Motivation. Problems. Puzzle 1

Similar documents
CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

Numbering Boundary Nodes

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

1 Introduction to Modulo 7 Arithmetic

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Constructive Geometric Constraint Solving

COMP108 Algorithmic Foundations

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Sybil Attacks and Defenses

Planar Upward Drawings

CS 461, Lecture 17. Today s Outline. Example Run

12. Traffic engineering

Section 10.4 Connectivity (up to paths and isomorphism, not including)

CS September 2018

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

QUESTIONS BEGIN HERE!

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

What do you know? Listen and find. Listen and circle. Listen and chant. Listen and say. Lesson 1. sheep. horse

0.1. Exercise 1: the distances between four points in a graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Aquauno Video 6 Plus Page 1

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

Garnir Polynomial and their Properties

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Chapter 9. Graphs. 9.1 Graphs

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CS 241 Analysis of Algorithms

In order to learn which questions have been answered correctly: 1. Print these pages. 2. Answer the questions.

Section 3: Antiderivatives of Formulas

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

QUESTIONS BEGIN HERE!

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Designing A Concrete Arch Bridge

EE1000 Project 4 Digital Volt Meter

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Problem solving by search

Present state Next state Q + M N

CSI35 Chapter 11 Review

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Case Study VI Answers PHA 5127 Fall 2006

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Quartets and unrooted level-k networks

This chapter covers special properties of planar graphs.

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Analysis for Balloon Modeling Structure based on Graph Theory

Solutions to Homework 5

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

Binomials and Pascal s Triangle

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

(a) v 1. v a. v i. v s. (b)

Polygons POLYGONS.

Computational Biology, Phylogenetic Trees. Consensus methods

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

CS553 Lecture Register Allocation I 3

Instructions for Section 1

Probability. Probability. Curriculum Ready ACMSP: 225, 226, 246,

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

CS553 Lecture Register Allocation 1

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Multipoint Alternate Marking method for passive and hybrid performance monitoring

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

Multi-Section Coupled Line Couplers

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

Formal Concept Analysis

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

Transcription:

Introution to Roust Algorithms Séstin Tixuil UPMC & IUF Motition Approh Fults n ttks our in th ntwork Th ntwork s usr must not noti somthing wrong hppn A smll numr of fulty omponnts Msking pproh to fult/ttk tolrn Prinipl Prolms Tmprtur Prssur CPU CPU CPU Comprtor Throttl Rplit input snsors my not gi th sm t Fulty input snsor or prossor my not fil grfully Th systm might not tolrnt to softwr ugs Tlling Truth from Lis Th Isln of Lirs n Truth-tllrs An isln is popult y two tris Mmrs of on tri onsistntly li Mmrs of th othr tri lwys tll th truth Tri mmrs n rogniz on nothr, ut n xtrnl osrr n t Puzzl 1 You mt mn n sk him if h is truth-tllr, ut fil to hr th nswr You inquir: Di you sy you r truthtllr? H rspons: No, I i not. To whih tri os th mn long? Puzzl II You mt prson on th isln. Wht singl qustion n you sk him/hr to trmin whthr h/sh is lir or truth-tllr?

Puzzl III Puzzl IV Puzzl V You mt two popl A n B on th isln A sys: Both of us r from th lir tri. Whih tri is A from? Wht out B? You mt two popl, C n D on th isln. C sys: Extly on of us is from th lirs tri. Whih tri is D from? You mt two popl E n F on th isln E sys: It is not th s tht oth of us r from truth-tllrs tri. Whih tri is E from? Wht out F? Puzzl VI You mt two popl G n H on th isln G sys: W r from iffrnt tris. H sys: G is from th lirs tri. Whih tris r G n H from? Puzzl VII You mt thr popl A, B, n C You sk A: how mny mong you r truth-tllrs?, ut on t hr th nswr You sk B: Wht i A sy?, hr on. C sys: B is lir. Whih tris r B n C from? Puzzl VII A B B C C C C 0 1 1 2 1 2 2 3 Th Isln of Slti Lirs Inhitnts li onsistntly on Tusys, Thursys, n Sturys. Howr, thy lwys sy th truth on th rmining ys. You sk: Wht is toy? Tomorrow? Rsponss: Stury., Wnsy. Wht is th urrnt y? Th Isln of Rnom Lirs A nw Isln hs thr tris truth-tllrs onsistnt lirs rnomly li or tll th truth How to intify thr rprsntnts of h tri stning in lin with only thr ys/no qustions? Byzntin Gnrls

