Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

Similar documents
Citation EPJ Web of Conferences (2014), provided the original work is prope

14th edi)on of the Interna)onal Conference on Nuclear Reac)on Mechanisms: Fission of ac*nide nuclei using mul*- nucleon transfer reac*ons

Author(s) Tatsuzawa, Ryotaro; Takaki, Naoyuki. Citation Physics Procedia (2015), 64:

A new method to acquire nuclear fission data using heavy ion reactions a way to understand the fission phenomenon

Mapping Fission in Terra Incognita in the neutron-deficient lead region

Beta-delayed fission: from neutrondeficient to neutron-rich nuclei

Gamma spectroscopy in the fermium region at SHIP

Mapping Low-Energy Fission with RIBs (in the lead region)

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Production and decay studies of 261 Rf, 262. Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS

Capture barrier distributions and superheavy elements

Analysis of Fission with Selective Channel Scission Model

Physics with Exotic Nuclei

The new isotopes 240 Es and 236 Bk

Influence of entrance channels on formation of superheavy nuclei in massive fusion reactions

Production of Super Heavy Nuclei at FLNR. Present status and future

Fission and Fusion at the End of the Periodic System

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF

The Synthesis of Super Heavy Elements (SHE) requirements for the synthesis of SHE. the basic technical requirement: beam intensity

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Mechanism of fusion reactions for superheavy elements Kouichi Hagino

Fission Barriers of Neutron-Deficient Nuclei

capture touching point M.G. Itkis, Perspectives in Nuclear fission Tokai, Japan, March

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Journal of Nuclear and Radiochemical Sciences, Vol. 5, No.1, pp. 1-5, Dynamical Calculation of Multi-Modal Nuclear Fission of Fermium Nuclei

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

Production of new neutron rich heavy and superheavy nuclei

Spectroscopy of 252No to Investigate its K-isomer

Thesis and PhD themes

Annax-I. Investigation of multi-nucleon transfer reactions in

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom?

Nuclear and Chemical Studies with Hassium Isotopes

PHL424: Nuclear fusion

Microscopic description of fission in the neutron-deficient Pb region

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Coulomb excitation experiments at JAEA (Japan Atomic Energy Institute)

Probing quasifission in reactions forming Rn nucleus

FISSION VAMOS

Fusion of light halo nuclei

Fusion probability in heavy ion induced reac4ons. G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 2015 Texas, USA, March 2015

Non-compound nucleus fission in actinide and pre-actinide regions

Fusion-fission of Superheavy Nuclei

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration

Measuring Fusion with RIBs and Dependence of Quasifission on Neutron Richness

FAVORABLE HOT FUSION REACTION FOR SYNTHESIS OF NEW SUPERHEAVY NUCLIDE 272 Ds

Experiments with gold, lead and uranium ion beams and their technical and theoretical interest.

(Inverse-kinematics) fission investigations in active targets

Atoms and the Periodic Table

Striking observations in low-energy fission and what they tell us

Repulsive aspects of pairing correlation in nuclear fusion reaction

RIKEN GARIS for Superheavy Element Chemistry

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

MRTOF mass measurements at GARIS-II: Toward SHE identification via mass spectroscopy

Fission fragment mass distributions via prompt γ -ray spectroscopy

ALPHA DECAY FAVOURED ISOTOPES OF SOME SUPERHEAVY NUCLEI: SPONTANEOUS FISSION VERSUS ALPHA DECAY

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

SOFIA Fission studies at GSI

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

Fission-yield data. Karl-Heinz Schmidt

Pre-scission shapes of fissioning nuclei

Superheavy elements* Yury Ts. Oganessian. Pure Appl. Chem., Vol. 76, No. 9, pp , IUPAC

Present status of the heaviest elements study using GARIS at RIKEN

CHEM 312 Lecture 7: Fission

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Ciencias Nucleares STUDY OF SUPERHEAVY ELEMENTS

Nuclear Structure of Superheavy Nuclei Investigated at GSI

Neutron-rich rare isotope production with stable and radioactive beams in the mass range A ~ at 15 MeV/nucleon

RITU and the GREAT Spectrometer

Stability of heavy elements against alpha and cluster radioactivity

SOURCES of RADIOACTIVITY

Dynamical effects in fission reactions investigated at high energies

Microscopic Fusion Dynamics Based on TDHF

Formation of superheavy nuclei in cold fusion reactions

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino

Beta-delayed fission as a tool to study near and sub-barrier fission in extremely exotic nuclei

X-ray superburst ~10 42 ergs Annual solar output ~10 41 ergs. Cumming et al., Astrophys. J. Lett. 559, L127 (2001) (2)

nuclear states nuclear stability

PoS(Baldin ISHEPP XXII)042

Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT

D1. TASCA Focal Plane Detector Setup (Physics) - first mounting and detector tests

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei

Super-Heavy Nuclei: Current Status and Future Developments

Entrance channel dependence of quasifission in reactions forming 220 Th

arxiv:nucl-th/ v1 4 Nov 2003

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

Shell evolution and nuclear forces

Neutron cross section measurement of MA

MEASUREMENTS OF NUCLEON-INDUCED FISSION CROSS-SECTIONS OF SEPARATED TUNGSTEN ISOTOPES AND NATURAL TUNGSTEN IN THE MEV ENERGY REGION

Correlation between alpha-decay energies of superheavy nuclei

Perspectives for Penning Trap Mass Measurements of Super Heavy Elements

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

Dissipative nuclear dynamics

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons

Nuclear Physics using RadioIsotope Beams. T. Kobayashi (Tohoku Univ.)

