Lecture 13, 04 Oct 2005 Chapter 16 & 17 Navigation & Muscle Function

Similar documents
Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Navigation (Chapter 16)

Movement & Muscle. 19 th Lecture Fri 27 Feb Chapter 18. Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009

Movement & Muscle Chapter 18

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal

Our patient for the day...

According to the diagram, which of the following is NOT true?

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

the axons of the nerve meet with the muscle cell.

UNIT 6 THE MUSCULAR SYSTEM

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP):

Slide 1. Slide 2. Slide 3. Muscles general information. Muscles - introduction. Microtubule Function

Muscles and Muscle Tissue: Part A

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Modeling. EC-Coupling and Contraction

BIOMECHANICS 3 Origins and consequences of forces in biological systems

TISSUE. A) Types. (i)

(Be sure to clearly state the principles addressed in your discussion.)

The Molecules of Movement Musc 1 - Professor Michael Ferenczi

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles

لجنة الطب البشري رؤية تنير دروب تميزكم

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Nervous Systems: Neuron Structure and Function

Structure of Biological Materials

Fundamentals of Neurosciences. Smooth Muscle. Dr. Kumar Sambamurti 613-SEI; ;

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below.

Cellular Electrophysiology and Biophysics

CIE Biology A-level Topic 15: Control and coordination

Modelling Muscle Contraction a multiscale approach

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous System Organization

Neurophysiology. Danil Hammoudi.MD

Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur.

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle

1. True or false: at this moment, some of the muscle fibers in your gluteus maximus (a whole muscle) are contracting. a. True b.

Computational Modeling of the Cardiovascular and Neuronal System

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lectures 3, 9, 10, 11: Prenatal and

Some sensory receptors are specialized neurons while others are specialized cells that regulate neurons Figure 50.4

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Nervous Tissue. Neurons Neural communication Nervous Systems

Nerve and Muscle. Physiology of nerve

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Modeling. EC-Coupling and Contraction

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM W KEY

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling

Housekeeping, 26 January 2009

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11

NOTES: CH 48 Neurons, Synapses, and Signaling

Human Motion Control Course (Wb 2407)

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

Use the word bank to match the appropriate letter to the definitions/descriptions on the next page.

What are neurons for?

L ia D am ayanti. D epartm ent of H istology Faculty of M edicine University of I ndonesia

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Overview of Physiology & Homeostasis. Biological explanations Levels of organization Homeostasis

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling

Nervous System Organization

A Model Based Analysis of Steady-State versus Dynamic Elements in the Relationship between Calcium and Force

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations

Sarcomere Lattice Geometry Influences Cooperative Myosin Binding in Muscle

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

For more information about how to cite these materials visit

Metabolism: Energy and Enzymes. February 24 th, 2012

Neurons and Nervous Systems

Chem Lecture 9 Pumps and Channels Part 1

b) What is the gradient at room temperature? Du = J/molK * 298 K * ln (1/1000) = kj/mol

A Thesis. presented to. the Faculty of California Polytechnic State University, San Luis Obispo. In Partial Fulfillment

2401 : Anatomy/Physiology

A novel electrical model of nerve and muscle using Pspice

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Computational Cell Biology

Dendrites - receives information from other neuron cells - input receivers.

Universality of sensory-response systems

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

1. Control a. In a negative feedback system, a is a device that measures the current value of the.

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Vertebrate Physiology 437 EXAM I 26 September 2002 NAME

Lecture 07, 13 Sept 2005 Chapters 12 and 13. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Form and Function. Physical Laws and Form. Chapter 40: Basic Principles of Animal Form and Function. AP Biology Fig Figs & 40.

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

The Neuron - F. Fig. 45.3

Membrane Potentials, Action Potentials, and Synaptic Transmission. Membrane Potential

Neurons, Synapses, and Signaling

1. Neurons & Action Potentials

Molecular Motors. Structural and Mechanistic Overview! Kimberly Nguyen - December 6, 2013! MOLECULAR MOTORS - KIMBERLY NGUYEN

COGNITIVE SCIENCE 107A

DEPARTMENT OF PHYSIOLOGY AND BIOPHYSICS SCHOOL OF MEDICINE AND THE GRADUATE SCHOOL HUMAN PHYSIOLOGY FIRST EXAMINATION MONDAY, FEBRUARY 13, 1995

Membranes 2: Transportation

University of Warwick institutional repository: A Thesis Submitted for the Degree of PhD at the University of Warwick

Lecture 3 13/11/2018

Transcription:

Lecture 13, 04 Oct 2005 Chapter 16 & 17 Navigation & Muscle Function Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter 1 Vertebrate Physiology 437 Chapter 16 1. Navigation Chapter 17 2. Muscle -Paper Topics -Short Seminar Write-Up due 10 Nov 2 1

