Continuous-Time Filters

Similar documents
Ch5 Appendix Q-factor and Smith Chart Matching

Ch5 Appendix Q-factor and Smith Chart Matching

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

Let s start from a first-order low pass filter we already discussed.

ELG4139: Op Amp-based Active Filters

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

Exam-style practice: A Level

Frequency Response of Amplifiers

11. Ideal Gas Mixture

The Simple Linear Regression Model: Theory

Introduction to Electronic circuits.

EECE 301 Signals & Systems Prof. Mark Fowler

ACTIVE FILTERS EXPERIMENT 2 (EXPERIMENTAL)

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

Lecture 2. Basic Semiconductor Physics

Chapter 10 Two Stage Sampling (Subsampling)

MOSFET Internal Capacitances

1. Elementary Electronic Circuits with a Diode

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

A note on A New Approach for the Selection of Advanced Manufacturing Technologies: Data Envelopment Analysis with Double Frontiers

1. a. Houston Chronicle, Des Moines Register, Chicago Tribune, Washington Post

The automatic optimal control process for the operation changeover of heat exchangers

ELG3336: Op Amp-based Active Filters

1. Linear second-order circuits

Current Programmed Control (i.e. Peak Current-Mode Control) Lecture slides part 2 More Accurate Models

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

The fuzzy decision of transformer economic operation

Design of Analog Integrated Circuits

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid

Feedback Principle :-

FYSE400 ANALOG ELECTRONICS

Functions of Random Variables

( ) Thermal noise ktb (T is absolute temperature in kelvin, B is bandwidth, k is Boltzamann s constant) Shot noise

The Mathematics of Portfolio Theory

To use adaptive cluster sampling we must first make some definitions of the sampling universe:

Analytical Modelling of Parameter Fluctuations with Applications to Analogue VLSI Circuits and Systems

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

55:041 Electronic Circuits

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

Nonisothermal Chemical Reactors

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

LITE-ON TECHNOLOGY CORPORATION

European Journal of Mathematics and Computer Science Vol. 5 No. 2, 2018 ISSN

Chapter 5. Curve fitting

On the energy of complement of regular line graphs

Chapter 5. Root Locus Techniques

Simple Linear Regression Analysis

European Journal of Mathematics and Computer Science Vol. 5 No. 2, 2018 ISSN

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

EE 221 Practice Problems for the Final Exam

Data Sheet. ACPL-8x7 Multi-Channel Full-Pitch Phototransistor Optocoupler. Description. Features. ACPL-827 pin layout.

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

EEO 401 Digital Signal Processing Prof. Mark Fowler

Lecture 30: Frequency Response of Second-Order Systems

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION

Some Different Perspectives on Linear Least Squares

Parameter, Statistic and Random Samples

Chapter 3 Applications of resistive circuits

List... Package outline... Features Mechanical data... Maximum ratings... Switching time equivalent test circuits...

PTAS for Bin-Packing

K E L LY T H O M P S O N

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

On a Truncated Erlang Queuing System. with Bulk Arrivals, Balking and Reneging

Wp/Lmin. Wn/Lmin 2.5V

Common Gate Amplifier

Basics of heteroskedasticity

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

Copyright Paul Tobin 63

Application of Matrix Iteration for Determining the Fundamental Frequency of Vibration of a Continuous Beam

arxiv:math/ v1 [math.gm] 8 Dec 2005

Queueing Networks. γ 3

Faculty of Engineering

State Feedback Control Block Diagram

SFDMB3638F. Specifications and Applications Information. orce LED Driver. Mass: 7 grams typ. 10/15/08 Preliminary. Package Configuration

Analysis of a Positive Output Super-Lift Luo Boost Converter

Photocoupler Product Data Sheet CNY17-1 THRU CNY17-4 SERIES Spec No.: DS Effective Date: 09/15/2001 LITE-ON DCC RELEASE

List... Package outline... Features Mechanical data... Maximum ratings... Switching time equivalent test circuits...

