Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Similar documents
Chapter 12 Introduction To The Laplace Transform

Chap.3 Laplace Transform

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Elementary Differential Equations and Boundary Value Problems

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Lecture 4: Laplace Transforms

Transfer function and the Laplace transformation

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

2. The Laplace Transform

LaPlace Transform in Circuit Analysis

Final Exam : Solutions

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

THE LAPLACE TRANSFORM

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

CSE 245: Computer Aided Circuit Simulation and Verification

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Midterm exam 2, April 7, 2009 (solutions)

Poisson process Markov process

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

3+<6,&6([DP. September 29, SID (last 5 digits): --

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

( ) ( ) + = ( ) + ( )

Jonathan Turner Exam 2-12/4/03

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a

Chapter 6. PID Control

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

DE Dr. M. Sakalli

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Jonathan Turner Exam 2-10/28/03

Lecture 26: Leapers and Creepers

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Why Laplace transforms?

Laplace Transforms recap for ccts

where: u: input y: output x: state vector A, B, C, D are const matrices

1 Finite Automata and Regular Expressions

Design and Analysis of Algorithms (Autumn 2017)

Math 266, Practice Midterm Exam 2

XV Exponential and Logarithmic Functions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

6.8 Laplace Transform: General Formulas

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

Charging of capacitor through inductor and resistor

EXERCISE - 01 CHECK YOUR GRASP

On the Speed of Heat Wave. Mihály Makai

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

Ma/CS 6a Class 15: Flows and Bipartite Graphs

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

Wave Equation (2 Week)

Partial Fraction Expansion

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

Effect of sampling on frequency domain analysis

Shortest Path With Negative Weights

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Section 4.3 Logarithmic Functions

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r)

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

Double Slits in Space and Time

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

18.03SC Unit 3 Practice Exam and Solutions

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Circuit Transients time

ANALOG COMMUNICATION (2)

Order of Accuracy of Spatial Discretization of Method of Characteristics. Jipu Wang and William Martin

(1) Then we could wave our hands over this and it would become:

Themes. Flexible exchange rates with inflation targeting. Expectations formation under flexible exchange rates

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Introduction to Fourier Transform

The Laplace Transform

H is equal to the surface current J S

Revisiting what you have learned in Advanced Mathematical Analysis

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Consider a system of 2 simultaneous first order linear equations

Lecture 2: Current in RC circuit D.K.Pandey

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Discussion 06 Solutions

Chapter 6 Differential Equations and Mathematical Modeling

The Matrix Exponential

Chapter 13 Laplace Transform Analysis

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

Transcription:

Boy/DiPrima/Mad h d, Ch 6.: Diniion o apla Tranorm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Many praial nginring problm involv mhanial or lrial ym ad upon by dioninuou or impuliv oring rm. For uh problm h mhod dribd in Chapr 3 ar diiul o apply. In hi hapr w u h apla ranorm o onvr a problm or an unknown union ino a implr problm or F, olv or F, and hn rovr rom i ranorm F. Givn a known union K,, an ingral ranorm o a union i a rlaion o h orm b F = ò K, d, - a <b a

Impropr Ingral Th apla ranorm will involv an ingral rom zro o ininiy. Suh an ingral i a yp o impropr ingral. An impropr ingral ovr an unboundd inrval i dind a h limi o an ingral ovr a ini inrval d lim a d A whr A i a poiiv ral numbr. I h ingral rom a o A xi or ah A > a and i h limi a A xi, hn h impropr ingral i aid o onvrg o ha limiing valu. Ohrwi, h ingral i aid o divrg or ail o xi. a A

Exampl Conidr h ollowing impropr ingral. d W an valua hi ingral a ollow: ò d Thror, h impropr ingral divrg. ò = lim A ò A d = lim ln A A

Exampl Conidr h ollowing impropr ingral. W an valua hi ingral a ollow: d A lim lim A d d A A No ha i =, hn =. Thu h ollowing wo a hold: d, i ; and d divrg, i.