3 Navigation (Chapter 16) 1 2 3 4 5 Hill et al. 2004 4 2

Hill et al. 2004 Fig 16.3 Dead Reckoning 5 Example: Movements and Orientation Sea Turtles Thousands of kilometers Feeding areas to nesting beaches Chelonia mydas Leatherbacks travel farthest Site Fidelity - Feed together - Nest at original beach - Males similar? 6 10-8, Pough et al. 2001 3

Leatherback Zug et al. 2001 7 Movements and Orientation Orientation 1. Local - Visual and chemical cues Salamanders? Lizards? - Audio cues e.g. breeding pond - use multiple cues 1. Local 2. Compass 3. Magnetic/Navigation start 8 10-13, Pough et al. 2001 4

Zug et al. 2001 9 Movements and Orientation Orientation 1. Local 1. Local 2. Compass 3. Magnetic/Navigation Some local cues reliable even in new environment - Downhill orientation (newts toward water) - Orientation toward bright blue and purple light (hatchling sea turtles moving toward ocean) 10 5

Movements and Orientation Orientation 2. Compass Ability to orient w/o local cues -Y-axisorientation 1. Local 2. Compass 3. Magnetic/Navigation - Sun ~ Moon, star 10-16, Pough et al. 2001 11 Movements and Orientation Orientation 2. Compass - Sun position changes daily and seasonally 1. Local 2. Compass 3. Magnetic/Navigation 10-17, Pough et al. 2001 Many vertebrates tend to be less oriented if sky overcast 12 6

Movements and Orientation Orientation 1. Local 2. Compass 3. Magnetic/Navigation 2. Compass - Sun pineal organ ( third eye ) in many reptiles Important for: - photoperiod entrainment - circadian rhythms -internal clock 10-18, Pough et al. 2001 In some lizards: more advanced parietal eye (with retina, lens, cornea) 13 Movements and Orientation Orientation 1. Local 2. Compass 3. Magnetic/Navigation 2. Compass - Sun polarized light -atmosphere scatters light - e-vector perpendicular to sun s rays - related to position of sun - overcast interferes Hill et al. 2004 Fig 16.6 10-20, Pough et al. 2001 Some detect with extraoptic photoreceptors (usually pineal body) 14 7

Movements and Orientation Orientation 1. Local 2. Compass 3. Magnetic/Navigation 3. Magnetic Orientation and Navigation True Navigation : 1. Compass Sense Many vertebrates can 2. Map Sense - detect earth s magnetic field - relate to gravitational field (e.g., sea turtles) -magnetic receptors not well understood - amphibs, alligators, box turtles, sea turtles - probably use with chemical and visual cues 15 Hill et al. 2004 Fig 16.8 16 8

Navigation via Magnetic Fields - Pelagic Whales - Homing Pigeons - Cave salamanders - Bacteria etc. -often aredundant system -Magnetite particles (Fe 3 O 4 ) orient with magnetic field - Receptors detect -> processed in CNS 17 Pigeon Orientation Helmholtz Coil Hill et al. 2004 Fig 16.9 18 9

Hatchling Loggerhead SeaTurtles North Atlantic Subtropical Gyre Hill et al. 2004 Fig 16.11 19 Angel Shark 20 10

Vertebrate Physiology 437 1. Muscle A. Sarcomere B. Cross-bridge cycling C. Length-tension relationship D. Excitation-contraction coupling E. Force-Velocity curves, Power F. Fiber Types G. Fatigue 21 Muscle Uses: - most observable animal behavior - most visceral function - generally act by shortening Classification: - striated skeletal or cardiac -smooth walls of hollow organs All muscle movement based on myofilaments (actin and myosin) sliding past each other Utilize: ATP, Ca 2+, ~APs (Myo-, Sarco- = muscle related ) 22 11

Skeletal Muscle Structure: - muscle attached to bone (skeleton) via tendons - muscle comprises elongate, multinucleate, muscle fibers - multinucleate muscle fibers derived from combination of many myoblasts (embryonic muscle cells) - within each muscle fiber are many parallel myofibrils - each myofibril contains sarcomeres arranged in series (end-to-end) - sarcomere is functional unit of muscle 23 Sarcomere Sarcomeres in adjacent myofibrils are aligned leading to striated appearance Z-disk at each end of sarcomere Actin thin myofilaments attached to each Z-disk Myosin thick myofilaments in between actins (6,3) Actin and Myosin overlap is what allows muscle contraction (6,3) 24 12

Sarcomere Areas within sarcomere given names: Z-disk (actin attaches) I-band (actin only) A-band (myosin length) M-line (midpoint of myosin) H-zone (myosin only) During muscle contraction, myosin thick filaments slide past actin thin filaments toward Z-lines 25 Which regions change length and which remain the same as the sarcomere shortens? Z-disk (actin attaches) I-band (actin only) A-band (myosin length) M-line (midpoint of myosin) H-zone (myosin only) During muscle contraction, myosin thick filaments slide past actin thin filaments toward Z-lines 26 13

