Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Similar documents
The Laplace Transform

Revisiting what you have learned in Advanced Mathematical Analysis

K x,y f x dx is called the integral transform of f(x). The function

Math 266, Practice Midterm Exam 2

Chap.3 Laplace Transform

3.4 Repeated Roots; Reduction of Order

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

1 Finite Automata and Regular Expressions

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

LAPLACE TRANSFORMS. 1. Basic transforms

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Chapter 12 Introduction To The Laplace Transform

Section 2: The Z-Transform

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

CSE 245: Computer Aided Circuit Simulation and Verification

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Transfer function and the Laplace transformation

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović

Relation between Fourier Series and Transform

Jonathan Turner Exam 2-10/28/03

Final Exam : Solutions

Ch 1.2: Solutions of Some Differential Equations

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Ma/CS 6a Class 15: Flows and Bipartite Graphs

2. The Laplace Transform

LaPlace Transform in Circuit Analysis

graph of unit step function t

Systems of First Order Linear Differential Equations

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

Bicomplex Version of Laplace Transform

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

where: u: input y: output x: state vector A, B, C, D are const matrices

Engine Thrust. From momentum conservation

Chapter4 Time Domain Analysis of Control System

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

5.1-The Initial-Value Problems For Ordinary Differential Equations

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Elementary Differential Equations and Boundary Value Problems

TOPIC 5: INTEGRATION

Systems of First Order Linear Differential Equations

EEE 303: Signals and Linear Systems

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

can be viewed as a generalized product, and one for which the product of f and g. That is, does

ELECTRIC VELOCITY SERVO REGULATION

Chapter 3. The Fourier Series

Introduction to Laplace Transforms October 25, 2017

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Midterm exam 2, April 7, 2009 (solutions)

Charging of capacitor through inductor and resistor

Poisson process Markov process

4.8 Improper Integrals

Lecture 21 : Graphene Bandstructure

Solutions to Problems from Chapter 2

EXERCISE - 01 CHECK YOUR GRASP

THE LAPLACE TRANSFORM

A Tutorial of The Context Tree Weighting Method: Basic Properties

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

0 for t < 0 1 for t > 0

Chapter 10. The singular integral Introducing S(n) and J(n)

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Homework #2: CMPT-379 Distributed on Oct 2; due on Oct 16 Anoop Sarkar

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

(1) Then we could wave our hands over this and it would become:

A modified hyperbolic secant distribution

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Lecture 2: Current in RC circuit D.K.Pandey

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

XV Exponential and Logarithmic Functions

DISCRETE TIME FOURIER TRANSFORM (DTFT)

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

Generalized Half Linear Canonical Transform And Its Properties

Physics 160 Lecture 3. R. Johnson April 6, 2015

EE Control Systems LECTURE 11

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

e t dt e t dt = lim e t dt T (1 e T ) = 1

1 Introduction to Modulo 7 Arithmetic

Transcription:

plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/

Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr propry in h rnormd domin! /7

Ingrl Trnorm I x, y i uncion o wo vribl, hn dini ingrl o w.r.. on o h vribl ld o uncion o h ohr vribl. Exmpl: xy dx y Impropr ingrl o uncion din how ingrion cn b clculd ovr n inini inrvl: K, d lim b b K, d /7

plc Trnorm Diniion: b uncion dind or, hn h ingrl { } d i id o b h plc rnorm o, providd h ingrl convrg. Th rul o h plc rnorm i uncion o, uully rrrd o F. 4/7

Exmpl: {} By diniion: d lim b b d lim b b lim b b, providd >. Th ingrl divrg or <. 5/7

Exmpl: {} By diniion: d Uing ingrion by pr nd lim, >, w hv: { } {} d 6/7

7/7 Exmpl: { } By diniion: d d >, } {

Gmm Funcion Γx Th gmm uncion i dind or x > Sinc Γ x x d. Γ x x d x x x d. For x >, w hv Γx x Γx, hror, gmm uncion i clld h gnrlizd coril uncion. No: Γ nd Γx x! i x i poiiv ingr. 8/7

Exmpl: { } I w l u, u/, nd d du/, hn by diniion, or >, { } Γ u d u du, or ll > o h >. I n i nonngiv ingr, Γn n!, nd w hv n n! { }, > n. 9/7

Exmpl: {in } By diniion: { in } in d in co d co d, > co 4 in d 4 { in } { in }, > /7