An introduction to Neutron Resonance Densitometry (Short Summary)

for (n,f) of MAs 1. Introduction

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV)

Transcription:

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data Katsuhisa Nishio Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN INT 13-3, Workshop, Seattle, 14-18.Oct.2013

K. Nishio, H. Ikezoe, S. Mitsuoka, I. Nishinaka, H. Makii, Y. Wakabayashi, K. Hirose, K. Tsukada, M. Asai, Y. Nagame, A. Kimura, H. Harada A. Andreyev, D. Jenkins S. Hofmann, D. Ackermann, F.P. Heßberger, S. Heinz, J. Khuyagbaatar, B. Kindler, V.F.Comas J.A. Heredia, I. Kojouharov, B. Lommel, R. Mann, B. Sulignano, Ch.E. Düllmann, M.Schädel S. Chiba S. Antalic, S. Saro A.G. Popeko, A.V. Yeremin, A. Svirikhin A. Yakushev, A. Gorshkov, R. Graeger, A. Türler T. Ohtsuki, K. Hagino Y. Watanabe Y. Aritomo S. Yan N. Tamura, S. Goto

Fission Research Program at JAEA @ JAEA Tandem facility Fission study for heavy-element synthesis Fission of new region of chart of nuclei Multi-nucleon transfer induced fission @ J-PARC n TOF fission measurement and future

Tokai Campus, JAEA Tokyo J-PARC Tandem facility

JAEA Tandem facility 20 MV Tandem accelerator (20UR) Super-conducting Booster Liniac ECR Ion Source on the terminal Targets :Th,U,Np,Pu,Am,Cm,Cf

Fission Study for Heavy Element Synthesis How to determine fusion probability

Super-heavy Nuclei Proton 陽子数 Number Z 120 115 110 105 100 Cold Fusion (GSI,RIKEN) Pb, Bi Targets 162 108 Sg Db Bh Ds Mt Hs Rg 113 Cn 48 Ca + Actinide Target Nuclei (FLNR) 120 118 Missing Region Deformed Shell Heavier Element Spherical Shell 184 114 Using Radioactive Nuclei ± sf EC ² - 150 155 160 165 170 175 180 185 Neutron 中性子数 Number N Understanding for fusion using actinide target nuclei are important to explore SHN

Three steps for heavy-element synthesis 34 14 S + 238 92 U 272 108 Hs* 268 108 Hs + 4 1 0 n (1) Contact (2) Fusion CN (3) Evaporation 6.6 10 12 Quasifission 3.0 10 11 Fusion- Fission 1 atom 6.3 10 12 ~ 3 10 11 Fusion probability

Fusion-fission and Quasi-fission Proton 78 Ni 132 Sn 238 U Neutron 208 Pb 274 Hs (Z=108) Potential Energy 50 0-50 -100-150 0 1 Compund Nucleus 2 3 Fusion - -0.5 36 S 0 0.0 0.5 238 U Quasi-fission + Potential by Y. Aritomo

In-Beam Fission Measurement 30 Si, 31 P, 36,34 S, 40 Ar, 40,48 Ca Beams 200 mm 120 mm Fission Fragment 1 MWPC1 238 U Fission Fragment 2 MWPC2 Multi-Wire Proportional Counter 238 U target 5 mm

Folding Angle Distribution 30 Si + 238 U Events Events 10 3 E lab =179.0 MeV 10 2 10 1 10 0 10 3 E lab =173.4 MeV 10 2 10 1 10 0 10 3 E lab =167.8 MeV 10 2 10 1 10 0 10 3 10 2 E lab =162.2 MeV 10 1 10 0 10 3 E lab =156.5 MeV 10 2 10 1 10 0 10 3 E lab =150.9 MeV 10 2 10 1 10 0 10 3 E lab =145.3 MeV 10 2 10 1 10 0 10 3 E lab =140.8 MeV 10 2 10 1 10 0 100 110 120 130 140 150 160 170 180 190 200 θ fold (deg) Folding angle, fold Beam FF 1 FF 2 fold Beam FF 1 FF 2 fold Full Momentum Transfer Fission 268 Sg Nucleon-transfer Induced Fission Beam-like 238 U-like

Fission Fragment Mass Distributions Cross section to produce fragments (mb) Fragment Mass Quasifission K. Nishio et al., Phys. Rev. C, 77, 064607 (2008). K. Nishio et al., Phys. Rev. C, 82, 044604 (2010). Excitation Energy of CN High Incident Energy 238 U Low Incident Energy

Potential Energy (MeV) 50 0-50 -100-150 Dynamical calculation of nuclear shape Fluctuation dissipation model - 0 272 Hs CN Fission Fusion 238 U Quasifission Langevin Equation 34 S Two center shell model ( 3 dimension ) 1 0.5 2 3-0.5 0.0 V. Zagreabev, J. Phys. G, 31, 825 (2005). Y. Aritomo et al., Nucl.Phys. A753, 152 (2005). Y. Aritomo, Phys.Rev.C, 80, 064604 (2009).