Exampl 3 Conidr h ollowing impropr ingral. p From Exampl, hi ingral divrg a p = W an valua hi ingral or p a ollow: A p d lim p d lim A A A p Th impropr ingral divrg a p = and I p, I p, lim A lim A d p p A p p p A p

Piwi Coninuou Funion A union i piwi oninuou on an inrval [a, b] i hi inrval an b pariiond by a ini numbr o poin a = < < < n = b uh ha i oninuou on ah k, k+ lim k, k,, n 3 lim k, k,, n In ohr word, i piwi oninuou on [a, b] i i i oninuou hr xp or a ini numbr o jump dioninuii.

Thorm 6.. I i piwi oninuou or a, i g whn M or om poiiv M and i gd onvrg, hn ò M d alo onvrg. ò a On h ohr hand, i g or M, and i divrg, hn d alo divrg. ò a ò M gd

Th apla Tranorm b a union dind or >, and aii rain ondiion o b namd lar. Th apla Tranorm o i dind a an ingral ranorm: F d Th krnl union i K, =. Sin oluion o linar dirnial quaion wih onan oiin ar bad on h xponnial union, h apla ranorm i pariularly uul or uh quaion. No ha h apla Tranorm i dind by an impropr ingral, and hu mu b hkd or onvrgn. On h nx w lid, w rviw xampl o impropr ingral and piwi oninuou union.

Thorm 6.. Suppo ha i a union or whih h ollowing hold: i piwi oninuou on [, b] or all b >. K a whn M, or onan a, K, M, wih K, M >. Thn h apla Tranorm o xi or > a. F d ini No: A union ha aii h ondiion piid abov i aid o o hav xponnial ordr a.

Exampl = or. Thn h apla ranorm F o i: lim b b d lim b, d b

Exampl 5 = a or. Thn h apla ranorm F o i: a lim b b a d a a lim b a, a a d b

Exampl 6 Conidr h ollowing piwi-dind union, k, whr k i a onan. Thi rprn a uni impul. Noing ha i piwi oninuou, w an ompu i apla ranorm { } d, d Obrv ha hi rul do no dpnd on k, h union valu a h poin o dioninuiy.

Exampl 7 = ina or. Uing ingraion by par wi, h apla ranorm F o i ound a ollow: F a a in a F in ad b b lim o a / a b a b lim o a a a b b lim in a / a a a b a F a a lim b b, o a b in a in ad

inariy o h apla Tranorm Suppo and g ar union who apla ranorm xi or > a and > a, rpivly. Thn, or grar han h maximum o a and a, h apla ranorm o + g xi. Tha i, wih ini i d g g g d g d g

Exampl 8 = 5-3in or. Thn by linariy o h apla ranorm, and uing rul o prviou xampl, h apla ranorm F o i:, 6 5 in 3 5 3in 5 } { F

Boy/DiPrima/Mad h d, Ch 6.: Soluion o Iniial Valu Problm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Th apla ranorm i namd or h Frnh mahmaiian apla, who udid hi ranorm in 78. Th hniqu dribd in hi hapr wr dvlopd primarily by Olivr Haviid 85-95, an Englih lrial nginr. In hi ion w how h apla ranorm an b ud o olv iniial valu problm or linar dirnial quaion wih onan oiin. Th apla ranorm i uul in olving h dirnial quaion bau h ranorm o ' i rlad in a impl way o h ranorm o, a ad in Thorm 6...

Thorm 6.. Suppo ha i a union or whih h ollowing hold: i oninuou and ' i piwi oninuou on [, b] or all b >. K a whn M, or onan a, K, M, wih K, M >. Thn h apla Tranorm o ' xi or > a, wih Proo oulin: For and ' oninuou on [, b], w hav lim b b d lim b lim b b b d d Similarly or ' piwi oninuou on [, b], x. b b b

Th apla Tranorm o ' Thu i and ' aiy h hypoh o Thorm 6.., hn Now uppo ' and '' aiy h ondiion piid or and ' o Thorm 6... W hn obain Similarly, w an driv an xprion or { n }, providd and i drivaiv aiy uiabl ondiion. Thi rul i givn in Corollary 6..