/7 inriy o {} For um o uncion, w cn wri whnvr boh ingrl convrg or > c. Hnc, ] [ d g d d g β α β α } { } { } { G F g g β α β α β α

Exmpl: { in } { in } { } {in } / { co 6} / [/ / 6], >. /7

Uni Sp Funcion Th uni p uncion u i dind o b, < u., u i on dnod u. No h u i only dind on h non-ngiv xi inc h plc rnorm i only dind on hi domin. 8 /7

Rwri o Picwi Funcion A picwi dind uncion cn b rwrin in compc orm uing u. For xmpl, g, h, < i h m g gu hu. y y 4/7

plc Trnorm o u, > By diniion, Thror, { u } u d lim b b. { u } >, >. d 5/7

Trnorm o Bic Funcion { } { } n n! { }, n,,, n {co k} k {in k} k k {coh k} k {inh k} k k { u } 6/7

Exinc o {} Thorm: I i picwi coninuou on [,, nd h i o xponnil ordr or > T, whr T i conn, hn {} convrg. b Diniion: A uncion i id o b o xponnil ordr c i hr xi conn c, M >, nd T > uch h M c or ll > T. 7/7

Exmpl: Exponnil Ordr Th uncion,, nd co r ll o xponnil ordr c or >, inc w hv,, co. M c, c > T 8/7

9/7 Proo o Exinc o {} By h ddiiv inrvl propry o dini ingrl, Th ingrl I xi ini inrvl, picwi coninuou. Now, I xi wll {} convrg. } { I I d d T T., c c M c M d M d M d I T c T c T c T T c >

/7 Exmpl: Trnorm o Picwi Evlu {} or Soluion: { }., > d d d d <.,, y

Invr plc Trnorm I F i h plc rnorm o uncion, nmly, {} F, hn w y h i h invr plc rnorm o F, h i, Exmpl: {F}. {/}, {/ }, nd {/ }. /7

/7 Exmpl: Invr Trnorm Evlu {/ 5 } Soluion: Evlu {/ 7} Soluion: 4 5 5 4 4! 4! - - - - 7 in 7 7 7 7 7

/7 inriy o {} Th invr plc rnorm i lo linr rnorm; h i, or conn α nd β, Exmpl: Evlu { 6 / 4} } { } { } { G F G F - - - β α β α in co 4 6 4 4 6 4 4 6

Exmpl: Pril Frcion / Evlu 6 9 4 Soluion: Thr xi uniqu conn A, B, C uch h: 6 9 A 4 A 4 B 4 C 4 By compring rm, w hv B C 4 4/7

5/7 Exmpl: Pril Frcion / Pril rcion: Thror 4 4 9 6 6 5 5 6 4 6 5 5 6 4 6 5 5 6 4 9 6

Trnorming Driviv Wh i h plc rnorm o '? { } d Thror { } { } F d No h hi drivion only work i i coninuou uncion 6/7

Driviv Trnorm Thorm Thorm: I h uncion i coninuou nd picwi mooh or nd i o xponnil ordr, o h hr xi nonngiv conn M, c, nd T uch h M c or T. Thn { } xi or > c, nd { } F. Proo: Prorm ini pic-by-pic ingrion o d 7/7

Gnrl Driviv Trnorm Thorm: I, ',, n r coninuou on [, nd r o xponnil ordr nd i n i picwi coninuou on [,, hn { } F n n n n n, whr F {}. 8/7

Solving inr IVP / Th plc rnorm o linr DE wih conn coicin bcom n lgbric quion in X. Th i, bcom or n d x d x n n d d n n x n n d x d x n n d d { } n n n { x} { }, n [ n X n x n x x n ] n [ n X n x x n ] X F 9/7

Solving inr IVP / Givn iniil condiion, x x, x' x,, x n x n, w hv ZX I F, or dy bhvior F X Z I, Z rnin bhvior whr Z n n n n nd I n n n n x n n n n x' n x n. /7

dy d y in, y Exmpl: / 6 Sinc dy { y} {in }, d {dy/dx} Y - y Y-6, nd {in} / 4, w hv 6 Y 6 Y, 4 or 6 Y 6, 4 6 6 6 5 Y 4. 4 /7

/7 Exmpl: / Aum h w hv A 8, B, C 6. Thror, 4 4 5 6 C B A 4 4 8 y y in co 8 6, in y y d dy