Sarcomere Composition Actin composed of: individual molecules of G-actin (globular) united into chains called F-actin (filamentous) which form a two-stranded helix In the groove of the two F-actin strands is tropomyosin, which also has globular troponin molecules attached to it 27 Sarcomere Composition Myosin composed of: 2 heavy chains with globular heads 2 essential light chains 2 regulatory light chains The light chains are involved in the speed of contraction (important for different muscle fiber-types) Myosin molecules spontaneously aggregate into complexes with the heads at the ends and the tails toward the middle 28 14

Sarcomere Function Actin and Myosin molecules slide past each other, but don t themselves change length Sliding Filament Theory Cross-bridges form transiently between myosin head and actin filament (actomyosin) Sarcomere shortens during contraction 29 Cross Bridges and Force Production Myosin head binds to actin (actomyosin), then pulls myosin toward z-line thereby shortening sarcomere (= contraction) Vander et al., 2001 Cross-bridge forces are additive. Same force all along myofibril. 30 15

Sarcomere Function Number of Crossbridges (and therefore contraction magnitude) increased with appropriate overlap of actin with myosin heads 31 Length-Tension Relationship Normal muscle function at or near the plateau (1.8-2.2) 32 16

Length-Tension Relationship Why lose force production at short end? What constrains muscle length in the body? 33 Length-Tension Relationship Hill et al. 2004, Fig 17.12 34 17

Vander et al., 2001 Myosin head has to be able to detach and bind again to actin further along in order to continue to generate force Detachment requires ATP bind to myosin head 35 Cross Bridges and Force Production ATP required for the (3) dissociation of actin and myosin (else rigor mortis) Myosin acts as an ATPase, hydrolyzing ATP to ADP + P i (4) (Energy of ATP hydrolysis cocks the myosin head) Actomyosin complex forms (= crossbridge) (1) ATP hydrolysis Cross bridge stronger when Pi released, then myosin head rotates Myosin releases ADP and P i (very slowly (2) unless bound to actin) Vander et al., 2001 ATP binds to myosin Movement about 10-12 nm Cycle repeats until Ca++ resequestered or run out of energy 36 18

San Diego State University College of Sciences Biology 590 - Human Physiology Actin Myosin Crossbridge 3D Animation* 37 Hill et al. 2004, Fig 17.5 38 19

Regulation of Contraction CALCIUM and the cross bridge Need free Ca 2+ in cytosol to get contraction Calcium binds troponin which is attached to tropomyosin on actin This causes conformational change in tropomyosin exposing actin binding sites for myosin heads (not shown) Without calcium, contraction is inhibited Vander et al., 2001 39 Dipsosaurus dorsalis Callisaurus draconoides Phrynosoma platyrhinos Thanks to Duncan Irschick and Steve Reilly 40 20

Excitation-Contraction Coupling: How an AP in muscle plasma membrane leads ultimately to changes in intracellular [Ca 2+ ], and therefore contraction Artificially change membrane potential. In reality, most AP s lead to all-or-none response of muscle (-90mV -> +50mV) 41 Excitation-Contraction Coupling, from the beginning 1. AP from CNS arrives at neuromuscular junction. 2. ACh released into synapse. 3. ACh binds to nicotinic receptors on motor endplate. 4. Ion channels for K+ and Na+ open; greater Na+ influx leads to depolarization and AP in muscle plasma membrane EPP = Endplate Potential (~Excitatory Post-Synaptic Potential or EPSP) 42 21

Excitation-Contraction Coupling, the middle I 5. Change in membrane potential (AP) reaches deep into the muscle cell via transverse tubules (T-tubules; one per Z-disk) 43 Excitation-Contraction Coupling, the middle II 6. T-tubules have voltage sensitive proteins called dihydropyridine receptors 7. Dihydropyridine receptors in the T-tubules are mechanically linked with ryanodine receptors (RR) on the sarcoplasmic reticulum (SR) The ends of the SR adjacent to the T-tubule are called terminal cisternae (w/ calsequestrin) 8. Calcium stored in the SR. Released into the cytosol via the ryanodine receptor channel when the RR is mechanically triggered by the voltage sensitive dihydropyridine receptor. 44 22

Excitation-Contraction Coupling, the last bit 9. Calcium triggers release of more calcium from some ryanodine receptors that are not linked to dihydropyridine receptors Called calcium-induced calcium release 10. Calcium binds to troponin leading to actomyosin complex 11. After repolarization, calcium actively (requires ATP) moved back into SR where much of it is bound to calsequestrin 12. Muscle relaxes as long as ATP is present to allow actomyosin complex to dissociate 45 Time course of excitation-contraction events Latent period about 2ms 46 23