Corollary 6.. Suppo ha i a union or whih h ollowing hold:, ', '',, n- ar oninuou, and n piwi oninuou, on [, b] or all b >. K a, ' K a,, n K a or M, or onan a, K, M, wih K, M >. Thn h apla Tranorm o n xi or > a, wih n n n n n n

Exampl : Chapr 3 Mhod o Conidr h iniial valu problm y y y, y, y Rall rom Sion 3.: r y r r r r Thu r = and r = 3, and gnral oluion ha h orm y y Uing iniial ondiion: Thu y /3 /3 /3, /3 W now olv hi problm uing apla Tranorm. 5 5 y /3 /3..5..5.

y, y y y, y Exampl : apla Tranorm Mhod o Aum ha our IVP ha a oluion and aiy h ondiion o Corollary 6... Thn { y y y} { y } { y} { y} {} and hn { y} y y { y} y { y} ing Y = {y}, w hav Y y y Subiuing in h iniial ondiion, w obain Y Thu { y} Y ' and ''

Exampl : Parial Fraion 3 o Uing parial raion dompoiion, Y an b rwrin: Thu /3, /3, b a b a b a b a b a b a b a } { 3 / 3 / Y y

Exampl : Soluion o Rall rom Sion 6.: Thu Y a a a F d d, a / 3 / 3 /3 Ralling Y = {y}, w hav { } /3 { a }, and hn { y} {/3 /3 } y = 3 + 3 -

Gnral apla Tranorm Mhod Conidr h onan oiin quaion ay Aum ha h oluion y aii h ondiion o Corollary 6.. or n =. W an ak h ranorm o h abov quaion: whr F i h ranorm o. Solving or Y giv: by y a Y- y- y'+ by- y+ Y = F Y = a + by+ ay' a + b + + F a + b +

Algbrai Problm Thu h dirnial quaion ha bn ranormd ino h h algbrai quaion Y a b a y ay b F b or whih w k y = uh ha { } = Y. No ha w do no nd o olv h homognou and nonhomognou quaion paraly, nor do w hav a para p or uing h iniial ondiion o drmin h valu o h oiin in h gnral oluion. a

Chararii Polynomial Uing h apla ranorm, our iniial valu problm ay bom Y by y a b a y ay b y, y, y y F b Th polynomial in h dnominaor i h hararii polynomial aoiad wih h dirnial quaion. Th parial raion xpanion o Y ud o drmin rquir u o ind h roo o h hararii quaion. For highr ordr quaion, hi may b diiul, pially i h roo ar irraional or omplx. a

Invr Problm Th main diiuly in uing h apla ranorm mhod i drmining h union y = uh ha { } = Y. Thi i an invr problm, in whih w ry o ind uh ha = {Y}. Thr i a gnral ormula or, bu i rquir knowldg o h hory o union o a omplx variabl, and w do no onidr i hr. I an b hown ha i i oninuou wih {} = F, hn i h uniqu oninuou union wih = {F}. Tabl 6.. in h x li many o h union and hir ranorm ha ar nounrd in hi hapr.

inariy o h Invr Tranorm Frqunly a apla ranorm F an b xprd a Thn h union ha h apla ranorm F, in i linar. By h uniqun rul o h prviou lid, no ohr oninuou union ha h am ranorm F. Thu i a linar opraor wih F F F F n,, F F n n n F F F n

Exampl : Nonhomognou Problm o Conidr h iniial valu problm y y in, y, y Taking h apla ranorm o h dirnial quaion, and auming h ondiion o Corollary 6.. ar m, w hav ing Y = {y}, w hav Subiuing in h iniial ondiion, w obain Y / Thu { y} y y { y} / Y y y / 3 8 6 Y

Uing parial raion, Thn Solving, w obain A =, B = 5/3, C =, and D = -/3. Thu Hn Exampl : Soluion o 6 8 3 D C B A Y 6 8 3 3 D B C A D B C A D C B A / 3 5/ 3 Y y in 3 in 3 5 o