Shape evolution (polar collision) 30 Si + 238 U CN Y. Aritomo et al., Phys. Rev. C 85, 044614 (2012). 36 S + 238 U CN 0 5 5 10 10 30 30 50 > 50 Time ( 10-21 s )

Fusion probability Histogram All Fission Fragments Filled Area Fusion-Fission Experimental Data Fusion Probability Cross section (mb/2u) 30 Si + 238 U 34 S + 238 U 46 % 15 % 41 % 37 % 33 % 29 % 11 % 263 Sg 67 pb 7.5 % 4.9 % 264 Sg 10 pb 3.6 % c.m. Energy (MeV) 267 Hs 1.8 pb 268 Hs 0.54 pb Mass Mass K. Nishio et al., PRC 82, 024611 (2010). K. Nishio et al., PRC 82, 044604 (2010).

Fusion and ER cross sections 30 Si + 238 U Fission Cross section (mb) Evaporation Residue Cross section (mb) Excitation E energy Qasifission 10 pb Energy in c.m. (MeV) 34 S + 238 U Fission cross section (mb) Evaporation Residue Cross section (mb) Excitation energy Quasifission 67 pb 0.54 pb 1.8 pb Energy in c.m. (MeV) Capture Cross Section Fusion Probability Fusion Cross Section Survival Probability (Statistical Model ) Cross sections for SHN K. Nishio et al., PRC 82, 024611 (2010). K. Nishio et al., PRC 82, 044604 (2010).

Fission of New Region of Chart of Nuclei Appearance of a new shell in fission

Calculated by P. Moller (LANL) and J. Randrup (LBNL) Perspectives in Nuclear Fission, (Tokai 2012) Predicted Fission Fragment Mass Distributions 180 Hg 180 Hg 100 193* Ir 80 A. Andreyev et al., PRL, 105 (2010) 252502.

p + 197 Au 198 Hg* Present (E p =31.1MeV) Itkis (E p =30.0MeV)

Fission Q-value 300 Saddle Point Shape Q-value for Fission (MeV) 250 200 150 100 50 0 2010 Present 1980 258 Fm 236 U 180 Hg 193 Ir 160 Gd 124 Sn 258 Fm 238 U 193 Ir 160 Gd -50 20 40 60 80 100 120 140 160 180 200 Fragment Mass (u)

Multi-nucleon transfer Induced Fission ( Surrogate Reaction ) Fission of neutron-rich nuclei Nuclear data ( Ã, Y(m), ½ )

Multi-nucleon Transfer Reaction 16 O 16 O 18 O 238 U 240 U * Fragment 2 Fragment 1 n 239 U ( T 1/2 =23.5m) 22

Experimental Setup MWPC3 MWPC1 Target 18 O Fragment 2 18 O Beam 238 U θ LAB ΔE-E ΔE = 75μm E = 300μm 240 U* Fragment 1 16 O MWPC4 MWPC2

Particle Identification de (MeV) 18 O + 238 U (E beam =157.5 MeV ) 100 80 60 40 237-240 U 239-242 Np 241-245 Pu Am Pa Coincided with Fission Fragment F 16-19 O 14-17 N 240,239,238,237 U * n + 239 U (23.5 min) n + 237 U (6.8 day) 242,241,240,239 Np * n + 241 Np (13.9 min) n + 240 Np (65 min) n + 239 Np (2.4 day) n + 238 Np (2.1 day) 20 0 50 100 150 200 E (MeV) B 11-15 C 245,244,243,242,241 Pu * n + 243 Pu (4.9 hr) n + 241 Pu (14 yr)

235 U( 18 O, 16 O) 237 U * Fission Probability of 240 U * Events / 0.5 MeV Events / 0.5 MeV Fission Probability 6000 4000 2000 0 5 10 15 20 25 900 600 300 0 5 10 15 20 25 0.4 0.3 0.2 0.1 B f 2 nd 3 nd 0 5 10 15 20 25 0 10 20 Excitation Energy (MeV) Spectrum for 16 O Coincidence between 16 O and fission fragments Fission Probability

Fission fragment mass distribution 239 Np * Preliminary Excitation energy (MeV) Yield (%) Fragment Mass (u) Fragment Mass (u)

Excitation Energy (MeV) 237U* 239Np* 241Pu* 238U* 239U* 240U* 240Np* 241Np* 242Np* 242Pu* 243Pu* Fragment Mass (u) 244Pu*

Prompt Neutron Multiplicity in Fission Pulse Shape neutron gamma Neutron Detectors (Liquid Scintilator) Pulse Height

Summary In beam fission experiment can be used to estimate the fusion probability for heavy-element synthesis. Using multi-nucleon transfer reactions, nuclear data can be obtained for more than 10 actinide nuclei.

Thank you.