Sttings Gol Two Gnrls Prox Byzntin gnrls r mping outsi n nmy ity Gnrls n ommunit y sning mssngrs Gnrls must i upon ommon pln of tion Som of th Gnrls n tritors All loyl gnrls i upon th sm pln of tion A smll numr of tritors nnot us th loyl gnrls to opt pln G1 Bsig ity Attk t noon? Ak! Unrlil ommunition mi G2 L1 Th Byzntin Gnrls Prolm G Bsig ity L2 Th (simpl) Byzntin Gnrls Prolm Gnrls l n iisions of th Byzntin rmy Th iisions ommunit i rlil mssngrs Th gnrls must gr on pln ( ttk or rtrt ) n if som of thm r kill y nmy spis Orl Mol A1: Ery mssg tht is snt is lir orrtly A2: Th rir of mssg knows who snt it A3: Th sn of mssg n tt Solution? Rlil Ntworks Rlil Ntworks pln: rry of {A,R}; finlpln: {A,R} Ali:A Ali:A 1: pln[myid] := ChoosAorR() 2: for ll othr G sn(g, myid, pln[myid]) 3: for ll othr G ri(g, pln[g]) 4: finlpln := mjority(pln) Bo:R Chrli:A Bo:R Chrli:A

Rlil Ntworks Rlil Ntworks Crshing Ntworks Ali:A Ali:A:A Ali:A Bo:R Chrli:A Bo:R:A Chrli:A Bo:R Chrli:A Crshing Ntworks Crshing Ntworks Crshing Ntworks Ali:A Ali:A Ali:A A A R (R,A,-) Bo:R Chrli:A Bo:R A Chrli:A Bo:R R Chrli:A Crshing Ntworks Ali:A R (R,A,-) Bo:R:R R Chrli:A:A Th Byzntin Gnrls Prolm A gnrl n n-1 liutnnts l n iisions of th Byzntin rmy Th iisions ommunit i mssngrs tht n ptur or ly Th gnrls must gr on pln ( ttk or rtrt ) n if som of thm r tritors tht wnt to prnt grmnt Th Byzntin Gnrls Prolm A ommning gnrl must snt n orr to his n-1 liutnnts gnrls suh tht IC1: ll loyl liutnnts oy th sm orr IC2: if th ommning gnrl is loyl, thn ry loyl liutnnt oys th orr h sns

Orl Mol A1: Ery mssg tht is snt is lir orrtly A2: Th rir of mssg knows who snt it A3: Th sn of mssg n tt 3k+1 nos r nssry (orl mol) Attk Attk Liutnnt 1 Rtrt Liutnnt 2 3k+1 nos r nssry (orl mol) Rtrt Rtrt Liutnnt 1 Attk Liutnnt 2 3k+1 nos r nssry (orl mol) 3k+1 nos r nssry (orl mol) 3k+1 nos r nssry (orl mol) Attk Rtrt Liutnnt 1 Rtrt Liutnnt 2 Rtrt Attk Liutnnt 1 Attk Liutnnt 2 Attk Rtrt Attk Rtrt Liutnnt 1 Rtrt Liutnnt 2 3k+1 nos r suffiint (orl mol) 3k+1 nos r suffiint (orl mol) 3k+1 nos r suffiint (orl mol) Liutnnt 1 Liutnnt 2 Liutnnt 1 () Liutnnt 2 Liutnnt 1 () Liutnnt 2 Liutnnt 3 Liutnnt 3 () Liutnnt 3 (,)

3k+1 nos r suffiint (orl mol) 3k+1 nos r suffiint (orl mol) 3k+1 nos r suffiint (orl mol) Liutnnt 1 () Liutnnt 2 Liutnnt 1 (,) Liutnnt 2 Liutnnt 1 (,) x Liutnnt 2 x Liutnnt 3 (,) Liutnnt 3 (,) Liutnnt 3 (,) 3k+1 nos r suffiint (orl mol) 3k+1 nos r suffiint (orl mol) 3k+1 nos r suffiint (orl mol) Mj(,,x) x z Liutnnt 1 (,,x) Liutnnt 2 Liutnnt 1 (,,x) Liutnnt 2 Liutnnt 1 y Liutnnt 2 Liutnnt 3 (,,x) Liutnnt 3 (,,x) Mj(,,x) Liutnnt 3 3k+1 nos r suffiint (orl mol) Liutnnt 1 Liutnnt 3 Liutnnt 2 3k+1 nos r suffiint (orl mol) Liutnnt 1 Min Liutnnt 3 Min Liutnnt 2 Min Writtn Mol A1-A3: Sm s for A4: A loyl gnrl s signtur nnot forg, n ny ltrtion of th ontnts of his sign mssgs n tt Anyon n rify th uthntiity of gnrl s signtur