Exampl 3: Solving a h Ordr IVP o Conidr h iniial valu problm y y, y,, y'', y''' Taking h apla ranorm o h dirnial quaion, and auming h ondiion o Corollary 6.. ar m, w hav ing Y = {y} and ubiuing h iniial valu, w hav Y Uing parial raion a b d Y Thu a b d y' 3 { y} y y y'' y''' { y}

y y, y, y', y'', y''' Exampl 3: Solving a h Ordr IVP o In h xprion: Sing = and = nabl u o olv or a and b: a b and a b a, b / Sing =, b d =, o d = / Equaing h oiin o 3in h ir xprion giv a + =, o = Thu / / Y Uing Tabl 6.., h oluion i y inh in a b d y 5 5 inh in y 3 5 6 7

Boy/DiPrima/Mad h d, Ch 6.3: Sp Funion Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Som o h mo inring lmnary appliaion o h apla Tranorm mhod our in h oluion o linar quaion wih dioninuou or impuliv oring union. In hi ion, w will aum ha all union onidrd ar piwi oninuou and o xponnial ordr, o ha hir apla Tranorm all xi, or larg nough.

Sp Funion diniion >. Th uni p union, or Haviid union, i dind by A ngaiv p an b rprnd by u,, u y,,

Exampl Skh h graph o y = h, whr Soluion: Rall ha u i dind by Thu and hn h graph o h i a rangular pul., u u h u,, h,,

Exampl For h union, 5, h,, who graph i hown To wri h in rm o u, w will nd u, u 7, and u 9. W bgin wih h, hn add 3 o g 5, hn ubra 6 o g, and inally add o g ah quaniy i muliplid by h appropria u 7 9 7 9 h 3u 6u7 u9,

apla Tranorm o Sp Funion Th apla Tranorm o u i u lim b b b lim u d b d b lim d b

Tranlad Funion Givn a union dind or, w will on wan o onidr h rlad union g = u - : g,, Thu g rprn a ranlaion o a dian in h poiiv dirion. In h igur blow, h graph o i givn on h l, and h graph o g on h righ.

Thorm 6.3. I F = { } xi or > a, and i >, hn Convrly, i = {F}, hn Thu h ranlaion o a dian in h poiiv dirion orrpond o a mulipliaion o F by. F u F u

Thorm 6.3.: Proo Oulin W nd o how Uing h diniion o h apla Tranorm, w hav F du u du u d d u u u u u F u

Exampl 3 Find { }, whr i dind by No ha = in + u / o /, and = in, < p in + o - p, ³ p ì í ï ï î ï ï o in / o in / / / / u p p

Exampl Find {F}, whr Soluion: Th union may alo b wrin a F u,,

Thorm 6.3. I F = { } xi or > a, and i i a onan, hn Convrly, i = - {F}, hn Thu mulipliaion by rul in ranlaing F a dian in h poiiv dirion, and onvrly. Proo Oulin: a F, F F d d

Exampl 5 To ind h invr ranorm o W ir ompl h quar: Sin i ollow ha 5 G 5 F G G g o and o F F

Boy/DiPrima/Mad h d, Ch 6.: Dirnial Equaion wih Dioninuou Foring Funion Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. In hi ion ou on xampl o nonhomognou iniial valu problm in whih h oring union i dioninuou. ay by y y, y g, y y

Exampl : Iniial Valu Problm o Find h oluion o h iniial valu problm whr y y y g, y y, 5 g u5 u, 5 and Suh an iniial valu problm migh modl h rpon o a dampd oillaor ubj o g, or urrn in a irui or a uni volag pul.,

Exampl : apla Tranorm o Aum h ondiion o Corollary 6.. ar m. Thn or ing Y = {y}, Subiuing in h iniial ondiion, w obain Thu } { } { } { } { } { 5 u u y y y y y y y y y 5 } { } { } { y y Y 5 Y 5 5 Y,, 5 y y u u y y y

