a t e an EBSD v a r i a b l e c o n t a i n i n g t h e data ebsd = loadebsd ( fname, CS, SS, i n t e r f a c e, c t f )

Visualize EBSD Data in MTEX : orientation space Scatter plots in orientation space (Rodrigues space, axis-angle space or Euler angle space) % Not v e r y u s e f u l as a x e s a r e not l a b e l l e d s c a t t e r ( ebsd ( O l i v i n e ), AXISANGLE ) s c a t t e r ( ebsd ( O l i v i n e ), RODRIGUES ) % More u s e f u l w i t h l a b e l l e d s e c t i o n s p l o t o d f ( ebsd ( O l i v i n e ), sigma, SECTIONS, 1 8, p o i n t s,320744)

Visualize EBSD Data in MTEX : specimen space Scatter plots of pole figures: crystal direction h in specimen space r % O l i v i n e p o l e f i g u r e s % p l o t t i n g c o n v e n t i o n p l o t x 2 e a s t % X=East Y=North Z=C e n t e r upper h e m i s p h e r e p l o t x 2 e a s t % s p e c i f y c r y s t a l d i r e c t i o n s h w i t h h k l f o r p o l e and uvw d i r e c t i o n s h = [ M i l l e r ( 1, 0, 0, uvw ), M i l l e r ( 0, 1, 0, uvw ), M i l l e r ( 0, 0, 1, uvw ) ] f i g u r e ( p o s i t i o n, [ 1 0 0 100 700 3 5 0 ] ) p l o t p d f ( ebsd ( O l i v i n e ), h, a n t i p o d a l, p o i n t s,320744) % s p e c i f y specimen d i r e c t i o n s r % you can used predefined xvector, yvector or zvector % o r d e f i n e a r b i t a r y d i r e c t i o n s w i t h v e c t o r 3 d ( 1. 0, 0. 0, 0. 0 ) r = [ v e c t o r 3 d ( 1. 0, 0. 0, 0. 0 ), v e c t o r 3 d ( 0. 0, 1. 0, 0. 0 ), v e c t o r 3 d ( 0. 0, 0. 0, 1. 0 ) ] a n n o t a t e ( r, a l l, l a b e l,{ X, Y, Z }, BackgroundColor, w ) Option : Antipodal (non-polar) Option : Complete (polar)

Visualize EBSD Data in MTEX : crystal space Scatter plots of inverse pole figures: specimen direction r in crystal space h % O l i v i n e i n v e r s e p o l e f i g u r e s : specimen d i r e c t i o n r i n c r y s t a l s p a c e h % s p e c i f y specimen d i r e c t i o n s r r = [ v e c t o r 3 d ( 1. 0, 0. 0, 0. 0 ), v e c t o r 3 d ( 0. 0, 1. 0, 0. 0 ), v e c t o r 3 d ( 0. 0, 0. 0, 1. 0 ) ] f i g u r e ( p o s i t i o n, [ 1 0 0 100 700 3 5 0 ] ) p l o t i p d f ( ebsd ( O l i v i n e ), r, a n t i p o d a l, p o i n t s,320744) % s p e c i f y c r y s t a l d i r e c t i o n s h h = [ M i l l e r ( 1, 0, 0, uvw ), M i l l e r ( 0, 1, 0, uvw ), M i l l e r ( 0, 0, 1, uvw ) ] a n n o t a t e ( h, a l l, l a b e l e d, BackgroundColor, w )

Visualize EBSD Data in MTEX : Spatial maps Spatial plots of EBSD data Example hkl color coded orientation map % i p f o r i e n t a t i o n map p l o t ( ebsd, c o l o r c o d i n g, i p d f ) % phase d i s t r i b u t i o n map p l o t ( ebsd, p r o p e r t y, phase ) % d i f f r a c t e d i n t e n s i t y map p l o t ( ebsd, p r o p e r t y, bc ) % mean a n g u l a r d e v i a t i o n e r r o r map p l o t ( ebsd, p r o p e r t y, mad ) Color Codings: bunge, angle, sigma, ihs, ipdf, rodriguesquat, rodriguesinverse, euler, bunge2, hkl (Olivine torsion data courtesy of Sylvie Demouchy, GM, UM2, Montpellier)

Grain Analysis with MTEX Grain reconstruction in MTEX is done via the command calcgrains. As an optional argument the desired threshold angle for misorientation defining a grains boundary can be specified. A grain is defined as a region, in which the misorientation of at least one neighbouring measurement site is smaller than a given threshold angle. The command grainsize returns the number of indexed pixels within a grain. % F i l l s a l l non i n d e x e d a r e a s. Angle i s t h e same f o r a l l p h a s e s. g r a i n s = c a l c G r a i n s ( ebsd, a n g l e,10 degree ) ; % Angle i s 0,10 & 15 f o r p h a s e s 1, 2, 3. F i l l s a l l non i n d e x e d a r e a s. g r a i n s = c a l c G r a i n s ( ebsd, a n g l e, [ 0 10 5] degree ) ; % Conserves non indexed areas. Angle i s the same f o r a l l phases. g r a i n s = c a l c G r a i n s ( ebsd, a n g l e,10 degree, keepnotindexed ) ; EBSD Map Grain Map : calcgrains(ebsd( Olivine ), angle,10*degree)