Quantum Mechanics for Scientists and Engineers. David Miller

A tighter lower bound on the circuit size of the hardest Boolean functions

Third handout: On the Gini Index

Linear Approximating to Integer Addition

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Special Notes: Filter Design Methods

Ionization Energies in Si, Ge, GaAs

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Layered structures: transfer matrix formalism

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

The Performance of Feedback Control Systems

Exergy Analysis of Large ME-TVC Desalination System

250 I-1 INTRODUCTION PERCENT ERROR AND PERCENT DIFFERENCE

Transcription:

tuute Flter.0 Operatal Tracductace Aplfer (OTA Z Z ut (a (b (c (d Fgure. deal all gal equvalet crcut f Sgle eded OTA ad Fully dfferetal OTA pleetat Ug Sgle eded OTA. Fgure (a h the ybl f gle eded OTA. t deal equvalet crcut h Fgure (b. t perat gve by: v (v v Z Z ut

That, t utput pedace hch 0 fr deal pap. A fully dfferetal OTA h Fgure (c ca be pleeted ug t gle eded OTA th tce the tracductace. t cect h Fgure (d. The equvalecy ca be h a fll: ( ( (. OTA Sple Buldg Blck rcut R R Z (a (b (c Z Z Z L (d (e Z L Fgure OTA ple buldg blck Fgure (a h a ple vltage ptve ga aplfer. t ga derved a fll: R R A R Z, ce the put pedace f OTA, ad Z R, ce the utput pedace f OTA. Fgure (b the ae a Fgure (a except fr the put ver reultg egatve ga. Fgure (c,

A ; ce Z Z Fgure (d the ae a Fgure (a th a lad R/. A R A Fgure (a, the put ad utput pedace f Fgure (d are: Z ; Z Fgure (e, Z Z L L A Z L ZL Z Z L That, the put pedace the recprcal f the lad pedace. f the lad pedace capactve, the the put pedace ductve. Th crcut a pedace cverter. Sce the utput pedace f OTA ad the put pedace f OTA are bth, the crcut utput pedace : Z Z L

Thee are uarzed the fllg table. Table : OTA Sple Buldg Blck rcut. rcut Type Av Z Z ltage aplfer th R R ptve ga, Fg (a ltage aplfer th R R egatve ga, Fg (b OTA Retace, Fg (c / / ltage aplfer ug / / OTA retace, Fg (d OTA pedace cverter, Fg (e Z L /( Z L Z L. Frt Order Flter Buldg Blck rcut (b LP( (c HP( (d TF( Ftype LP 0 HP 0 (e (f Fgure. Frt Order Flter SgleEded OTA Buldg Blck. 4

Fgure h the frt rder flter buldg blck. The t lpa flter pleetat Fgure (a ad (b ll be h t be the ae. Al, ly Fgure (a ca be cverted t fully dfferetal ta pleetat h Fgure 4(a. Fgure (a, / / ( Fgure (b, ( / / That, Fgure (a ad (b pleet the ae trafer fuct. Fgure (c, ( / Fgure (d, 0 a a ] /( [ ] /( [ ] /( [ ( ( ( 5

Table : OTA Frt Order Flter. rcut Type Trafer Fuct W Frt rder Lpa, Fg (a,(b / / / Frt rder Hghpa, Fg (c / / eeral Frt rder Fg (d [ /( ] [ /( ] [ /( ] /( A uveral frt rder flter ca be pleeted a h Fgure (e. The uveral flter ha fur teral,,, ad. The lpa flter ca be elected by cectg the put t ad t grud. The hghpa flter elected by cectg the put t ad t grud. Thee are uarzed Fgure (f. ' " (a (b (c Fgure 4. Dfferetal OTA pleetat f FrtOrder Flter. 6

Fgure 4 h the fully dfferetal OTA pleetat f the frt rder flter. t h the uber ad value f capactr dubled. equetly, t ll cue re LS real etate. Hever, a fully dfferetal crcut pleetat have the advatage f better e uty ad dtrt prperte. The equvalete f the t pleetat ll be llutrated fr the frt rder lpa ad hghpa flter. That, the trafer fuct f Fgure 4(a ll be h t be detcal t that f Fgure (a r (b. Fgure 4(a: / / ( ( ( ( ( " ' " ' ( ( The hgh pa flter h Fgure 4(b th e fully dfferetal ta pleetat ll be h t have the ae trafer fuct a the gleeded ta Fgure (c. The dervat fll: / ] [ ( ] ( [( Addg the abve t equat ad equatg th the frt equat, ( ( ( The geeral frt rder flter h Fgure 4(c ca larly be derved. Nte that lpa flter eed t fully dfferetal ta, hle fr hghpa flter requre ly e. The calculat depedet f hether ug lpa r hghpa trafer fuct. The lpa flter trafer fuct ll be ued fr llutrat. The trafer fuct t be pleeted gve by: L( 7