k+2 nos r suffiint (writtn mol) k+2 nos r suffiint (writtn mol) k+2 nos r suffiint (writtn mol) Attk:C Attk:C Liutnnt 1 Liutnnt 2 Liutnnt 1 Attk:C:L1 Liutnnt 2 Liutnnt 1 Attk:C:L2 Liutnnt 2 k+2 nos r suffiint (writtn mol) k+2 nos r suffiint (writtn mol) k+2 nos r suffiint (writtn mol) Attk:C Rtrt:C Liutnnt 1 Liutnnt 2 Liutnnt 1 Attk:C:L1 Liutnnt 2 Liutnnt 1 Rtrt:C:L2 Liutnnt 2 k+2 nos r suffiint (writtn mol) Attk:C Rtrt:C:L2 Rtrt:C Attk:C:L1 Liutnnt 1 Liutnnt 2 Aritrry Ntworks Topology Disory Gin synhronous ntwork up to k Byzntin nos h no knows its immit nighors intifirs Gol h no must isor th omplt ntwork topology

Wk Topology Disory Trmintion ithr ll non-fulty prosss trmin th systm topology or t lst on tts fult Sfty for h non-fulty pross, th trmin topology is sust of tul Vliity fult tt only if it in xists Wk Topology Disory Wk Topology Disory Wk Topology Disory Bouns nnot trmin prsn of g if two jnt nos r fulty nnot (ompltly) sol if ntwork is lss thn k+1 onnt Strong Topology Disory Trmintion ll non-fulty prosss trmin th systm topology Sfty for h non-fulty pross th trmin topology is sust of tul Strong Topology Disory Strong Topology Disory Strong Topology Disory Strong Topology Disory Bouns nnot trmin prsn of g if on nighor is fulty nnot sol if ntwork is lss thn 2k+1 onnt

Solutions Prliminris Min i Mngr s thorm: if grph is k onnt thn for ny two rtis thr xists k intrnlly no-isjoint pths onnting thm singl (non-sour) no nnot ompromis info if it trls or two no-isjoint pths Solutions Prliminris Common Fturs ry solution ssntilly inols flooing h no s nighor info to th othr nos solutions iffr on how th nos forwr nighorhoo info ri from othr nos A Ni Solution Stor trl pth in mssg, forwr mssg tht ontins simpl pth to ll outgoing links Sols strong (n wk) topology isory prolms A Ni Solution h g f A Ni Solution Stor trl pth in mssg, forwr mssg tht ontins simpl pth to ll outgoing links Sols strong (n wk) topology isory prolms rquirs xponntil numr of mssgs Dttor Bsi sign propgt nighor info mssg for h pross xtly on (first tim) if ri iffrnt info for sm pross, signl fult sin ntwork is k+1 onnt, info out non-fulty nos rhs ry no Dttor Dttor Dttor Hnling fk nos fulty pross my sn info out nonxistnt (fk) nos thus ompromising sfty n trmintion only fulty nos n onnt to fk nos? (isor ntwork is lss tht k+1 onnt) Hnling fk nos fulty pross my sn info out nonxistnt (fk) nos thus ompromising sfty n trmintion whn th ntwork is not ompltly isor yt, it my lso lss thn k+1 onnt, prolms with liity g h f

Dttor Nighorhoo losur onnt ll nos whos nighor informtion is not ri th onntiity of this grph is no lss thn th tul topology if th onntiity of this grph flls low k+1, signl fult,, Dttor, Dttor Dttor,, Dttor Hnling Fults??? Hnling Fults Hnling Fults Dttor Dfinition Solution is jnt-g omplt if nonfulty nos isor ll non-fulty nos n thir jnt gs

Dttor Explorr Explorr Thorm Dttor is n jnt-g omplt solution to th wk topology isory prolm if th onntiity of th systm xs th mximum numr of fults Min i ollt no s nighor informtion suh tht th info gos long mor thn twi s mny no isjoint pths s mx numr of fulty nos Confirm nighor informtion k+1 isjoint pths from sour non-intrsting pths from k+1 onfirm nighors Explorr <,> Explorr Explorr :<,> :<,>,:<,> :<,> Dfinition Solution is two-jnt g omplt if non-fulty nos isor ll non-fulty nos n gs jnt to two nonfulty nos Thorm (gnrliz) Explorr is two-jntg omplt solution to th strong topology isory prolm in s th grph onntiity is mor thn twi th numr of fults Composing Dttor n Explorr Osrtion Dttor uss lss mssgs whn thr r no fults I run Dttor, if no isors fult, inok Explorr rquirs 2k+1 onnt topologis