Exampl : Faoring Y 3 o W hav whr I w l h = - {H}, hn by Thorm 6.3.. 5 5 h u h u y 5 5 H Y H

Exampl : Parial Fraion o Thu w xamin H, a ollow. A B C H Thi parial raion xpanion yild h quaion A B A C A A /, B, C / Thu H / /

Exampl : Compling h Squar 5 o Compling h quar, 5/6 / / / / 5/6 / / / 5 /6 /6 / / / / / / / / H

Exampl : Soluion 6 o Thu and hn For h a givn abov, and ralling our prviou rul, h oluion o h iniial valu problm i hn 5/6 / 5 / 5 5/6 / / / 5/6 / / / / H H h 5 in 5 5 o } { / / 5 5 h u h u

Exampl : Soluion Graph 7 o Thu h oluion o h iniial valu problm i h u 5 h 5 u o h, 5 in 5 / / 5 Th graph o hi oluion i givn blow. whr

Exampl : Compoi IVP 8 o Th oluion o original IVP an b viwd a a ompoi o hr para oluion o hr para IVP: 5 : 5: : y y y 3 y y y y 3 y y 3,,, y y y, 3 5, y y y 5, y 3 y

Exampl : Fir IVP 9 o Conidr h ir iniial valu problm y y y, y, y ; 5 From a phyial poin o viw, h ym i iniially a r, and in hr i no xrnal oring, i rmain a r. Thu h oluion ovr [, 5 i y =, and hi an b vriid analyially a wll. S graph blow.

Exampl : Sond IVP o Conidr h ond iniial valu problm y y y, y5, y 5 ; 5 Uing mhod o Chapr 3, h oluion ha h orm / 5 / in 5 / / / y o Phyially, h ym rpond wih h um o a onan h rpon o h onan oring union and a dampd oillaion, ovr h im inrval 5,. S graph blow.

Exampl : Third IVP o Conidr h hird iniial valu problm y 3 y 3 y3, y3 y, y 3 y ; Uing mhod o Chapr 3, h oluion ha h orm 5 / in 5 / / / y3 o Phyially, in hr i no xrnal oring, h rpon i a dampd oillaion abou y =, or >. S graph blow.

Exampl : Soluion Smoohn o Our oluion i u I an b hown ha and ar oninuou a = 5 and =, and ha a jump o / a = 5 and a jump o / a = : 5 h 5 u h '' limj =, 5 - ' limj = / 5 + lim j @.7, lim j @.57 - + Thu jump in oring rm g a h poin i baland by a orrponding jump in high ordr rm y'' in ODE.

Smoohn o Soluion in Gnral Conidr a gnral ond ordr linar quaion y whr p and q ar oninuou on om inrval a, b bu g i only piwi oninuou hr. I y = i a oluion, hn and ar oninuou on a, b bu poin a g. p y q y g ' '' ha jump dioninuii a h am Similarly or highr ordr quaion, whr h high drivaiv o h oluion ha jump dioninuii a h am poin a h oring union, bu h oluion il and i lowr drivaiv ar oninuou ovr a, b.

Exampl : Iniial Valu Problm o Find h oluion o h iniial valu problm whr y + y = g, y =, y = g = u 5-5 5 - u - 5 Th graph o oring union g i givn on righ, and i known a ramp loading. ì ï = í ï î ï, < 5-5 5 5 <, ³

y 5 u5 u, y, y 5 5 y Exampl : apla Tranorm o Aum ha hi ODE ha a oluion y = and ha ' '' and aiy h ondiion o Corollary 6... Thn { y } { y} { u5 5 } 5{ u } 5 or 5 5 { y} y y { y} ing Y = {y}, and ubiuing in iniial ondiion, Thu 5 Y 5 5 Y 5

Exampl : Faoring Y 3 o W hav whr I w l h = - {H}, hn by Thorm 6.3.. 5 5 5 h u h u y 5 5 5 5 H Y H