all the ubequet exaple, t ll aued that the value f 6.8*0 5 crrepdg t a frequecy f 00kHz. The capactace value fr a gve 85.44u btaed a fll: 85.44E 6 5.98pF 6.8E 5 The geeral flter trafer fuct t be pleeted ha a ple at fp00khz, ad zer at fz00khz ad th D ga f 0.5. That, 0.5( π e 5 TF( ( πe 5 (0.5 πe 5 ( πe 5 a a [ /( ] [ /( ] [ /( ] a a a 0 Aue a a a 85.44e 6 ( a ( 0.5 67.99pF πe 5 a a a 0 a ( gve 0 0.5 (67.99pF 67.99pF 0.5 a 0 85.44e 6 (πe 5 πe 5 85.44e 6 8

. Frt Order Flter Sulat Frt Order Lpa Flter Trafer Fuct *Fleae "lp.cr" *Frt rder lpa flter f00k.param 6.8e5 0 D 0 A R 0 E0 E 0 LAPLAE {(}{/(} Rut 0 k * Aaly.A DE 0 Hz 00MegHz.PROBE.END Frt Order Hghpa Flter Trafer Fuct *Fleae "hp.cr" *Frt rder lpa flter f00k.param 6.8e5 0 D 0 A R 0 E0 E 0 LAPLAE {(}{/(} Rut 0 k * Aaly.A DE 0 Hz 00MegHz.PROBE.END eeral Frt Order Flter Trafer Fuct *Fleae "ge.cr" *eeral frt rder flter p00khz, z00khz.param p6.8e5 *.PARAM z*p.param z.5664e5 0 D 0 A R 0 E0 E 0 LAPLAE {(}{0.5*(z/(p} Rut 0 k * Aaly.A DE 0 Hz 00MegHz.PROBE.END 9

deal Frt Order Lpa Flter Repe deal Frt Order Hghpa Flter Repe 0

deal eeral Frt Order Flter Repe Uveral Frt Order Flter Sgleeded OTA pleetat *Fleae "uv_.cr", ee Fgure e *Uveral Frt rder flter. f00k *Ug Sgleeded OTA 0 D 0 A *LP *Xflt 0 SFLT *HP Xflt 0 SFLT R 0 E0.SUBKT SFLT v v v0.param 5.98pF Xta v v0 v0 WSOTA v0 v {} 0.SUBKT WSOTA ut 0 ut 85.44U * Aaly.A DE 00 Hz 00MegHz.PROBE.END eeral Frt Order Flter Sgleeded OTA pleetat *Fleae "ge_.cr", ee Fgure d *eeral Frt rder flter. p00khz, z00khz *Ug Sgle Eded OTA

.PARAM 67.99pF 0 D 0 A Xta 0 WSOTA Xta 0 WSOTA 0 {} {} R 0 E0.SUBKT WSOTA ut 0 ut 85.44U * Aaly.A DE 00 Hz 00MegHz.PROBE.END Frt Order Lpa Flter Repe

Frt Order Hghpa Flter Repe eeral Frt Order Flter Repe Fully Dfferetal OTA pleetat f Frt Order Flter Uveral pleetat t pble ug fully dfferetal OTA. Lpa flter requre t fully dfferetal OTA, hle hghpa flter ly eed e. Fully Dfferetal OTA pleetat f Frt Order Lpa Flter