/7 Exmpl: Soluion: 5,, 4 y y y y y } { } { 4 y d dy d y d 4 ] [ Y y Y y y Y 4 9 6 4 Y Y y 4 6 5 5 6 } {

Trnorm o Ingrl Thorm: Th plc rnorm o h ingrl o picwi coninuou uncion o xponnil ordr i F τ dτ { }. Th invr orm i: - F τ dτ. Rcll h: {'} F. 4/7

Proo o Trnorm o Ingrl Sinc i picwi coninuou, by undmnl horm o clculu, i g τdτ, g i coninuou nd g' whr i coninuou. Bcu i o xponnil ordr, hr xi conn M nd c uch h c c g d M τ τ τ dτ < c g i o xponnil ordr. Thu, {} {g'} {g} g. Bu g, hror, M { } F τ dτ { g }. M c c. 5/7

6/7 Exmpl: Invr by Ingrion Sring wih in, F / w hv:. co in, in co, co in d d d - - - τ τ τ τ τ τ τ

Bhvior o F I i picwi coninuou on [, nd o xponnil ordr or > T, hn lim {}. Proo: Sinc i picwi coninuou on T, i i ncrily boundd on h inrvl. Th i M. Alo, M γ or > T. I M dno h mximum o {M, M } nd c dno h mximum o {, γ}, hn or > c: { } M c c d M M c c d. 7/7

8/7 Pril Frcion Dcompoiion Finding invr plc rnorm uully involv pril rcion dcompoiion, l P b polynomil uncion wih dgr l hn n: inr cor dcompoiion: whr A, A,, A n r conn. Qudric cor dcompoiion whr A,, A n nd B,, B n r conn.,... n n n A A A P, ] [... ] [ ] [ n n n n b B A b B A b B A b P

-xi Trnlion Thorm Thorm: I {} F nd i ny rl numbr, hn { } F. Proo: { } d d F. 9/7

4/7 Exmpl: { 5 } nd { co 4} Soluion: 4 5 4 5 5 5 6! } { } { 6 6 } 4 {co } 4 co {

4/7 Invr o -xi Trnlion Th invr plc rnorm o F, cn b compud by muliply {F} by, ollow. Exmpl: Compu {5/ }. Sinc } { } { F F, 5.

4/7 Exmpl: y" 6y' 9y Solv h DE wih iniil condiion y, y' 7. 5 5 5 Y. 4! 4! 4 5 y

Convoluion o Two Funcion I nd g r picwi coninuou on [,, hn pcil produc, dnod by g, i dind by h ingrl g τ g τ dτ nd i clld h convoluion o nd g. Th convoluion i uncion o. No h g g. Exmpl: in τ in τ dτ in co. 4/7

44/7 Convoluion Thorm Thorm: I nd g r picwi coninuou on [, nd o xponnil ordr, hn Proo: τ β, d dβ, o h { } { } { }. G F g g. τ β β τ β β τ τ β τ β τ d d g d g d G F { }. g d d g G F τ τ τ

45/7 Exmpl: { }. in d τ τ τ { } { } { } in in d τ τ τ

46/7 Invr Form o Convoluion Thorm: Exmpl: F G / k, { }. g G F - k - [ ]. co in co co, in in k k k k d k k k d k k k k - τ τ τ τ τ

Solving Ingrl Equion W cn u convoluion horm o olv dirnil quion wll ingrl quion. For xmpl, h Volrr ingrl quion: g τ h τ dτ, whr g nd h r known. 47/7

48/7 Exmpl: Soluion: noic h h. Tk h plc rnorm o ch rm: Th invr rnorm hn giv:.. 6 6 4 F F. d τ τ τ

Dirniion o Trnorm Thorm Thorm: I i picwi coninuou nd i o xponnil ordr, hn d { } { } F. Proo: d d d F d d d d d d { } { } { F } - [ ] { } d 49/7

nh-ordr Trnorm Dirniion Thorm: I F {} nd n,,, hn n n n d { } F n d Proo: Th proo cn b don by mhmicl inducion. Hr, w only chck h nd -ordr c. d d d d { } { } { } { } Exmpl: Compu { in k}. d d { in k} {in k} d d k k k k 5/7

5/7 Exmpl: x" 6x co4, x, x' Soluion: {x"} {6x} {co 4}, Sinc, rom prviou xmpl,. in 4 8 in 4 4 6 8 8 6 4 4 in x k k k - - -. 6 6 X