Exampl : Parial Fraion o Thu w xamin H, a ollow. A B C H Thi parial raion xpanion yild h quaion D A C 3 B D A, B /, A B C, D / Thu H / /

Exampl : Soluion 5 o Thu and hn For h a givn abov, and ralling our prviou rul, h oluion o h iniial valu problm i hn H h in 8 } { 8 / / H 5 5 5 h u h u y

Exampl : Graph o Soluion 6 o Thu h oluion o h iniial valu problm i Th graph o hi oluion i givn blow. h h u h u in 8 whr, 5 5 5

Exampl : Compoi IVP 7 o Th oluion o original IVP an b viwd a a ompoi o hr para oluion o hr para IVP diu: 5: y y, y, y 5 : : y y 3 y y 3, 5 / 5, y y 3 5, y y 5, y 3 y

Exampl : Fir IVP 8 o Conidr h ir iniial valu problm y y, y, y ; 5 From a phyial poin o viw, h ym i iniially a r, and in hr i no xrnal oring, i rmain a r. Thu h oluion ovr [, 5 i y =, and hi an b vriid analyially a wll. S graph blow.

Exampl : Sond IVP 9 o Conidr h ond iniial valu problm y y 5 /5, y5, y 5 ; 5 Uing mhod o Chapr 3, h oluion ha h orm in / / y o Thu h oluion i an oillaion abou h lin 5/, ovr h im inrval 5,. S graph blow.

Exampl : Third IVP o Conidr h hird iniial valu problm y 3 y3, y3 y, y 3 y ; Uing mhod o Chapr 3, h oluion ha h orm in / y3 o Thu h oluion i an oillaion abou y = /, or >. S graph blow.

Exampl : Ampliud o Rall ha h oluion o h iniial valu problm i y 5 5 8 u h 5 u h, h in To ind h ampliud o h vnual ady oillaion, w loa on o h maximum or minimum poin or >. Solving y' =, h ir maximum i.6,.979. Thu h ampliud o h oillaion i abou.79.

Exampl : Soluion Smoohn o Our oluion i y 5 5 8 u h 5 u h, h in In hi xampl, h oring union g i oninuou bu g' i dioninuou a = 5 and =. ''' I ollow ha and i ir wo drivaiv ar oninuou vrywhr, bu ha dioninuii a = 5 and = ha mah h dioninuii o g' a = 5 and =.

Boy/DiPrima/Mad h d, Ch 6.5: Impul Funion Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. In om appliaion, i i nary o dal wih phnomna o an impuliv naur. For xampl, an lrial irui or mhanial ym ubj o a uddn volag or or g o larg magniud ha a ovr a hor im inrval abou. Th dirnial quaion will hn hav h orm whr ay by y g, big, g, ohrwi and i mall.

Mauring Impul In a mhanial ym, whr g i a or, h oal impul o hi or i maurd by h ingral No ha i g ha h orm hn In pariular, i = /, hn I = indpndn o. d g d g I ohrwi,, g, d g d g I

Uni Impul Funion Suppo h oring union ha h orm Thn a w hav n, I =. W ar inrd aing ovr horr and horr im inrval i..,. S graph on righ. No ha g allr and narrowr a lim d d = ì ï í ï î d, - < <, ohrwi. Thu or, w hav, and d lim I d

Thu or, w hav Dira Dla Funion lim d and lim I Th uni impul union i dind o hav h propri or, and d Th uni impul union i an xampl o a gnralizd union and i uually alld h Dira dla union. In gnral, or a uni impul a an arbirary poin, d, or, and d

apla Tranorm o o Th apla Tranorm o i dind by and hu, lim d oh lim inh lim lim lim lim lim lim d d d d d

apla Tranorm o o d Thu h apla Tranorm o i, For apla Tranorm o a =, ak limi a ollow: lim d lim d For xampl, whn =, w hav { } =. d d

Produ o Coninuou Funion and Th produ o h dla union and a oninuou union an b ingrad, uing h man valu horm or ingral: Thu * lim * whr * lim lim lim d d d d d d

Exampl : Iniial Valu Problm o 3 Conidr h oluion o h iniial valu problm y y y 5, y, y Thn { y } { y} { y} { 5} ing Y = {y}, 5 Y y y Y y Y Subiuing in h iniial ondiion, w obain or 5 Y 5 Y 5

Exampl : Soluion o 3 W hav 5 Y Th parial raion xpanion o Y yild and hn 5 5 / Y 5 / 5/6 y.5. Plo o h Soluion y 5 u in 5 5/ 5 5.3... 5 5.