*Fleae "lp_d.cr", ee Fgure 4a *Frt rder flter f00k *Ug fully dfferetal OTA D 0 A.PARAM 5.98pF Xta 4 DFFOTA Xta 4 4 DFFOTA 0 {*} 0 4 0 {*} 0 R 0 E0 R 0 E0 R 0 E0 R4 4 0 E0 * Fully Dfferetal OTA pleetat * by deft.subkt DFFOTA ut ut 0 ut 85.44U 0 ut 85.44U * Aaly.A DE 00 Hz 00MegHz.PROBE.END Fully Dfferetal OTA pleetat f Frt Order Hghpa Flter *Fleae "hp_d.cr", ee Fgure 4b *Frt rder flter. f00k *Ug Fully Dfferetal OTA D 0 A.PARAM 5.98pF Xta 4 4 DFFOTA {*} 0 4 {*} 0 R 0 E0 R 0 E0 R 0 E0 R4 4 0 E0 * Fully Dfferetal OTA pleetat * by deft.subkt DFFOTA ut ut 0 ut 85.44U 0 ut 85.44U * Aaly.A DE 00 Hz 00MegHz.PROBE.END Fully Dfferetal OTA pleetat f eeral Frt Order Flter *Fleae "ge_d.cr", ee Fgure 4c *Frt rder flter fp00khz, fz00khz *Ug fully dfferetal OTA 4

D 0 A.PARAM 67.99pF Xta 4 DFFOTA Xta 4 4 DFFOTA 0 {*} 0 4 0 {*} 0 {*} 0 4 {*} 0 R 0 E0 R 0 E0 R 0 E0 R4 4 0 E0 * Fully Dfferetal OTA pleetat * by deft.subkt DFFOTA ut ut 0 ut 85.44U 0 ut 85.44U * Aaly.A DE 00 Hz 00MegHz.PROBE.END Frt Order Lpa Flter Repe 5

Frt Order Hghpa Flter Repe eeral Frt Order Flter Repe 6

4. Secd Order Flter Buldg Blck rcut (a LP( (b HP( (c BP( (d BR( Fgure 5. Secd Order Flter pleetat th fxed Q ad OTA each. There are t ecd rder flter buldg blck. Oe requrg t OTA ad the ther OTA. The elect deped hether a adjutable Q requred r t. 7

Fxed Q pleetat Fgure 5 h the ecd rder flter pleetat ug OTA. The pleetat ha a adjutable Q, ce the capactve cpet had bee detered. The trafer fuct dervat ll be detrated fr the lpa crcut. Fgure 5(a: ( ( ( ( parg the trafer fuct th the tadard lpa trafer fuct gve Table. The ad Q are btaed a fll: ; f Q Slvg fr Q, Q Nte that fr a gve value f ad, Q fxed but ca be adjuted by chagg. The expre fr the ther crcut ca be derved a lar ay. The reult are uarzed Table 4. 8

Table. Secd Order Flter Trafer Fuct. rcut Type Trafer Fuct Lpa Hghpa Badpa Badreject ( /Q ( /Q ( /Q ( /Q ( /Q Table 4. Secd Order OTA pleetat Flter Paraeter. rcut Type Trafer Fuct * Q Lpa Adjutable ( / Q Fxed, Fg 5(a ( / ( / Hghpa Adjutable Q Fxed, Fg 5(b ( / ( / Badpa Adjutable Q Fxed, Fg 5(c ( ( / / ( / Badreject Adjutable Q Fxed, Fg 5(d ( ( / ( / / * Aue The capactace ca be cputed fr ay f the fur trafer fuct. The lpa trafer fuct ll be ued fr th purpe. The trafer fuct t be pleeted : L( 0.680* * ( /Q 9

The capactace are cputed a fll: 0.0E.680(5.98E Q Q 84.04E 5.98E.680 Q 5.98pF 5.98E 5 6.8E 6 85.44E Q Q Q.680 0.680* 0.680* Q 0.680* Q 0

Adjutable Q pleetat (a LP( (b HP( (c BP( (d BR( Fgure 6. Secd Order Flter pleetat th adjutable Q ad OTA each. Fgure 6 h the ecd rder flter pleetat ug OTA. The pleetat ha adjutable Q, t value detered by the thrd OTA. The trafer fuct dervat ll be detrated fr the lpa crcut. Fgure 6(a:

( ( ( [ ] ( The ad Q ca be derved by cparg th trafer fuct th the tadard lpa trafer fuct gve Table. Q ; f ad Slvg fr Q Q NOTE fr a gve capactr value, Q ad ca be adjuted depedetly f each ther. Q ca be adjuted by ad by. The expre fr the ther crcut Fgure 6 ca larly be derved. The reult are uarzed Table.