Grain Properties EBSD properties p l ot ( g r a i n s ) % p l o t a l l g r a i n s p l ot ( g r a i n s ( O l i v i n e ) % p l o t o l i v i n e g r a i n s p l ot ( g r a i n s, p r o p e r t y, phase ) % p l o t the phase o f eac plotboundary ( g r a i n s ) % p l o t g r a i n b o u n d a r i e s Plot grain boundaries: p l o t b o u n d a r y ( g r a i n s,/+<o p t i o n s>+/) p l o t b o u n d a r y ( g r a i n s, p r o p e r t y, a n g l e ) p l o t b o u n d a r y ( g r a i n s, p r o p e r t y, r o t ) Access to properties of grains phase = get ( g r a i n s, phase ) g r a i n s q u a r t z = g r a i n s ( Quartz ) o = get ( g r a i n s q u a r t z, o r i e n t a t i o n )

Grain Properties EBSD properties p l ot ( g r a i n s,/+<o p t i o n s>+/) /+p l o t ( g r a i n s, p r o p e r t y, phase )+/ Plot grain boundaries: p l o t b o u n d a r y ( g r a i n s,/+<o p t i o n s>+/) p l o t b o u n d a r y ( g r a i n s, p r o p e r t y, a n g l e ) p l o t b o u n d a r y ( g r a i n s, p r o p e r t y, r o t ) Access to properties of grains phase = get ( g r a i n s, phase ) g r a i n s q u a r t z = g r a i n s ( Quartz ) o = get ( g r a i n s q u a r t z, o r i e n t a t i o n )

Grain Properties: Geometry Basic functions of grain geometry % commands that i n c l u d e non index points ( holes ) p e r i m e t e r ( g r a i n s ) ; % p e r i m e t e r o f a g r a i n p o l y g o n a r e a ( g r a i n s ) ; % a r e a o f a g r a i n p o l y g o n c e n t r o i d ( g r a i n s ) ; % b a r y c e n t e r o f t h e g r a i n p o l y g o n % e q u i v a l e n t r a d i u s and p e r i m e t e r e q u i v a l e n t r a d i u s ( g r a i n s ) ; % d e f i n e d as s q r t ( a r e a / p i ) e q u i v a l e n t p e r i m e t e r ( g r a i n s ) ; % d e f i n e d as 2 p i e q u i v a l e n t r a d i u s % g r a i n geometry d i a m e t e r ( g r a i n s ) ; % l o n g e s t d i s t a n c e between two v e r t i c e s o f g r a i n a s p e c t r a t i o ( g r a i n s ) ; % r a t i o o f two p r i n c i p a l components o f a g r a i n s h a p e f a c t o r ( g r a i n s ) ; % d e f i n e d as p e r i m e t e r / e q u i v a l e n t p e r i m e t e r g r a i n S i z e ( g r a i n s ) ; % t h e number o f i n d e x e d measurements p e r g r a i n Grain-size distribution A = a r e a ( g r a i n s ) ; % h i s t o g r a m bar ( h i s t (A, exp ( 1. 5 : 6. 5 ) ) ) Other properties: h a s h o l e s, h a s s u b f r a c t i o n

Working with EBSD Data Directly Access EBSD properties o r i e n t a t i o n s = get ( ebsd, o r i e n t a t i o n ) x = get ( ebsd, x ) Rotate EBSD data ebsd = rotate ( ebsd, r o t a t i o n (... a x i s, xvector, a n g l e,90 degree ) ) Omit one pixel grains % g r a i n s c o n t a i n i n g more than one i n d e x e d p i x e l g r a i n s = g r a i n s ( g r a i n s i z e ( g r a i n s ) > 1)

EBSD to ODF Reconstruction in MTEX MTEX uses kernel density estimation to compute an ODF from EBSD data. The sensitive parameter of this method is the kernel function. Syntax: odf = calcodf ( ebsd,<o p t i o n s>) Options: k e r n e l % the k e r n e l to be used h a l f w i d t h % h a l f width o f the k e r n e l r e s o l u t i o n % r e s o l u t i o n o f a p p r o x i m a t i o n g r i d F o u r i e r % ODF by i t s F o u r i e r c o e f f i c i e n t s e x a c t % e x a c t g r i d