5/7 Ingrion o Trnorm Thorm Thorm: I i picwi coninuou wih xponnil ordr, nd h lim / xi nd i ini. Thn, In ddiion, w hv Proo:. d F σ σ { } { }. - - d F F σ σ [ ] { }. / / d d d d d d F σ σ σ σ σ σ σ σ

5/7 Exmpl: {inh /} W ir vriy h h uncion i boundd whn : Now, w hv. lim lim inh lim { }. ln ln inh inh d d d σ σ σ σ σ σ σ σ

54/7 -xi Trnlion Thorm Thorm: I F {} nd >, hn { u } F. Proo: v, dv d, d d u d u d u { } { } dv v u v

55/7 Invr o -xi Trnlion I {F} nd >, h invr orm o h - xi rnlion horm i: Exmpl:. } { u F. i, i, < u

56/7 Alrniv Form o -xi Trnlion For g h lck h prci hid orm g, w cn driv n lrniv orm: Exmpl: Sinc gπ co π co, }. { } { } { g u g dv v g d g u g v. } {co } {co u π π π

57/7 Exmpl: No h co u π, w hv {y'} {y} {co u π}, < π π y y y, co, 5,, Y π π π 5. co in 5 co in 5 π π π π π π u u y

Sri Circui Th currn in circui i govrnd by h ingrodirnil quion di d Ri C i τ dτ E. E R C 58/7

Exmpl: Singl-loop RC Circui Givn.h, R Ω, C., i, nd E -U-, ind i. Soluion: Sinc. di d i { } i τ dτ U nd i τ dτ I /, w hv I.I I. I,. 59/7

Exmpl: coninud, 8, < i - - -.5.5.5 6/7

Trnorm o Priodic Funcion I priodic uncion h priod T, T >, hn T. Th plc rnorm o priodic uncion cn b obind by ingrion ovr on priod. Thorm: I i picwi coninuou on [,, o xponnil ordr, nd priodic wih priod T, hn { } T T d. 6/7

Proo o Priodic Trnorm Thorm Proo: { } T d T l u T, hn h nd rm bcom T Thror d T u T u u d, T du u du T T { } d { } T { } d. T T { } 6/7

6/7 Exmpl: Squr-Wv Trnorm Find h rnorm o qur-wv. Soluion: On priod o E cn b dind : < <,, E { }. d d d E E E 4

Exmpl: Priodic Inpu Volg / Th DE or i in ingl-loop R ri circui i di Ri E. d Drmin i whn i nd E i h qurwv in h prviou xmpl. Soluion: / I RI I R / Sinc x x x x K K 64/7

65/7 Exmpl: Priodic Inpu Volg / Sinc w hv By pplying h -xi rnlion horm:, / / / / R R R R. / R R I / / / u u R u u u R i R R R

Exmpl: Priodic Inpu Volg / Thror i R R / R n n R n/ u n. For xmpl, i R,, nd < 4, w hv i.5.5 4 66/7

Uni Impul Qui on, h inpu o phyicl ym i hor priod, lrg mgniud uncion. Thi yp o uncion cn b dcribd by δ,,, < <. Th uncion δ i clld uni impul bcu / y δ d. 67/7

Dirc Dl Funcion Din δ limδ. Th uncion δ i clld Dirc dl uncion. δ i chrcrizd by:, i δ,, ii δ d. 68/7

69/7 Trnorm o δ Thorm: For >, {δ }. Proo: [ ] { } { } { }. lim lim,, u u δ δ δ δ No h {δ}. δ i no norml uncion inc {δ}.

7/7 Exmpl: Two IVP / Solv y" y 4δ π, wih iniil condiion y, y', nd b y, y'. Soluion : Th plc rnorm i: Y Y 4 π,. 4in co. 4 π π π u y Y., 4 in co, co < π π y y - 4π π

Exmpl: Two IVP / Soluion b Th plc rnorm i π 4 Y. Thror, y 4in π u π y, 4in, < π π. - π 4π 7/7

7/7 Impul Rpon Conidr nd -ordr linr ym wih uni impul inpu : x" x' x δ, x, x'. Applying plc rnorm o h ym: w i h zro- rpon o h ym o uni impul, hror, w i clld h impul rpon o h ym.. w Z x W Z X

7/7 inr Dynmic Sym Rcll h or gnrl linr dynmic ym, w hv W /Z i clld h rnr uncion o h ym. No h. Z I Z F X { } { }. I W F W x zro- rpon zro-inpu rpon