Table 5. Secd Order OTA pleetat Flter Paraeter. rcut Type Trafer Fuct * Q Lpa Adjutable ( / Q Adjutable, ( / ( / Fg 6(a Hghpa Adjutable Q Adjutable, ( / ( / Fg 6(b Badpa Adjutable ( / Q Adjutable, ( / ( / Fg 6(c Badreject ( Adjutable / Q Adjutable, ( / ( / Fg 6(d * Aue ; The OTA pleetat ll tllutrated ug the ae trafer fuct L( a the OTA pleetat. Q 85.44E 6 5.98pF 6.8E 5 0.680* Q.680 0.680* 0.680* 85.44E 6 5.8E 6 Q.680 A the frt rder flter, uveral flter pleetat f ecd rder flter Fgure 5 ad fgure 6 are h Fgure 7(a ad 7(c repectvely. The crrepdg prgrag are h Fgure 7(b ad 7(d repectvely.

(a Ftype LP 0 0 HP 0 0 BP 0 0 BR 0 (b (c Ftype LP 0 0 HP 0 0 BP 0 0 BR 0 Fgure 7. Uveral Secd Order Flter pleetat. (d 4

4. Secd Order Flter Sulat Secd Order Lpa Flter Trafer Fuct *Fleae "LP.cr" *Secd rder lpa flter.param 6.8e5 0 D 0 A * thrd bquad R 0 E0 E 0 LAPLAE {(}{(*/(*0.680***} *utput Rut 0 k * Aaly.A DE 00 Hz 00MegHz.PROBE.END Secd Order Hghpa Flter Trafer Fuct *Fleae "HP.cr" *Secd rder hghpa flter.param 6.8e5 0 D 0 A * thrd bquad R 0 E0 E 0 LAPLAE {(}{(*/(*0.680***} *utput Rut 0 k * Aaly.A DE 00 Hz 00MegHz.PROBE.END Secd Order Badpa Flter Trafer Fuct *Fleae"BP.cr" *Secd rder badpa flter.param 6.8e5 0 D 0 A * thrd bquad R 0 E0 E 0 LAPLAE {(}{(0.680**/(*0.680***} *utput Rut 0 k * Aaly.A DE 00 Hz 00MegHz.PROBE.END Secd Order Badreject Flter Trafer Fuct *Fleae"BR.cr" 5

*Secd rder badreject flter.param 6.8e5 0 D 0 A * thrd bquad R 0 E0 E 0 LAPLAE {(}{(**/(*0.680***} *utput Rut 0 k * Aaly.A DE 00 Hz 00MegHz.PROBE.END deal Secd Order Lpa Flter Repe 6

deal Secd Order Hghpa Flter Repe deal Secd Order Badpa Flter Repe 7

deal Secd Order Badreject Repe Uveral Secd Order Flter Ug deal OTA per Flter *Fleae "uv_.cr", ee Fgure 7a *Bquad d rder flter. f00k 0 D 0 A *LP *Xflt 0 0 SFLT *HP *Xflt 0 0 SFLT *BP *Xflt 0 0 SFLT *BR Xflt 0 SFLT R 0 E0.SUBKT SFLT v v v v0.param 5.98pF.PARAM Q.680 Xta v v0 WSOTA Xta v0 v0 WSOTA v {/Q} 0 v0 v {Q*} 0 R 0 E0.SUBKT WSOTA ut 0 ut 85.44U 8

* Aaly.A DE 00 Hz 00MegHz.PROBE.END Uveral Secd Order Flter Ug deal OTA per Flter *Fleae "uv_.cr", ee Fgure 7c *Bquad d rder flter. f00k 0 D 0 A *LP *Xflt 0 0 SFLT *HP *Xflt 0 0 SFLT *BP *Xflt 0 0 SFLT *BR Xflt 0 SFLT R 0 E0.SUBKT SFLT v v v v0.param 5.98pF Xta v v0 WSOTA Xta 0 v0 WSOTA Xta v v0 v0 WSOTA 0 {} 0 v0 v {} 0 R 0 E0.SUBKT WSOTA ut 0 ut 85.44U.SUBKT WSOTA ut 0 ut 5.8U * Aaly.A DE 00 Hz 00MegHz.PROBE.END 9