Review of EC Coupling and Muscle Contraction Sherwood, 1997 (Also, see your text) 47 Thanks to Randi Weinstein Force-Velocity Curve Greatest force during isometric contraction Randall et al., 2002 Greatest velocity when muscle is unloaded 48 24

Muscles can produce power Muscle fiber types vary in their mechanical properties Power = force * velocity Randall et al., 2002 Maximum power output is found at intermediate force and velocity (~40%) 49 Different Muscle Fiber-Types Randall et al., 2002 50 25

Histochemistry Serial sections stained for: FOG (fast-twitch oxidative glycolytic; dark matpase and dark SDH) matpase (fast-twitch) SDH (oxidative) SO (slow-oxidative; light matpase, dark SDH) FG (fast-twitch glycolytic; dark matpase, light SDH) 51 The electric eel - Electrophorus electricus The eel generates electric charge in a battery of biological electrochemical cells, each cell providing about 0.15 V and an overall potential difference of ~ 700 V. Note that the eel's head is the cathode(+) and its tail the anode(-). The cells extend over the length of the eel. Thanks to Professor Don Stevens, Zoology, for the picture and expert advice. 52 26

Dipsosaurus dorsalis Callisaurus draconoides Phrynosoma platyrhinos Thanks to Duncan Irschick and Steve Reilly 53 Control of Muscle Force Two primary factors can be adjusted to increase whole-muscle force: the force developed by each contracting fiber (summation) the number of muscle fibers contracting within a muscle (recruitment) 54 27

Summation It s all about CALCIUM Increase force by decreasing time between individual action potentials (increase rate of stimulation) 55 Control of Muscle Force Two primary factors can be adjusted to increase whole-muscle force: the force developed by each contracting fiber (summation) the number of muscle fibers contracting within a muscle (recruitment) 56 28

Motor Unit Motor unit = motor neuron and all of the muscle fibers it innervates AP in motor neuron causes all innervated fibers to contract simultaneously 57 Each muscle consists of many intermingled motor units Recruitment Muscle fibers Motor Neurons Increase force by adding more motor units 58 29

Muscle & Tendon Bone Parallel Elastic Component (sarcolemma, connective tissue within muscle) Bone Muscle Model Randall et al., 2002 Contractile Unit (sarcomeres) Series Elastic Component (tendon, connective tissue linking muscle fibers to tendon, titin, Z-line material, crossbridge links) 59 Hill et al. 2004, Fig 17.8 60 30

Isometric Contraction iso = same metric = length 61 Randall et al., 2002 Isotonic Contraction iso = same tonic = tension Purely isotonic contraction Randall et al., 2002 62 31

Cellular Energetics Myosin ATPase Actin + Myosin crossbridge movement 75% ATP ADP + P Immediate energy source i PCr + ADP Cr + ATP Ca 2+ pumped Ca 2+ ATPase back into SR Non-oxidative energy source 25% Glucose 2 Lactate + 2 ATP Oxidative energy source Glucose + O 2 CO 2 + H 2 O + 36 ATP Energy systems differ in their rate of and capacity for producing ATP 63 Fatigue Fatigue can result from many factors including; -decreased motivation -failure of neuromuscular transmission -accumulation of metabolic end-products -dehydration Cause of fatigue depends on intensity & duration of exercise 64 32

Fatigue Continuous exercise at moderate speeds results in net accumulation of P i PCr + ADP + H + Cr + ATP ATP + H 2 O ADP + P i + H + + energy Exercise also produces net accumulation of lactic acid Correlation vs. Causation 65 P i accumulation is correlated with development of fatigue, as is lactic acid accumulation (drop in ph) Wilson et al., 1988 66 33

Muscle Biopsy prepare homogenate & perform enzymatic analysis of homogenate (e.g., creatine phosphate, ATP, P i, lactate, glucose, glycogen) Pros: low cost per assay Cons: many samples required for time course 67 31 P-Magnetic Resonance Spectroscopy Intact muscle (e.g., creatine phosphate, ATP, P i, ph) Pros: multiple time points for each preparation Cons: high cost per preparation ph can be determined from position of P i peak 68 34

31 P-Magnetic Resonance Spectroscopy Rat muscle P i PCr ATP Kushmerick & Meyer, 1985 rest recovery Time 69 Postulated Mechanisms of P i Effect on Force Reduced cross-bridge force development Reduced Ca 2+ release from sarcoplasmic reticulum Reduced Ca 2+ sensitivity of myofilaments Decreased ph (e.g., lactic acid) does not seem to have much effect on contractility - but may cause pain! Cooke & Pate, 1985; Allen & Westerblad, 2001; Westerblad et al. 2002 70 35