Exampl : Soluion Bhavior 3 o 3 Wih homognou iniial ondiion a = and no xrnal xiaion unil = 5, hr i no rpon on, 5. Th impul a = 5 produ a daying oillaion ha pri indinily. Rpon i oninuou a = 5 dpi ingulariy in oring union. Sin y' ha a jump dioninuiy a = 5, y'' ha an inini dioninuiy hr. Thu a ingulariy in h oring union i baland by a orrponding ingulariy in y''. 5 y.5..3 Plo o h Soluion.. 5 5..

Boy/DiPrima/Mad h d, Ch 6.6: Th Convoluion Ingral Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Somim i i poibl o wri a apla ranorm H a H = FG, whr F and G ar h ranorm o known union and g, rpivly. In hi a w migh xp H o b h ranorm o h produ o and g. Tha i, do H = FG = { }{g} = { g}? On h nx lid w giv an xampl ha how ha hi qualiy do no hold, and hn h apla ranorm anno in gnral b ommud wih ordinary mulipliaion. In hi ion w xamin h onvoluion o and g, whih an b viwd a a gnralizd produ, and on or whih h apla ranorm do ommu.

Obrvaion = and g = in. Rall ha h apla Tranorm o and g ar Thu and Thror or h union i ollow ha in g in, g g g g

Thorm 6.6. Suppo F = { } and G = {g} boh xi or > a. Thn H = FG = {h} or > a, whr h g d g d Th union h i known a h onvoluion o and g and h ingral abov ar known a onvoluion ingral. No ha h qualiy o h wo onvoluion ingral an b n by making h ubiuion u = x. Th onvoluion ingral din a gnralizd produ and an b wrin a h = *g. S x or mor dail.

Thorm 6.6. Proo Oulin h d d g d d g dd g u d d g du u d g d g du u G F u u

Exampl : Find Invr Tranorm o Find h invr apla Tranorm o H, givn blow. Soluion: F = / and G = a/ + a, wih Thu by Thorm 6.6., in a G g F a a H d a h H in

Exampl : Soluion h o W an ingra o impliy h, a ollow. in in in ] [o o o o o in in in a a a a a a a a a a a a d a a a a a a d a d a d a h d a h H in

Exampl : Iniial Valu Problm o Find h oluion o h iniial valu problm Soluion: or ing Y = {y}, and ubiuing in iniial ondiion, Thu } { } { } { g y y } { } { G y y y y 3 G Y 3 G Y 3,, y y g y y

Exampl : Soluion o W hav Thu No ha i g i givn, hn h onvoluion ingral an b valuad. d g y in in 3o 3 3 G G Y

Exampl : apla Tranorm o Soluion 3 o Rall ha h apla Tranorm o h oluion y i 3 G Y Φ Ψ y y g, y 3, y No F dpnd only on ym oiin and iniial ondiion, whil Y dpnd only on ym oiin and oring union g. Furhr, = [ F ] olv h homognou IVP y y, y 3, y whil y = { } olv h nonhomognou IVP Y y y g, y, y

Exampl : Tranr Funion o Examining mor loly, Y G Ψ H G, whr H Th union H i known a h ranr union, and dpnd only on ym oiin. Th union G dpnd only on xrnal xiaion g applid o ym. I G =, hn g = d and hn h = {H} olv h nonhomognou iniial valu problm y y, y, y Thu h i rpon o ym o uni impul applid a =, and hn h i alld h impul rpon o ym.