Secd Order Lpa Flter Repe Secd Order Hghpa Flter Repe 0

Secd Order Badpa Repe Secd Order Badreject Repe

5. Butterrth Flter pleetat Table 6. Butterrth D( (here H(K/D(; K N D( 4 5 ( ( ( 0.7657 (.84776 ( ( 0.680 (.680 The ffth rder ralzed Butterrth l pa flter btaed fr the abve table: B5( ( (.680 (.680 T cale the trafer fuct t the dered frequecy f perat, the trafrat / appled t the ralzed trafrat. B5(.680* * 0.680* * T(T(T( Th a cacade deg baed the ple tade tercect N frtrder ad bquad tage. f the tage are teractg, the verall trafer fuct the prduct f the dvdual tage trafer fuct. Nteractg ea that at ay tage, ay the th tage, the utput pedace Zut( t laded by the put pedace Z( f the ucceedg tage,.e., Zut( << Z(. Fr p apbaed actve flter, th heretly atfed, ce p ap ha hgh put pedace ad l utput pedace. But OTA baed actve flter, due t hgh put ad utput pedace requre tertage bufferg. Thee buffer are uually realzed by utyga urce fller tage. addt, utput bufferg requred t drve exteral lad. The capactace ad tracductace f each OTA ll be cputed fr each cacded flter. Fr T(: 85.44E 6 5.98pF 6.8E 5 Fr T(:

Q 85.44E 6 5.98pF 6.8E 5.680* Q 0.68.680*.680* 85.44E 6 8.5E 6 Q 0.68 Fr T(: Q 85.44E 6 5.98pF 6.8E 5 0.680* Q.68 0.680* 0.680* 85.44E 6 5.8E 6 Q.680 5. Ffth Order Butterrth Flter Sulat Ffth Order Butterrth Flter Trafer Fuct *Fleae "butter5.cr" *Ffth rder butterrth flter, f00k.param 6.8e5 0 D 0 A *frt bquad R 0 E0 E 0 LAPLAE {(} {(/(} * ecd bquad R 0 E0 E 0 LAPLAE {(}{(*/(*.680***} * thrd bquad R 0 E0 E 4 0 LAPLAE {(}{(*/(*0.680***} *utput

Rut 4 0 k * Aaly.A DE 00 Hz 00MegHz.PROBE.END Ffth Order Butterrth Flter pleetat Ug deal OTA per Flter ( (0 SFLT ( ( (0 SFLT (4 (5 (0 SFLT (6 *Fleae "but5_.cr" *Butterrth 5th rder flter. f00k 0 D 0 A Xflt 0 SFLT Xbuf BUF Xflt 0 0 4 SFLT Xbuf 4 5 BUF Xflt 5 0 0 6 SFLT R 0 E0 R 0 E0 R4 4 0 E0 R5 5 0 E0 R6 6 0 E0.SUBKT SFLT v v v0.param 5.98pF Xta v v0 v0 WSOTA v0 v {}.SUBKT SFLT v v v v0.param 5.98pF Xta v v0 WSOTA Xta 0 v0 WSOTA Xta v v0 v0 WSOTA 0 {} 0 v0 v {} 0 R 0 E0.SUBKT SFLT v v v v0.param 5.98pF Xta v v0 WSOTA Xta 0 v0 WSOTA Xta v v0 v0 WSOTA 0 {} 0 v0 v {} 0 R 0 E0.SUBKT WSOTA ut 0 ut 85.44U 4

.SUBKT WSOTA ut 0 ut 8.5U.SUBKT WSOTA ut 0 ut 5.8U.SUBKT BUF ut E ut 0 0 * Aaly.A DE 00 Hz 00MegHz.PROBE.END deal Ffth Order Butterrth Flter Repe ( DB deal Ffth Order Butterrth Flter Repe ( 5

pleeted Ffth Order Butterrth Repe ( DB pleeted Ffth Order Butterrth Repe ( 6

6. hebyhev Flter pleetat hebyhec D( fr db rpple (Where H(K/D(; K elected t yeld uty D ga N D(.965 4 5.0977.05 ( 04947( 0.4947 0.994 ( 0.7907 0.9865( 0.6774 0.794 ( 0.8949( 0.789 0.988( 0.4684 0.49 The ffth rder ralzed hebyhev l pa flter btaed fr the abve table: h5( ( 0.8949( (0.8949(0.988(0.49.789 0.988(.4684 0.49 T cale the trafer fuct t the dered frequecy f perat, the trafrat / appled t the ralzed trafrat. 0.8949 * 0.988* 0.49* h5( 0.8949 * 0.789 * * 0.988* 0.4684* * 0.49* T(T(T( The capactace ad tracductace f each OTA ll be cputed fr each cacded flter. Fr T(: 0.8949* Fr T(: 85.44E 6 0.8949* 6.8E 469.7pF 5 7

Q 0.988 * 0.994 * 85.44E 6 0.994 * 6.8E 0.789 * 6.8pF 5 0.994 * Q 5.56 0.789 * 0.789 * 85.44E 6 5.7E 6 Q 5.56 Fr T(: Q 0.49* 0.655* 85.44E 6 0.655* 6.8E 0.4684* 07.5pF 5 0.655* Q.4 0.4684* 0.4684* 85.44E 6 6.0E 6 Q.4 6. Ffth Order hebyhev Flter Sulat Ffth Order hebyhev Flter Trafer Fuct *Fleae cheby5.cr *heby5 Ffth rder chebyhev flter *Frt rder flter.param 6.8e5 0 D 0 A *frt bquad R 0 E0 E 0 LAPLAE {(} {(0.8949*/(0.8949*} * ecd bquad R 0 E0 E 0 LAPLAE {(}{(0.49**/(*0.4684**0.49**} * thrd bquad 8

R 0 E0 E 4 0 LAPLAE {(}{(0.988**/(*0.789**0.988**} *utput Rut 4 0 k * Aaly.A DE 00 Hz 00MHz.PROBE.END Ffth Order hebyhev Flter pleetat Ug deal OTA per Flter *Fleae "chb5_.cr" *hebyhev 5th rder flter. f00k 0 D 0 A Xflt 0 SFLT Xflt 0 0 SFLT Xflt 0 0 4 SFLT R 0 E0 R 0 E0 R4 4 0 E0.SUBKT SFLT v v v0.param 469.7pF Xta v v0 v0 WSOTA v0 v {}.SUBKT SFLT v v v v0.param 6.8pF Xta v v0 WSOTA Xta 0 v0 WSOTA Xta v v0 v0 WSOTA 0 {} 0 v0 v {} 0 R 0 E0.SUBKT SFLT v v v v0.param 07.5pF Xta v v0 WSOTA Xta 0 v0 WSOTA Xta v v0 v0 WSOTA 0 {} 0 v0 v {} 0 R 0 E0.SUBKT WSOTA ut 0 ut 85.44U.SUBKT WSOTA ut 0 ut 5.7U.SUBKT WSOTA ut 0 ut 6.0U 9

* Aaly.A DE 00 Hz 00MegHz.PROBE.END deal Ffth Order hebyhev Flter Repe ( DB deal Ffth Order hebyhev Flter Repe ( 40

pleeted Ffth Order hebyhev Flter Repe ( DB 4

pleeted Ffth Order hebyhev Flter Repe ( 7. eeral Bquad pleetat f a eeral Secd Degree Trafer Fuct. 4 4 5 5 Fgure 8. eeral Secd Order Flter pleetat. Fgure 8 h the gleeded OTA pleetat f geeral ecd rder flter. The trafer fuct derved a fll: 4

4 4 5 5 ( 4 4 ( 4 5 5 ( 4 0 4 4 5 Q a a a ( ( 4 4 5 ( t ll be h that geeral pleetat f 5 OTA reduce t r OTA fr the tadard flter uch a lpa flter. Frt t ll be h fr lpa trafer fuct geeral pleetat reduce t 4 OTA. parg the t trafer fuct, 4 4 5 Q ( ( Equatg the ceffcet,

5 0 0 5 0 pe 0 That ea that bth capactr ad 5 ca be deleted, reultg the crcut h Fgure 9(a. The 4 OTA pleetat ca be reduced t OTA f 4. Th h bel: 4 4 (a (b (c Fgure 9. eeral Bquad Lpa Flter Trafrat: (a 4 OTA, (b OTA, ad (c OTA. 44

4 4 4 4 ( ; 4 That, ad 4 ca be cbed a h Fgure 9(b. ( The OTA ca be reduced t OTA f. Th h a fll: ( ; That, ad ca be cbed a h Fgure 9(c. ( 4 5 Fgure 0. Dfferetal OTA pleetat f eeral ecdrder flter. (b 45